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PART 1: SETS AND OPERATIONS ON SETS

Subset Notations We use notation A C B for a SUBSET (might be improper) and A C B for a
PROPER subset.

Set Inclusion ACB iff Va(a € A= a € B) is a true statement.
Set Equality A=B iff ACB n BCA.

Proper Subset ACB iff ACB N A#B.

Power Set P(A)={B: BC A}

Union AUB={x: z€A U z¢€ B}. We write:
zxe€(AUB) iff xr€ A U z€B.

Intersection ANB={zx:x€A N z¢c B} We write:
ze(AnB)iffxe A N xz€B.

Relative Complement A—-B={x:2€ AN z ¢ B}. We write:

re€(A-B)ifze € ANz
not € B.

Complement This is defined only for A C U, where U is called an UNIVERSE.
We define: —A=U — A, or write: x € —Aiff € A.

Other notation some books use A°, or ’ for —A.

Set A defined by a property (predicate) P(x) is A={z: P(x)}.

Ordered Pair Given two sets A, B, we denote by (a, b) and ordered pair, where a € A and b € B.
a is a first coordinate, b is the second coordinate. We define:
(a,b) = (¢,d) iff a=cand b=d.

(Cartesian) Product of two sets A and B.
Ax B={(a,b): a€ A N be B}, or we write:

(a,b) e (AxB) iff a€cA N beB.

Binary Relation R defined in a set A is any subset R of a cartesian product of A x A, i.e.
RCAx A

Domain of R Let R C A x A, we define domain of R:
Dr={acA: Fe A((a,b) € R)}.

Range of R (Set of values of R). Let R C A x A, we define range of R (set Vg of values of R):
Ve={beA: Ja € A((a,b) € R)}.



Ordered tuple Given sets Ay,...A,,. An element (ay,as, ...a,) such that a; € A; for i =1,2,..n is
called an ordered TUPLE.

(Cartesian) Product of sets Ay, ...4,.
Al x Ay x ... X A, = {(al,ag, ...an) La; € Ai, 1= 1,2,...n}.

Algebra of sets consists of properties of sets that are TRUE for ALL sets involved. We use tau-
tologies of propositional logic to prove BASIC properties of sets and we use the basic properties
to prove more elaborated properties of set

PART 2: FUNCTIONS
Function as Relation R C A x B is a FUNCTION from A to B iff
Vae A3 be B (a,b) €R.

Where 3! b € B means there is EXACTLY one b € B. Because for all a € A we have exactly
one b € B, we write it as: a = R(b) for (a,b) € R.

A is called A DOMAIN of a function R and we write:

R: A — B to denote that R C A x B is a FUNCTION from A to B.

Function notation =~ We denote relations that are functions by letters f, g, h,... and write f :
A — B tosay that f C A x B is a function from A to B (MAPS A into B).

Domain, codomain of f Let f: A — B, A is called a DOMAIN of f and B is called a
codomain of f.

Graph of f In our approach the GRAPH and the function are the same. GRAPHf = f = {(a,b) :
b= f(a)}.

ONTO function f: A — B is called an onto function and denoted by
f: A28 B iff Vbe Blac A f(a) =b.

1-1 function f: A — B is called a ONE-TO ONE function and denoted by

f: A L i Va,y € Alx £y = f(x) # fly) ).

fis NOT 1-1 f: A — Bisnot a ONE-TO ONE function iff 3o,y € A(zx #ynN f(z) =
fw)).

1-1, onto If f is a 1-1 and onto function we write it as f: A 1= Lopto

B.

Composition Let f: A — Bandg: B — C, we define a new function h: A — C,
called a COMPOSITION of f and g, as follows:
forany x € A, h(z) = g(f(x)).

Composition notation = We denote a composition h of f and gas h = fog. L.e. we define: for all
ze A, (fog)lz)=g(f(z)).

Observe Standard notation for a composition of f and g is fog.

It means that f is the first function f: A — B and g is the second functiong: B — C
and the composition is a function with a ”name” f o g which is defined by a formula:

forallz € A, (fog)(z)=g(f(z)).

Inverse function ILet f: A — B and g: B — A.
The function g is called an INVERSE function to f iff the composition of f and g is an identity
on A, i.e. the following condition holds.

Vac A, (fog)(a)=g(f(a) =a)



Inverse function notation If g is an INVERSE function to f we denote by g = f~ 1.
Identity function f: A — A iscalled an IDENTITY on A iff Va € Af(a) = a.

Inverse and Identity Let f: A — B and f~!: B — Ais an inverse to f, then the
compositions fo f~! and f~! o f are both identities on A and B, respectively, i.e.

(fofYHa)=f"1(f(a)) =a,forallac A
and (f~'o f)(b) = f(f~1(b)) =bfor all b€ B.

Inverse Function Theorem For any function f: A —— B, the inverse function to f exists iff
fis1—1and ONTO, ie. f: A 2% B.
PART 3: SEQUENCES, GENERALIZED UNION AND INTERSECTION

A sequence of elements of a set A is any function

f: N — A o f: N-{0} — A

n-th term of a sequence Let f: N — A be a sequence, a, = f(n) is called a n-th term of
a sequence f and we write the sequence f as ag, a1, ...apn, -....

Sequence notation Let f be a sequence, we denote it as {a, fnen, or {an}nen—10}-

Finite Sequence of elements of a set A is any function f: {1,2,..n—1} — A, forne N
and n is called a LENGTH of the sequence f. Observe that for n = 0, f = () and we call the
sequence of lenght 0 the empty sequence, and denote by e or .

Family of sets  Any collection of sets is called a Family of sets. We denote it by F.

Sequence of sets is a sequence f: N — F, ie a sequence where all its elements are SETS.
We use CAPITAL letters to denote the sets, so we also use capital letters to denote sequences
of sets: {Ay}nen, or {An}nen—goy-

Generalized Union of a sequence of sets: |J,cyAn={r: Ine€ N zc A}, ie
€Uy Aniff Ine Nz A,

Generalized Intersection of a sequence of sets:

Mpeny An ={z: Vne Nz A}, ie
€ Npeny An iff VR € N z € A,.

Indexed Family of Sets Let F be a family of sets, and T # ().

Any f: T — F, f(t) = A; is called an indexed family of sets, T is called a set if indexes.
We write it: {A;}er.
NOTICE that any sequence of sets is an indexed family of sets for T = N.

Generalized Union of an indexed family of sets:
Uier Ae ={z: 3teTrxc A} ie vclUjerAiff It eT xc Ay

Generalized Intersection of an indexed family of sets: (), A ={x: V€T x € A}, ie.
v € er A iffVE €T v € Ay

PART 4: IMAGE AND INVERSE IMAGE



Image of aset A C X under a function f: X — Y. NOTATIONS: f(A) or f7(A). Definition:
fA)=f7A)={yeY: Tax(zcAny=f(x))}, ie
ye f(A) iff Jz(xre Any= f(x)).
Inverse Image of a set B C Y under a function f: X — Y. NOTATIONS: f~(B) or f<(B).
Definition:
I7'B)=f"(B)={xe X: f(z)€ B}, ie.
re f~YB) iff f(z)e€B.

PART 5: EQUIVALENCE, PARTITION

Equivalence relation R C A x A is an equivalence relation in A iff it is relexive, symmetric and
transitive.

Equivalence relation symbols = We denote equivalence relation by ~, or =, or =. In my notes
we usually use ~ as a symbol for the equivalence relation.
Equivalence class If ~ C A x A is and equivalence relation then the set

E={be A: a=b}is called an equivalence class.

Equivalence class symbols The equivalence classes are usually denoted by:
[a] ={be A: a=1b}
and the element a is called a representative of the equivalence class
[al ={beA: a=b}.

Other symbols used are: |a| or || a || for the equivalence class {b € A : a = b} with a representative
a.

Partition A family of sets P C P(A) is called a partition of the set A iff the following conditions
hold.

1. VXeP (X£0D)
i.e. all sets in the partion are non-empty.

2. VX, YeP (XNY =0)
i.e. all sets in the partion are disjoint.

3. yp=4
i.e sum of all sets from P is the set A.

Notation: A/ =~ denotes the set of all equivalence classes of =, i.e.

Af ~={[a] : a € A}.

Equivalence and Partition Theorem
Let A # 0, if ~ is an equivalence relation on A, then A/ = is a partition of A, i.e.

1. V]a €A/~ ([a] #0)
i.e. all equivalence classes are non-empty.

2. V]a £ e A/ = ([a]N]b] =0)
i.e. all equivalence classes are disjoint.

3. U4/ ~=A
i.e sum of all equivalence classes (sets from A/ =) is the set A.



Partition and Equivalence = We prove also a following;:

For partition P C P(A) of A, there is an equivalence relation on A such that its equivalence
classes are exactly the sets of the partition P.

Sets R(a) Observe that we can consider, for ANY relation R on A sets that "look” like equivalence
classes i.e. are defined as follows:

R(a) ={be A; aRb} ={bec A; (a,b) € R}.

Fact 1 If R is an equivalence on A, then the family {R(a)}.c4 is a partition of A.
Fact 2  If the family {R(a)}qeca is NOT a partition of A, then R is NOT an equivalence on A.



