
LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Springer 2019

Anita Wasilewska

Chapter 8
Classical Predicate Semantics and Proof Systems

CHAPTER 8 SLIDES

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 1

PART 1: Formal Predicate Languages

Slides Set 2

PART 2: Classical Semantics

Slides Set 3

PART 3: Predicate Tautologies, Equational Laws of

Quantifiers

PART 4: Proof Systems: Soundness and Completeness

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 1

PART 1: Formal Predicate Languages

Formal Predicate Languages

We define a predicate language L following the pattern
established by the propositional languages

The predicate language L is more complicated in its
structure and hence its alphabet A is much richer

The definition of its set F of formulas is more complicated

In order to define the set F of formulas we introduce an
additional set T, called a set of terms

The terms play important role in the development of other
notions of predicate logic

Predicate Languages

Predicate languages are also called first order languages

The same applies to the use of terms for propositional and
predicate logics

Propositional and predicate logics are called zero order
and first order logics, respectively

We will use both terms equally

We work with many different predicate languages, depending
on what applications we have in mind

All of these languages have some common features, and we
begin with a following general definition

Predicate Language

Definition

By a predicate language L we understand a triple

L = (A,T,F)

where

A is a predicate alphabet

T is the set of terms

F is a set of formulas

Predicate Languages Components

The first component of L is defined as follows

1. Alphabet A is the set

A = VAR ∪ CON ∪ PAR ∪ Q ∪ P ∪ F ∪ C

where

VAR is set of predicate variables
CON is a set of propositional connectives
PAR is a set of parenthesis
Q is a set of quantifiers
P is a set of predicate symbols

F i a set of functions symbols, and

C is a set of constant symbols

We assume that all of the sets defining the alphabet are
disjoint

Alphabet Components

The component of the alphabet A are defined as follows

Variables

We assume that we always have a countably infinite set
VAR of variables, i.e. we assume that

cardVAR = ℵ0

We denote variables by x, y, z, ..., with indices, if necessary.

we often express it by writing

VAR = {x1, x2,}

Alphabet Components

Propositional Connectives

We define the set of propositional connectives CON in the
same way as in the propositional case

The set CON is a finite and non-empty and

CON = C1 ∪ C2

where C1,C2 are the sets of one and two arguments
connectives, respectively

Parenthesis

As in the propositional case, we adopt the signs (and) for
our parenthesis., i.e. we define a set PAR as

PAR = { (,) }

Alphabet Components

The set of propositional connectives CON defines a
propositional part of the predicate language

What really differs one predicate language from the other is
the choice of the following additional symbols

These are quantifiers symbols, predicate symbols, function
symbols, and constant symbols

A particular predicate language is determined by specifying
the following sets of symbols of the alphabet

Alphabet Components

Quantifiers

We adopt two quantifiers;

universal quantifier denoted by ∀ and

existential quantifier denoted by ∃

We have the following set of quantifiers

Q = {∀,∃}

Alphabet Components

In a case of the classical logic and the logics that extend it, it
is possible to adopt only one quantifier and to define the
other in terms of it and propositional connectives

Such definability of quantifiers is impossible in a case of
some non-classical logics, for example for the intuitionistic
logic

But even in the case of classical logic we often adopt the two
quantifiers as they express better the intuitive understanding
of formulas

Alphabet Components

Predicate symbols

Predicate symbols represent relations

Any predicate language contains a non empty, finite or
countably infinite set

P

of predicate symbols. We denote predicate symbols by

P,Q ,R , . . .

with indices, if necessary

Each predicate symbol P ∈ P has a positive integer #P
assigned to it

When #P = n we call P an n-ary (n - place) predicate
symbol

Alphabet Components

Function symbols
Function symbols represent functions
Any predicate language contains a finite (may be empty) or
countably infinite set

F

of function symbols. We denote functional symbols by

f , g, h, . . .

with indices, if necessary
When F = ∅ we say that we deal with a language without
functional symbols
Each function symbol f ∈ F has a positive integer #f
assigned to it
if #f = n then f is called an n-ary (n - place) function
symbol

Alphabet Components

Constant symbols
Any predicate language contains a finite (may be empty) or
countably infinite set

C

of constant symbols
The elements of C are denoted by

c, d, e, . . .

with indices, if necessary
When the set C is empty we say that we deal with a
language without constant symbols

Sometimes the constant symbols are defined as 0-ary
function symbols i.e. C ⊆ F
We single them out as a separate set for our convenience

Predicate Language

Given an alphabet

A = VAR ∪ CON ∪ PAR ∪ Q ∪ P ∪ F ∪ C

What distinguishes one predicate language

L = (A,T,F)

from the other is the choice of the components CON and
the sets P, F, C of its alphabet A

We hence will write
LCON(P,F,C)

to denote the predicate language L determined by P, F, C
and the set of propositional connectives CON

Predicate Language Notation

Once the set CON of propositional connectives is fixed, the
predicate language

LCON(P,F,C)

is determined by the sets P, F and C

We write
L(P,F,C)

for the predicate language L determined by P, F,C (with a

fixed set of propositional connectives)

If there is no danger of confusion, we may abbreviate

L(P,F,C) to just L

Predicate Languages Notation

We sometimes allow the same symbol to be used as an
n-place predicate symbol, and also as an m-place one

No confusion should arise because the different uses can be
told apart easily

Example

If we write P(x, y) , the symbol P denotes 2-argument
predicate symbol

If we write P(x, y, z), the symbol P denotes 3-argument
predicate symbol

Similarly for function symbols

Predicate Language

Having defined the basic element of syntax, the alphabet A,
we can now complete the formal definition of the predicate
language

L = (A,T,F)

by defining next two more complex components:

the set T of all terms and

the set F of all well formed formulas of the language

L = LCON(P,F,C)

Set of Terms

Terms

The set T of terms of the predicate language L(P,F,C)
is the smallest set

T ⊆ A∗

meeting the conditions:

1. any variable is a term, i.e. VAR ⊆ T

2. any constant symbol is a term, i.e. C ⊆ T

3. if f is an n-place function symbol, i.e. f ∈ F and #f = n

and t1, t2, ..., tn ∈ T , then f(t1, t2, ..., tn) ∈ T

Terms Examples

Example 1

Let f ∈ F, #f = 1 , i.e. f is a 1-place function symbol

Let x, y be variables, c, d be constants, i.e.

x, y ∈ VAR and c, d ∈ C

Then the following expressions are terms:

x, y, f(x), f(y), f(c), f(d), . . .

f(f(x)), f(f(y)), f(f(c)), f(f(d)), . . .

f(f(f(x))), f(f(f(y))), f(f(f(c))), f(f(f(d))), . . .

Terms Examples

Example 2

Let F = ∅,C = ∅

In this case terms consists of variables only, i.e.

T = VAR = {x1, x2, }

Directly from the Example 2 we get the following

Remark

For any predicate language L(P,F,C), the set T of its
terms is always non-empty

Terms Examples

Example 3

Consider a case of L(P,F,C) where

F = { f , g } for #f = 1 and #g = 2

Let x, y ∈ VAR and c, d ∈ C

Some of the terms are the following:

f(g(x, y)), f(g(c, x)), g(f(f(c)), g(x, y)),

g(c, g(x, f(c))), g(f(g(x, y)), g(x, f(c))), . . .

Terms Notation

From time to time, the logicians are and so we may be also
informal about the way we write terms

Example

If we denote a 2- place function symbol g by +, we may
write

x + y instead of writing +(x, y)

Because in this case we can think of x + y as an unofficial
way of designating the ”real” term g(x, y)

Atomic Formulas

Atomic Formulas

Before we define formally the set F of formulas, we need to
define one more set, namely the set of atomic, or
elementary formulas

Atomic formulas are the simplest formulas

They building blocks for other formulas the way the
propositional variables were in the case of propositional
languages

Atomic Formulas

Definition

An atomic formula of a predicate language L(P,F,C) is any
element of A∗ of the form

R(t1, t2, ..., tn)

where R ∈ P, #R = n and t1, t2, ..., tn ∈ T

I.e. R is n-ary predicate (relational) symbol and t1, t2, ..., tn
are any terms

The set of all atomic formulas is denoted by AF and is
defined as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T, n ≥ 1}

Atomic Formulas Examples

Example

Consider a language

L = L({P}, ∅, ∅) for #P = 1

L is a predicate language without neither functional, nor
constant symbols, and with only one, 1-place predicate
symbol P

The set AF of atomic formulas contains all formulas of the
form P(x), for x any variable, i.e.

AF = {P(x) : x ∈ VAR}

Atomic Formulas Examples

Example

Let now consider a predicate language

L = L({R}, {f , g}, {c, d})

for #f = 1,#g = 2,#R = 2

The language L has two functional symbols: 1-place
symbol f and 2-place symbol g, one 2-place predicate
symbol R, and two constants: c,d

Some of the atomic formulas in this case are the following.

R(c, d), R(x, f(c)), R((g(x, y)), f(g(c, x))),

R(y, g(c, g(x, f(d))))

Set of Formulas Definition

Set F of Formulas

Given a predicate language

L = LCON(P,F,C)

where CON is non-empty, finite set of propositional
connectives such that CON = C1 ∪ C2 for

C1 a finite set (possibly empty) of unary connectives,

C2 a finite set (possibly empty) of binary connectives of the
language L

We define the set F of all well formed formulas

of the predicate language L = LCON(P,F,C) as follows

Set of Formulas Definition

Definition

The set F of all well formed formulas, of the language

L = LCON(P,F,C) is the smallest set meeting the

following conditions

1. Any atomic formula of L is a formula , i.e.

AF ⊆ F

2. If A is a formula of L, 5 is an one argument

propositional connective, then 5A is a formula of L,

i.e. the following recursive condition holds

if A ∈ F ,5 ∈ C1 then 5A ∈ F

Set of Formulas Definition

3. If A ,B are formulas of L and ◦ is a two argument

propositional connective, then (A ◦ B) is a formula of L,

i.e. the following recursive condition holds

If A ∈ F ,5 ∈ C2, then (A ◦ B) ∈ F

4. If A is a formula of L and x is a variable, ∀,∃ ∈ Q ,

then ∀xA , ∃xA are formulas of L, i.e. the following recursive

condition holds

If A ∈ F , x ∈ VAR , ∀,∃ ∈ Q, then ∀xA , ∃xA ∈ F

Scope of Quantifiers

Scope of Quantifiers

Another important notion of the predicate language is the

notion of scope of a quantifier

Definition

Given formulas
∀xA , ∃xA

The formula A is said to be in the scope of a quantifier

∀, ∃, respectively.

Scope of Quantifiers

Example

Let L be a language of the previous Example with the set of

connectives {∩,∪,⇒,¬} , i.e.

L = L{∩,∪,⇒,¬}({f , g}, {R}, {c, d})

for #f = 1, #g = 2 , #R = 2

Some of the formulas of L are the following.

R(c, d), ∃yR(y, f(c)), ¬R(x, y),

(∃xR(x, f(c))⇒ ¬R(x, y)), (R(c, d) ∩ ∀zR(z, f(c))),

∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y)

Scope of Quantifiers

The formula R(x, f(c)) is in scope of the quantifier ∃ in

the formula
∃xR(x, f(c))

The formula (∃x R(x, f(c))⇒ ¬R(x, y)) is not in scope

of any quantifier

The formula (∃xR(x, f(c))⇒ ¬R(x, y)) is in scope of

quantifier ∀ in the formula

∀y(∃xR(x, f(c))⇒ ¬R(x, y))

Scope of Quantifiers

Example

Let L be a first order language of some modal logic defined

as follow
L = L{¬,�,♦,∩,∪,⇒}({R}, {f , g}, {c, d},)

where
#f = 1, #g = 2, #R = 2

Some of the formulas of the language L are the following.

♦¬R(c, f(d)), ♦∃x�R(x, f(c)), ¬♦R(x, y),

∀z(∃xR(x, f(c))⇒ ¬R(x, y)),

(R(c, d) ∩ ∃xR(x, f(c))), ∀y�R(y, g(c, g(x, f(c)))),

�∀y¬♦∃xR(x, y)

Scope of Quantifiers

The formula �R(x, f(c)) is in the scope of the

quantifier ∃ in ♦∃x�R(x, f(c))

The formula (∃xR(x, f(c))⇒ ¬R(x, y)) is not in a scope

of any quantifier

The formula (∃xR(x, f(c))⇒ ¬R(x, y)) is in the scope of

the quantifier ∀ in ∀z(∃xR(x, f(c))⇒ ¬R(x, y))

Formula ¬♦∃xR(x, y) is in the scope of the quantifier ∀

in �∀y¬♦∃xR(x, y)

Free and Bound Variables

Given a predicate language L = (A,T ,F)

We want to distinguish between formulas like

P(x, y), ∀xP(x, y) and ∀x∃yP(x, y)

This is done by introducing the notion of free and bound

variables as well as the notion of open and closed

formulas (sentences)

Before we formulate proper definitions, here are some

simple observations

Free and Bound Variables

1. Some formulas are without quantifiers

For example formulas

R(c1, c2), R(x, y), (R(y, d)⇒ R(a, z))

Variables x, y in R(x, y) are called free variables

The variables y in R(y, d), and z in R(a,z) are also free

A formula without quantifiers is called an open formula

Free and Bound Variables

2. Quantifiers bind variables within formulas

In the formula
∀yP(x, y)

the variable x is free, the variable y is bounded by

the the quantifier ∀

In the formula
∀zP(x, y)

both x and y are free

In both formulas

∀zP(z, y), ∀xP(x, y)

only the variable y is free

Free and Bound Variables

3. The formula ∃x∀yR(x, y) does not contain

any free variables, neither does the formula R(c1, c2)

A formula without any free variables is called called a

closed formula or a sentence

The formula
∀x(P(x)⇒ ∃yQ(x, y))

is a closed formula (sentence), the formula

(∀xP(x)⇒ ∃yQ(x, y))

is not a sentence

Free and Bound Variables

Sometimes in order to distinguish more easily which variable
is free and which is bound in the formula we might use the
bold face type for the quantifier bound variables and write the
formulas as follows

(∀xQ(x, y), ∃yP(y), ∀yR(y, g(c, g(x, f(c)))),

(∀xP(x)⇒ ∃yQ(x, y)), (∀x(P(x)⇒ ∃yQ(x, y)))

Observe that the formulas

∃yP(y), (∀x(P(x)⇒ ∃yQ(x, y)))

are sentences

Free and Bound Variables Formal Definition

Definition
The set FV(A) of free variables of a formula A is defined by
the induction of the degree of the formula as follows

1. If A is an atomic formula, i.e. A ∈ AF , then FV(A) is just
the set of variables appearing in A ;

2. for any unary propositional connective, i.e. for any 5 ∈ C1

FV(5A) = FV(A)

i.e. the free variables of 5A are the free variables of A ;
3. for any binary propositional connective, i.e, for any ◦ ∈ C2

FV(A ◦ B) = FV(A) ∪ FV(B)

i.e. the free variables of (A ◦ B) are the free variables of A
together with the free variables of B;

4. FV(∀xA) = FV(∃xA) = FV(A) − {x}
i.e. the free variables of ∀xA and ∃xA are the free variables
of A , except for x

Important Notation

It is common practice to use the notation

A(x1, x2, ..., xn)

to indicate that
FV(A) ⊆ {x1, x2, ..., xn}

without implying that all of x1, x2, ..., xn are actually free in A

This is similar to the practice in algebra of writing

w(a0, a1, ..., an) = a0 + a1x ++ anxn for a polynomial w

without implying that all of the coefficients a0, a1, ..., an

are nonzero

Replacements

Replacing x by t in Ax

Given a formula A(x) and a term t . We denote by

A(x/t) or simply by A(t)

the result of replacing all occurrences of the free variable x

in A by the term t

When performing the replacement we always assume that

none of the variables in t occur as bound variables in A

Replacement

Reminder

When replacing a variable x by a term t ∈ T in a formula

A(x), we denote the result as

A(t)

We do it under the assumption that none of the variables in t

occur as bound variables in A

The assumption that none of the variables in t occur as
bound variables in A(t) is essential because otherwise by
substituting t on the place of x we would distort the

meaning of A(t)

Example

Example

Let t = y and A(x) is

∃y(x , y)

i.e. the variable y in t is bound in A

The substitution of t = y for the variable x produces a
formula A(t) of the form

∃y(y , y)

which has a different meaning than

∃y(x , y)

Example

Let now t = z and the formula A(x) is

∃y(x , y)

i.e. the variable z in t is not bound in A

The substitution of t = z for the variable x produces

a formula A(t) of the form

∃y(z , y)

which express the same meaning as A(x)

Special Terms

Here an important notion we will depend on

Definition

Given A ∈ F and t ∈ T

The term t is said to be free for a variable x in a formula A

if and only if

no free occurrence of x lies within the scope of

any quantifier bounding variables in t

Special Terms

Example

Given formulas

∀yP(f(x, y), y), ∀yP(f(x, z), y)

The term t = f(x, y) is free for x in ∀yP(f(x, y), y)

and t = f(x, y) is not free for y in ∀yP(f(x, y), y)

The term
t = f(x, z)

is free for x and z in

∀yP(f(x, z), y)

Special Terms

Example

Let A be a formula

(∃xQ(f(x), g(x, z)) ∩ P(h(x, y), y))

The term t1 = f(x) is not free for x in A

The term t2 = g(x, z) is free for z only

Term t3 = h(x, y) is free for y only

because x occurs as a bound variable in A

Replacemant Definition

Replacement Definition

Given

A(x), A(x1, x2, ..., xn) ∈ F and t , t1, t2, ..., tn ∈ T

Then
A(x/t), A(x1/t1, x2/t2, . . . , xn/tn)

or, more simply just

A(t), A(t1, t2, ..., tn)

denotes the result of replacing all occurrences of the free
variables x, x1, x2, ..., xn, by the terms t , t , t1, t2, ..., tn,
respectively, assuming that t , t1, t2, ..., tn are free for

all theirs variables in A

Classical Restricted Domain Quantifiers

Restricted Domain Quantifiers

We often use logic symbols, while writing mathematical
statements

For example, mathematicians in order to say

”all natural numbers are greater then zero and some integers
are equal 1”

often write it as

x ≥ 0,∀x∈N and ∃y∈Z , y = 1

Some of them, who are more ”logic oriented”, would also write
it as

∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1

or even as
(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

Restricted Domain Quantifiers

None of the above symbolic statements are formulas of the

predicate language L

These are mathematical statement written with

mathematical and logic symbols

They are written with different degree of ”logical precision”,

the last being, from a logician point of view the most precise

Restricted Domain Quantifiers

Observe that the quantifiers symbols

∀x∈N and ∃y∈Z

used in all of the symbolic mathematical statements are not
the one used in the predicate language L

The quantifiers of this type are called quantifiers with
restricted domain

Our goal now is to correctly ”translate ” mathematical and
natural language statement into well formed formulas of the
predicate language

L = LCON(P,F,C)

of the classical predicate logic

Restricted Domain Quantifiers

We say

” formulas of the predicate language L of the classical

predicate logic”

to express the fact that we define all notions for the classical

semantics

One can extend these definitions to some non-classical logics,

but we describe and will investigate only the classical case

Restricted Domain Quantifiers

We introduce the quantifiers with restricted domain by
expressing them within the predicate language

L{¬.∩,∪,⇒}(P,F,C) as follows

Given a classical predicate logic language

L = L{¬,∩,∪,⇒,¬}(P,F,C)

The quantifiers
∀A(x) and ∃A(x)

are called quantifiers with restricted domain, or restricted

quantifiers, where A(x) ∈ F is any formula with any

free variable x ∈ VAR

Restricted Domain Quantifiers

Definition

A formula ∀A(x)B(x) is an abbreviation of a formula

∀x(A(x)⇒ B(x)) ∈ F

We write it symbolically as

(∗) ∀A(x) B(x) = ∀x(A(x)⇒ B(x))

A formula ∃A(x)B(x) is an abbreviation of a formula

∃x(A(x) ∩ B(x)) ∈ F

We write it symbolically as

(∗∗) ∃A(x) B(x) = ∃x(A(x) ∩ B(x))

We call (∗) and (∗∗) the transformations rules for

restricted quantifiers

Exercise

Exercise

Given the following mathematical statement S written with
logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

1. Translate the statement S into a proper logical formula A
that uses restricted quantifiers

2. Translate the obtained restricted quantifiers formula A
into a correct logical formula without restricted domain
quantifiers, i.e. into a well formed formula of L

Translation Steps

Given a mathematical statement S

We proceed to write this and other similar problems
translation in a sequence of the following steps

Step 1

We identify basic statements in S i.e. mathematical
statements that involve only relations

They are to be translated into atomic formulas

We identify the relations in the basic statements and choose
predicate symbols as their names

We identify all functions and constants (if any) in the basic
statements and choose function symbols and constant
symbols as their names

Translation Steps

Step 2

We write the basic statements as atomic formulas of L

Step 3

We re-write the statement S as a logical formula with
restricted quantifiers

Step 4

We apply the transformations rules (∗) and (∗∗) for restricted
quantifiers to the formula from Step 3

Such obtained formula A of L is a representation, which we
call a translation, of the given mathematical statement S

Exercise Solution

Solution
The mathematical statement S is

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

Step 1 in this particular case is as follows
The basic statements in S are

x ∈ N, x ≥ 0, y ∈ Z , y = 1

The relations are ∈ N, ∈ Z , ≥, =

We use one argument predicate symbols N, Z for relations
∈ N, ∈ Z , respectively
We use two argument predicate symbol G for ≥
We use predicate symbol E for =

There are no functions
We have two constant symbols c1, c2 for numbers 0 and 1,
respectively

Exercise Solution

Step 2
We write N(x),Z(x) for x ∈ N, x ∈ Z , respectively

We write G(x, c1) for x ≥ 0 and E(y, c2) for y = 1

Atomic formulas are

N(x), Z(x), G(x, c1), E(y, c2)

Step 3
The statement S becomes a restricted quantifiers formula

(∀N(x) G(x, c1) ∩ ∃Z(y) E(y, c2))

Step 4
A formula A ∈ F that is a a translation of S is

(∀x (N(x)⇒ G(x, c1)) ∩ ∃y (Z(y) ∩ E(y, c2)))

Exercise Short Solution

Here is a perfectly acceptable short solution

We presented first the long solution in order to explain in
detail how one approaches the ” translations ” problems

This is why we identified the Steps 1 - 4 needed to be
performed when one does the translation

We use the word translation a short cut for saying

” The formula A is a formal predicate language L
representation of the given mathematical statement S”

Exercise Short Solution

Short Solution

The basic statements in S are

x ∈ N, x ≥ 0, y ∈ Z , y = 1

The corresponding atomic formulas of L are

N(x), Z(x), G(x, c1), E(y, c2)

The statement S becomes a restricted quantifiers formula

(∀N(x) G(x, c1) ∩ ∃Z(y) E(y, c2))

A formula A ∈ F that is a a translation of S is

(∀x (N(x)⇒ G(x, c1)) ∩ ∃y (Z(y) ∩ E(y, c2)))

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 2

PART 2: Classical Semantics

Classical Semantics

The notion of predicate tautology is much more

complicated then that of the propositional

Predicate tautologies are also called valid formulas,

or laws of quantifiers to distinguish them from the
propositional case

The formulas of a predicate language L have meaning only

when an interpretation is given for all its symbols

Classical Semantics

We define an interpretation I by interpreting

predicate and functional symbols as a concrete relation

and function defined in a certain set U , ∅

Constants symbols are interpreted as elements of the set U

The set U is called the universe of the interpretation I

These two items specify a structure

M = (U, I) for the language LCON(P,F,C)

Classical Semantics

The semantics for a first order (predicate) language L

in general, and for the first order classical logic in particular,

is defined, after Tarski (1936), in terms of

the structure M = [U, I]

an assignment s of L

a satisfaction relation (M, s) |= A between structures,

assignments and formulas of L

The definition of the structure M = [U, I] and the assignment

s of L is common for different predicate languages and

for different semantics and we define them as follows.

Structure Definition

Definition

Given a predicate language

L = LCON(P,F,C)

A structure for L is a pair

M = [U, I]

where U is a non empty set called a universe

I is an assignment called an interpretation of the language

L(P,F,C) in the universe U

The structure M = [U, I] components are defined as follows

Structure Definition

Structure M = [U, I] Components

1. I assigns to any predicate symbol P ∈ P a relation PI

defined in the universe U, i.e. for any P ∈ P, if #P = n, then

PI ⊆ Un

2. I assigns to any functional symbol f ∈ F a function fI
defined in the universe U, i.e. for any f ∈ F, if #f = n, then

fI : Un −→ U

3. I assigns to any constant symbol c ∈ C an element cI

of the universe, i.e for any c ∈ C,

cI ∈ U

Structure Example

Example

Let L be a language with one two-place predicate symbol,

two functional symbols: one -place and one two-place, and

two constants, i.e.

L = L({R}, {f , g}, {c, d},)

where #R = 2, #f = 1, #g = 2, and c, d ∈ C

We define a structure M = [U, I] as follows

We take as the universe the set U = {1, 3, 5, 6}

The predicate R is interpreted as ≤ what we write as

RI : ≤

Structure Example

We interpret f as a function fI : {1, 3, 5, 6} −→ {1, 3, 5, 6}

such that
fI(x) = 5 for all x ∈ {1, 3, 5, 6}

We put gI : {1, 3, 5, 6} × {1, 3, 5, 6} −→ {1, 3, 5, 6} such that

gI(x, y) = 1 for all x ∈ {1, 3, 5, 6}

The constant c becomes cI = 3, and dI = 6

We write the structure M as

M = [{1, 3, 5, 6} ≤, fI, gI, cI = 3, dI = 6]

Assignment - Interpretation of Variables

Definition

Given a first order language

L = L(P,F,C)

with the set VAR of variables

Let M = [U, I] be a structure for L with the universe U , ∅

An assignment of L in M = [U, I] is any function

s : VAR −→ U

The assignment s is also called an interpretation of

variables VAR of L in the structure M = [U, I]

Assignment - Interpretation

Let M = [U, I] be a structure for L and

s : VAR −→ U

be an assignment of variables VAR of L in the structure M

Let T be the set of all terms of L

By definition of terns
VAR ⊆ T

We use the interpretation I of the structure M = [U, I] to
extend the assignment s to the set the set T of all terms of

the language L

Interpretation of Terms

Notation

We denote the extension of the assignment s

to the set T by sI rather then by s∗ as we did before

sI associates with each term t ∈ T an element sI(t) ∈ U of the

universe of the structure M = [U, I]

We define the extension sI of s by the induction of the length

of the term t ∈ T and call it an interpretation of terms of L in

a structure M = [U, I]

Interpretation of Terms

Definition

Given a language L = L(P,F,C) and a structure M = [U, I]

Let a function
s : VAR −→ U

be any assignment of variables VAR of L in M

We extend s to a function

sI : T −→ U

called an interpretation of terms of L in M

Interpretation of Terms

We define the function sI by induction on the complexity of
terms as follows

1. For any v x ∈ VAR,

sI(x) = s(x)

2. for any c ∈ C,
sI(c) = cI;

3. for any t1, t2, . . . , tn ∈ T, n ≥ 1, f ∈ F, such that #f = n

sI(f(t1, t2, . . . , tn)) = fI(sI(t1), sI(t2), . . . , sI(tn))

Interpretation of Terms Example

Example

Consider a language

L = L({P, R}, {f , h}, ∅

for # P = # R = 2, #f = 1, # h= 2

Let M = [Z , I] , where Z is the set on integers and

the interpretation I for elements of F and C is as follows

fI : Z −→ Z is given by formula f(m) = m + 1 for all m ∈ Z

hI : Z × Z −→ Z is given by formula f(m, n) = m + n

for all m, n ∈ Z

Interpretation of Terms Example

Let s be any assignment s : VAR −→ Z such that

s(x) = −5, s(y) = 2 and t1, t2 ∈ T

Let t1 = h(y, f(f(x))) and t2 = h(f(x), h(x, f(y))

We evaluate

sI(t1) = sI(h(y, f(x)) = hI(sI(y), fI(sI(x))) =

+(2, fI(−5)) = 2 − 4 = −2

and
sI(t2) = sI(h(f(x), h(x, f(y))) =

+(fI(−5),+(−5, 3)) = −4 + (−5 + 3) = −6

Observation

Given t ∈ T

Let x1, x2, . . . , xn ∈ VAR be all variables appearing in t

We write it as
t(x1, x2, . . . , xn)

Observation

For any term t(x1, x2, . . . , xn) ∈ T, any structure M = [U, I]
and any assignments s, s′ of L in M, the following holds

If s(x) = s′(x) for all x ∈ {x1, x2, . . . , xn}, i.e

if the assignments s, s′ agree on all variables appearing in t ,

then
sI(t) = s′I(t)

Notation

Thus for any t ∈ T , the function sI : T −→ U depends on
only a finite number of values of s(x) for x ∈ VAR

Notation

Given a structure M = [U, I] and an assignment
s : VAR −→ U We write

s(
a
x)

to denote any assignment

s′ : VAR −→ U

such that s, s′ agree on all variables except on x and such
that

s′(x) = a for certain a ∈ U

Classical Satisfaction

We introduce now a notion of a satisfaction relation

(M, s) |= A that acts between structures, assignments and

formulas of L

It is the satisfaction relation that allows us to distinguish one

semantics for a given L from the other, and consequently

one logic from the other

We define now only a classical satisfaction and the notion of

classical predicate tautology

Classical Satisfaction

Definition

Given a predicate (first order) language L = L(P,F,C)

Let M = [U, I] be a structure for L and

s : VAR −→ U be any assignment of L in M

Let A ∈ F be any formula of L

We define a satisfaction relation

(M, s) |= A

that reads: ” the assignment s satisfies the formula A in M”

by induction on the complexity of A as follows

Classical Satisfaction

(i) A is atomic formula

(M, s) |= P(t1, . . . , tn) if and only if (sI(t1), . . . , sI(tn)) ∈ PI

(ii) A is not atomic formula and has one of connectives of L
as the main connective

(M, s) |= ¬A if and only if (M, s) 6|= A

(M, s) |= (A ∩B) if and only if (M, s) |= A and (M, s) |= B

(M, s) |= (A ∪ B) if and only if (M, s) |= A or (M, s) |= B
or both

(M, s) |= (A ⇒ B) if and only if ether (M, s) 6|= A or else
(M, s) |= B or both

Classical Satisfaction

(iii) A is not atomic formula and A begins with one of

the quantifiers

(M, s) |= ∃xA if and only if there is s′ such that s, s′

agree on all variables except on x, and

(M, s′) |= A

(M, s) |= ∀xA if and only if for all s′ such that s, s′

agree on all variables except on x, and

(M, s′) |= A

Classical Satisfaction

Observe that that the truth or falsity of (M, s) |= A depends

only on the values of s(x) for variables x which are actually

free in the formula A .

This is why we often write the condition (iii) as follows

Classical Satisfaction

(iii)’ A(x) (with a free variable x) is not atomic formula and

A begins with one of the quantifiers

(M, s) |= ∃xA(x) if and only if there is s′ such that

s(y) = s′(y) such that for all y ∈ VAR − {x},

(M, s′) |= A(x)

(M, s) |= ∀xA if and only if for all s′ such that

s(y) = s′(y) for all y ∈ VAR − {x},

(M, s′) |= A(x)

Satisfaction Relation Exercise

Exercise

For the structures Mi , find assignments si , s′i for 1 ≤ i ≤ 2
such that

(Mi , si) |= Q(x, c), and (Mi , s′i) 6|= Q(x, c)

where Q ∈ P, c ∈ C

The structures Mi are defined as follows (the interpretation I
for each of them is specified only for symbols in the atomic
formula Q(x, c), and N denotes the set of natural numbers

M1 = [{1}, QI :=, cI : 1] and M2 = [{1, 2}, QI :≤, cI : 1]

Satisfaction Relation Exercise

Solution
Given Q(x,c). Consider

M1 = [{1}, QI :=, cI : 1]

Observe that all assignments

s : VAR −→ {1}

must be defined by a formula s(x) = 1 for all x ∈ VAR
We evaluate sI(x) = 1, sI(c) = cI = 1
By definition

(M1, s) |= Q(x, c) if and only if (sI(x), sI(c)) ∈ QI

This means that (1, 1) ∈= what is true as 1 = 1
We have proved

(M1, s) |= Q(x, c) for all assignments s : VAR −→ {1}

Satisfaction Relation Exercise

Given Q(x,c). Consider

M2 = [{1, 2}, QI :≤, cI : 1]

Let s : VAR −→ {1, 2} be any assignment, such that

s(x) = 1

We evaluate sI(x) = 1, sI(c) = 1 and verify whether
(sI(x), sI(c)) ∈ QI i.e. whether (1, 1) ∈ ≤

This is true as 1 ≤ 1

We have found s such that

(M2, s) |= Q(x, c)

In fact, have found uncountably many such assignments s

Satisfaction Relation Exercise

Given Q(x,c) and the structure

M2 = [{1, 2}, QI :≤, cI : 1]

Let now s′ we be any assignment

s′ : VAR −→ {1, 2} such that s′(x) = 2

We evaluate s′I(x) = 1, s′I(c) = 1

We verify whether s′I(x), s′I(c)) ∈ QI, i.e. whether (2, 1) ∈ ≤

This is not true as 2 � 1

We have found s′ , s such that

(M2, s′) 6|= Q(x, c)

In fact, have found uncountably many such assignments s′

Model Definition

Definition

Given a predicate language L, a formula A ∈ F , and
a structure M = [U, I] for L

M is a model for the formula A if and only if

(M, s) |= A for all s : VAR −→ U

We denote it as
M |= A

For any set Γ ⊆ F of formulas of L,

M is a model for Γ if and only if M |= A for all A ∈ Γ

We denote it as
M |= Γ

Counter Model Definition

Definition

Given a predicate language L, a formula A ∈ F , and

a structure M = [U, I] for L

M is a counter model for the formula A if and only if

there is an assignment s : VAR −→ U, such that

(M, s) 6|= A

We denote it as
M 6|= A

Counter Model Definition

Definition

For any set Γ ⊆ F of formulas of L,

M is a counter model for Γ if and only if

there is A ∈ Γ, such that M 6|= A

We denote it as
M 6|= Γ

Sentence Model

Observe that if a formula A is a sentence then
the truth or falsity of satement

(M, s) |= A

is completely independent of s
Hence if (M, s) |= A for some s, it holds for all s and the
following holds
Fact
For any formula A of L
If A is a sentence, then if there is an s such that

(M, s) |= A

then M is a model fo A, i.e.

M |= A

Formula Closure

We transform any formula A of L into a certain sentence by
binding all its free variables. The resulting sentence is called
a closure of A and is defined as follows

Definition

Given A of L

By the closure of A we mean the formula obtained from A by
prefixing in universal quantifiers all variables the arefree in A

If A does not have free variables, i.e. is a sentence, the
closure of A is defined to be A itself

Obviously, a closure of any formula is always a sentence

Formula Closure Example

Example

Let A ,B be formulas

(P(x1, x2)⇒ ¬∃x2 Q(x1, x2, x3))

(∀x1P(x1, x2)⇒ ¬∃x2 Q(x1, x2, x3))

Their respective closures are

∀x1∀x2∀x3 ((P(x1, x2)⇒ ¬∃x2 Q(x1, x2, x3)))

∀x1∀x2∀x3 ((∀x1P(x1, x2)⇒ ¬∃x2 Q(x1, x2, x3)))

Model, Counter Model Example

Example

Let Q ∈ P, #Q = 2 and c ∈ C

Consider formulas

Q(x, c), ∃xQ(x, c), ∀xQ(x, c)

and the structures defined as follows.

M1 = [{1}, QI :=, cI : 1] and M2 = [{1, 2}, QI :≤, cI : 1]

Directly from definition and above Fact we get that:

1. M1 |= Q(x, c), M1 |= ∀xQ(x, c), M1 |= ∃xQ(x, c)

2. M2 6|= Q(x, c), M2 6|= ∀xQ(x, c), M2 |= ∃xQ(x, c)

Model, Counter Model Example

Example

Let Q ∈ P, #Q = 2 and c ∈ C

Consider formulas

Q(x, c), ∃xQ(x, c), ∀xQ(x, c)

and the structures defined as follows.

M3 = [N, QI :≥, cI : 0], and M4 = [N, QI :≥, cI : 1]

Directly from definition and above Fact we get that:

3. M3 |= Q(x, c), M3 |= ∀xQ(x, c), M3 |= ∃xQ(x, c)

4. M4 6|= Q(x, c), M4 6|= ∀xQ(x, c), M4 |= ∃xQ(x, c)

True, False in M

Definition

Given a structure M = [U, I] for L and a formula A of L

A is true in M and is written as

M |= A

if and only if all assignments s of L in M satisfy A, i.e.

when M is a model for A

A is false in M and written as

M =| A

if and only if there is no assignment s of L in M

that satisfies A

True, False in M

Here are some properties of the notions:

1. ” A is true in M” written symbolically as

M |= A

2. ” A is false in M” written symbolically as

M =| A

They are obvious under intuitive understanding of the notion
of satisfaction

Their formal proofs are left as an exercise

True, False in M Properties

Properties

Given a structure M = [U, I] and any formulas formula A ,B
of L. The following properties hold

P1. A is false in M if and only if ¬A is true in M, i.e.

M =| A if and only if M |= ¬A

P2. A is true in M if and only if ¬A is false in M, i.e.

M |= A if and only if M =| ¬A

P3. It is not the case that both M |= A and M |= ¬A , i.e.

there is no formula A, such that

M |= A and M =| A

True, False in M Properties

Properties

P4. If M |= A and M |= (A ⇒ B), then M |= B

P5. (A ⇒ B) is false in M if and only if

M |= A and M |= ¬B

M =| (A ⇒ B) if and only if M |= A and M |= ¬B

P6. M |= A if and only if M |= ∀xA

P7. A formula A is true in M if and only if its closure is
true in M

Valid, Tautology Definition

Definition

A formula A of L is a predicate tautology (is valid)

if and only if M |= A for all structures M = [U, I]

We also say

A formula A of L is a predicate tautology (is valid)

if and only if A is true in all structures M for L

We write
|= A or |=p A

to denote that a formula A is predicate tautology (is valid)

Valid, Tautology Definition

We write
|=p A

when there is a need to stress a distinction between
propositional and predicate tautologies

otherwise we write
|= A

Predicate tautologies are also called laws of quantifiers.

Following the notation T we have established for the set of
all propositional tautologies we denote by Tp the set of all
predicate tautologies

We put
Tp = {A of L : |=p A }

Not a Tautology, Counter Model

Definition

For any formula A of predicate language L

A is not a predicate tautology and denote it by

6|= A

if and only if there is a structure M = [U, I] for L, such that

M 6|= A

We call such structure M a counter-model for A

Counter Model

In order to prove that a formula A is not a tautology one

has to find a counter-model for A

It means one has to define the components of a structure
M = [U, I] for L, i.e.

a non-empty set U, called universe and

an interpretation I of L in the universe U

Moreover, one has to define an assignment s : VAR −→ U
and prove that that

(M, s) 6|= A

Contradictions

We introduce now a notion of predicate contradiction

Definition

For any formula A of L,

A is a predicate contradiction if and only if

A is false in all structures M

We denote it as =| A and write symbolically

=| A if and only if M =| A , for all structures M

When there is a need to distinguish between propositional
and predicate contradictions we also use symbol

=|p A

Contradictions

Following the notation C for the set of all propositional
contradictions we denote by Cp the set of all predicate
contradictions, i.e.

Cp = {A of L(P,F,C) : =|p A }

Directly from the contradiction definition we have the following
duality property charecteristic for classical logic

Fact

For any formula A of a predicate language L,

A ∈ Tp if and only if ¬A ∈ Cp

A ∈ Cp if and only if ¬A ∈ Tp

Proving Predicate TAutologies

We prove, as an example the following basic predicate
tautology

Fact

For any formula A(x) of L,

|= (∀x A(x)⇒ ∃x A(x))

Proof

Assume that 6|= (∀x A(x)⇒ ∃x A(x))

It means that there is a structure

M = [U, I] and s : VAR −→ U, such that

(M, s) 6|= (∀x A(x)⇒ ∃x A(x))

Proving Predicate Tautologies

Observe that (M, s) 6|= (∀x A(x)⇒ ∃x A(x)) is equivalent to

(M, s) 6|= ∀x A(x) and (M, s) 6|= ∃x A(x)

By definition, (M, s) 6|= ∀x A(x) means that (M, s′) |= A(x)

for all s′ such that s, s′ agree on all variables except on x

At the same time (M, s) 6|= ∃x A(x) means that it is not true
that there is s′ such that s, s′ agree on all variables
except on x, and (M, s′) |= A(x). This contradiction proves

|= (∀x A(x)⇒ ∃x A(x))

Disapproving Predicate Tautologies

We show now, as an example of a counter model
construction that the converse implication to

|= (∀x A(x)⇒ ∃x A(x))

is not a predicate tautology i.e. the following holds

Fact

There is a formula A of L, such that

6|= (∃x A(x)⇒ ∀x A(x))

Proof

Observe that to prove the Fact we have to provide an
example of an instance of a formula A(x) and construct a
counter model M = [U, I] for it

Proving Predicate Tautologies

Let A(x) be an atomic formula

P(x, c) for any P ∈ P, #P = 2

The needed instance is a formula

(∃x P(x, c)⇒ ∀x P(x, c))

We take as its counter model a structure

M = [N, PI :<, cI : 3]

where N is set of natural numbers. We want to show

M 6|= (∃x P(x, c)⇒ ∀x P(x, c))

It means we have to define an assignment s such that
s : VAR −→ N and

(M, s) 6|= (∃x P(x, c)⇒ ∀x P(x, c))

Proving Predicate Tautologies

Let s be any assignment s : VAR −→ N

We show now
(M, s) |= ∃x P(x, c)

Take any s′ such that

s′(x) = 2 and s′(y) = s(y) for all y ∈ VAR − {x}

We have (2, 3) ∈ PI, as 2 < 3

Hence we proved that there exists s′ that agrees with s on
all variables except on x and

(M, s′) |= P(x, c)

Proving Predicate Tautologies

But at the same time

(M, s) 6|= ∀x P(x, c)

as for example for s′ such that

s′(x) = 5 and s′(y) = s(y) for all y ∈ VAR − {x}

We have that (2, 3) < PI, as 5 ≮ 3

This proves that the structure

M = [N,PI :<, cI : 3]

is a counter model for ∀x P(x, c)

Hence we proved that

6|= (∃x A(x)⇒ ∀x A(x))

Proving Predicate Tautologies

Short Hand Solution of

6|= (∃x P(x, c)⇒ ∀x P(x, c))

We take as its counter model a structure

M = [N, PI :<, cI : 3]

where N is set of natural numbers
The formula

(∃x P(x, c)⇒ ∀x P(x, c))

becomes in M = (N,PI :<, cI : 3) a mathematical statement
(written with logical symbols):

∃n n < 3 ⇒ ∀n n < 3

It is an obviously false statement in the set N of natural
numbers, as there is n ∈ N, such that n < 3 , for example
n = 2, and it is not true that all natural numbers are smaller
then 3

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3

PART 3: Predicate Tautologies,

Equational Laws of Quantifiers

Predicate Tautologies

Predicate Tautologies

We have already proved the basic predicate tautology

|= (∀x A(x)⇒ ∃x A(x))

We prove now other three basic tautologies called

Dictum de Omni

For any formula A(x) of L,

|= (∀x A(x)⇒ A(t)), |= (∀x A(x)⇒ A(x))

|= (A(t)⇒ ∃x A(x))

where t is a term, A(t) is a result of substitution of t for all
free occurrences of x in A(x), and t is free for x in A(x), i.e.
no occurrence of a variable in t becomes a bound
occurrence in A(t)

Proof of Dictum de Omni

Proof of

|= (∀x A(x)⇒ A(t)), |= (∀x A(x)⇒ A(x))

is constructed in a sequence of the following steps
We leave details to complete as an exercise
S1
Consider a structure M = [U, I] and s : VAR −→ U
Let t , u be two terms
Denote by t ′ a result of replacing in t all occurrences of a
variable x by the term u, i.e.

t ′ = t(x/u)

Let s′ results from s by replacing s(x) by sI(u)

We prove by induction over the length of t that

sI(t(x/u)) = sI(t ′) = s′I(u)

Proof of Dictum de Omni

S2
Let t be free for x in A(x)
A(t) is a results from A(x) by replacing t for all free
occurrences of x in A(x), i.e.

A(t) = A(x/t)

Let
s : VAR −→ U

and s′ be obtained from s by replacing s(x) by sI(u)

We use
sI(t(x/u)) = sI(t ′) = s′I(u)

and induction on the number of connectives and quantifiers in
A(x) and prove

(M, s) |= A(x/t) if and only if (M, s′) |= A(x)

Proof of Dictum de Omni

S3

Directly from satisfaction definition and

(M, s) |= A(x/t) if and only if (M, s′) |= A(x)

we get that for any M = [U, I] and any s : VAR −→ U,

if (M, s) |= ∀xA(x), then (M, s) |= A(t)

This proves
|= (∀x A(x)⇒ A(t))

Observe that obviously a term x is free for x in A(x), so we
also get as a particular case of t = x that

|= (∀x A(x)⇒ A(x))

Dictum de Omni Restrictions

Proof of
|= (A(t)⇒ ∃x A(x))

is included in detail in Section 3

Remark

The restrictions on terms in Dictum de Omni tautologies are
essential

Here is a simple example explaining why they are needed in

|= (∀x A(x)⇒ A(t)), |= (∀x A(x)⇒ A(x))

Let A(x) be a formula

¬∀y P(x, y) for P ∈ P

Notice that a term t = y is not free for y in A(x)

Dictum de Omni Restrictions

Consider the first formula in Dictum de Omni for
A(x) = ¬∀y P(x, y) and term t = y

(∀x¬∀y P(x, y)⇒ ¬∀y P(y, y))

Take
M = [N, I] for I such that PI : =

Obviously,
M |= ∀x¬∀y P(x, y)

as
∀m ¬∀n(m = n)

is a true mathematical statement in the set N of natural
numbers

Dictum de Omni Restrictions

M 6|= ¬∀y P(y, y)

as
¬∀n (n = n)

is a false statement for n ∈ N

The second Dictum de Omni formula is a particular case of
the first

We have proved that without the restrictions on terms

6|= (∀x A(x)⇒ A(t)) and 6|= (∀x A(x)⇒ A(x))

The example for |= (A(t)⇒ ∃x A(x)) is similar

”t free for x in A(x)”

Here are some useful and easy to prove properties of the
notion ” term t free for x in A(x) ”

Properties

For any formula A ∈ F and any term t ∈ T the following
properties hold

P1. Closed term t , i.e. term with no variables is free for any
variable x in A

P2. Term t is free for any variable in A if none of the
variables in t is bound in A

P3. Term t = x is free for x in any formula A

P4. Any term is free for x in A if A contains no free
occurrences of x

Predicate Tautologies

Here are some more important predicate tautologies

For any formulas A(x),B(x),A ,B of L, where the formulas
A, B do not contain any free occurrences of x the following
holds

Generalization

|= ((B ⇒ A(x))⇒ (B ⇒ ∀x A(x)))

|= ((B(x)⇒ A)⇒ (∃xB(x)⇒ A))

Distributivity 1

|= (∀x(A ⇒ B(x))⇒ (A ⇒ ∀x B(x)))

|= ∀x(A(x)⇒ B)⇒ (∃xA(x)⇒ B)

|= ∃x(A(x)⇒ B)⇒ (∀xA(x)⇒ B)

Restrictions

The restrictions that the formulas A, B do not contain any
free occurrences of x is essential for both Generalization
and Distributivity 1 tautologies

Here is a simple example explaining why they are needed

The relaxation of the restrictions would lead to the following
disaster

Let A and B be both the same atomic formula P(x)

Thus x is free in A and we have the following instance of the
first .Distributivity 1 tautology

.(∀x(P(x)⇒ P(x))⇒ (P(x)⇒ ∀x P(x)))

Restrictions

Take
M = [N, I] for I such that PI = ODD

where ODD ⊆ N is the set of odd numbers
Let s : VAR −→ N
By definition of the interpretation i,

sI(x) ∈ PI if and only if sI(x) ∈ ODD

Then obviously
(M, s) 6|= ∀x P(x)

and M = [N, I] is a counter model for

(∀x(P(x)⇒ P(x))⇒ (P(x)⇒ ∀x P(x)))

as
|= ∀x(P(x)⇒ P(x))

The examples for restrictions on other tautologies are similar.

Predicate Tautologies

Distributivity 2

For any formulas A(x),B(x) of L

|= (∃x (A(x) ∩ B(x)) ⇒ (∃xA(x) ∩ ∃xB(x)))

|= ((∀xA(x) ∪ ∀xB(x))⇒ ∀x (A(x) ∪ B(x)))

|= (∀x(A(x)⇒ B(x))⇒ (∀xA(x)⇒ ∀xB(x)))

The converse implications to the above are not predicate
tautologies

The counter models are provided in the Section 3

De Morgan Laws

De Morgan Laws

For any formulas A(x),B(x) of L,

|= (¬∀xA(x)⇒ ∃x¬A(x))

|= (¬∃xA(x)⇒ ∀x¬A(x))

|= (∃x¬A(x)⇒ ¬∀xA(x))

|= (¬∃xA(x)⇒ ∀x¬A(x))

We prove the first law as an example

The proofs of all other laws are similar

De Morgan Laws

Proof of
|= (¬∀xA(x)⇒ ∃x¬A(x))

We carry the proof by contradiction

Assume that

6|=|= (¬∀xA(x)⇒ ∃x¬A(x))

By definition, there is

M = [U, I] and s : VAR −→ U

such that

(M, s) |= ¬∀xA(x)) and (M, s) 6|= ∃x¬A(x)

De Morgan Laws

Consider
(M, s) |= ¬∀xA(x)

By satisfaction definition

(M, s) 6|= ∀xA(x)

This holds only if for all s′, such that s, s′ agree on all
variables except on x,

(M, s′) 6|= A(x)

De Morgan Laws

Consider now
(M, s) 6|= ∃x¬A(x)

This holds only if there is no s′, such that

(M, s′) |= ¬A(x)

i.e. there is no s′, such that (M, s′) 6|= A(x)

This means that for all s′,

(M, s′) |= A(x)

Contradiction with already proved

(M, s′) 6|= A(x)

This ends the proof

Quantifiers Alternations

Quantifiers Alternations

For any formula A(x, y) of L,

|= (∃x∀yA(x, y)⇒ ∀y∃xA(x, y))

The converse implication

(∀y∃xA(x, y)⇒ ∃x∀yA(x, y))

is not a predicate tautology

Here is a proof

Take as A(x, y) an atomic formula R(x, y)

Consider the instance formula

(∀y∃xR(x, y)⇒ ∃x∀yR(x, y))

Quantifiers Alternations

We construct now a counter model for the instance formula

(∀y∃xR(x, y)⇒ ∃x∀yR(x, y))

Take a structure
M = [R , I]

where R is the set of real numbers and RI :<

The instance formula becomes a mathematical statement

(∀y∃x(x < y)⇒ ∃x∀y(x < y))

that obviously false in the set of real numbers

We proved

6|= (∀y∃xA(x, y)⇒ ∃x∀yA(x, y))

Equational Laws of Quantifiers

Logical Equivalence

The most frequently used laws of quantifiers have a form of
a logical equivalence, symbolically written as ≡

Logical equivalence ≡ is not a new logical connective but is

just a very useful symbol

Logical equivalence ≡ has the same properties as the

mathematical equality = and can be used in a similar way
as we use the equality

Note that we use the same equivalence symbol ≡ and the
tautology symbol |= for propositional and predicate
languages when there is no confusion

Logical Equivalence

We define formally the logical equivalence ≡ as follows.

Definition of Logical Equivalence

For any formulas A , B of the predicate language L,

A ≡ B if and only if |= (A ⇒ B) and |= (B ⇒ A)

Remark that the predicate language L we defined the
semantics for does not include the equivalence connective
⇔. If it does we extend the satisfaction definition in a natural
way and adopt the following, natural definition

Definition
For any formulas A ,B ∈ F of the predicate language L with
the equivalence connective⇔

A ≡ B if and only if |= (A ⇔ B)

Logical Equivalence Theorems

The basic theorems establishing relationship between

propositional and some predicate tautologies are

as follows

Tautologies Theorem

If a formula A is a propositional tautology,

then by substituting for propositional variables in A

any formula of the predicate language L we obtain

a formula which is a predicate tautology

Logical Equivalence Theorems

Equivalences Theorem

Given propositional formulas A , B

If A ≡ B is a propositional equivalence, and

A ′, B′ are formulas of the predicate language L obtained

by a substitution of any formulas of L for propositional

variables in A and B, respectively,

then
A ′ ≡ B′

holds under predicate semantics

Logical Equivalence Example

Example

Consider the following propositional logical equivalence

(a ⇒ b) ≡ (¬a ∪ b)

Substituting

∃xP(x, z) for a and ∀yR(y, z) for b

we get by the EquivalencesTheorem that the following
logical equivalence holds

(∃xP(x, z)⇒ ∀yR(y, z)) ≡ (¬∃xP(x, z) ∪ ∀yR(y, z))

Equivalence Substitution

We prove in similar way as in the propositional case the
following.

Equivalence Substitution Theorem

Let a formula B1 be obtained from a formula A1 by a
substitution of a formula B for one or more occurrences of
a sub-formula A of A1, what we denote as

B1 = A1(A/B)

Then the following holds for any formulas A , A1, B , B1 of L

If A ≡ B , then A1 ≡ B1

Logical Equivalence Theorem

Directly from the Dictum de Omi and theGeneralization

tautologies we get the proof of the following theorem useful

for building new logical equivalences from the old, already

known ones

E- Theorem

For any formulas A(x),B(x) of L

if A(x) ≡ B(x), then ∀xA(x) ≡ ∀xB(x)

if A(x) ≡ B(x), then ∃xA(x) ≡ ∃xB(x)

Logical Equivalence Example

Example

We know from the previous example that

(∃xP(x, z)⇒ ∀yR(y, z)) ≡ (¬∃xP(x, z) ∪ ∀yR(y, z))

We get, as the direct consequence of the above theorem the
following logical equivalence

∀z(∃xP(x, z)⇒ ∀yR(y, z)) ≡ ∀z(¬∃xP(x, z) ∪ ∀yR(y, z))

∃z(∃xP(x, z)⇒ ∀yR(y, z)) ≡ ∃z(¬∃xP(x, z) ∪ ∀yR(y, z))

Equational Laws of Quantifiers

We concentrate now only on these laws of quantifiers

which have a form of a logical equivalence

They are called the equational laws of quantifiers

Directly from the logical equivalence definition and

the De Morgan tautologies we get the following laws

Equational Laws of Quantifiers

De Morgan Laws

For any formulas A(x), B(x) of L

¬∀xA(x) ≡ ∃x¬A(x)

¬∃xA(x) ≡ ∀x¬A(x)

We now apply them to show that the quantifiers can be

defined one by the other i.e. that the following

Definability Laws hold

Equational Laws of Quantifiers

Definability Laws

For any formula A(x) of L

∀xA(x) ≡ ¬∃x¬A(x)

∃xA(x) ≡ ¬∀x¬A(x)

The first law is often used as a definition of the universal

quantifier in terms of the existential one (and negation)

The second law is a definition of the existential quantifier

in terms of the universal one (and negation)

Equational Laws of Quantifiers

Proof of
∀xA(x) ≡ ¬∃x¬A(x)

Substituting any formula A(x) for a variable a in the
propositional equivalence a ≡ ¬¬a
we get by the Equivalence Theorem that

A(x) ≡ ¬¬A(x)

Applying the E-Theorem to the above we obtain

∃xA(x) ≡ ∃x¬¬A(x)

By the De Morgan Law

∃x¬¬A(x) ≡ ¬∀x¬A(x)

By the Equivalence Substitution Theorem

∃xA(x) ≡ ¬∀x¬A(x)

This ends the proof

Equational Laws of Quantifiers

Proof of
∀xA(x) ≡ ¬∃x¬A(x)

Substituting any formula A(x) for a variable a in the
propositional equivalence a ≡ ¬¬a
we get by the Equivalence Theorem that

A(x) ≡ ¬¬A(x)

Applying the E-Theorem to the above we obtain

∀xA(x) ≡ ∀x¬¬A(x)

By the De Morgan Law and Equivalence Substitution
Theorem

∀x¬¬A(x) ≡ ¬∃x¬A(x)

∀xA(x) ≡ ¬∃x¬A(x)

This ends the proof

Equational Laws of Quantifiers

Other important equational laws are the following
introduction and elimination laws
Listed equivalences are not independent, some of them are
the consequences of the others

Introduction and Elimination Laws
If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold
for any formula A(x) of L

∀x(A(x) ∪ B) ≡ (∀xA(x) ∪ B)

∀x(A(x) ∩ B) ≡ (∀xA(x) ∩ B)

∃x(A(x) ∪ B) ≡ (∃xA(x) ∪ B)

∃x(A(x) ∩ B) ≡ (∃xA(x) ∩ B)

Equational Laws of Quantifiers

Introduction and Elimination Laws

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B)

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B)

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x))

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x))

As we said before, the equivalences are not independent

We show now as an example the proof of the third one from
the first two

Equational Laws of Quantifiers

We write this proof in a short, symbolic way as follows

∃x(A(x) ∪ B)
law
≡ ¬∀x¬(A(x) ∪ B)

thms
≡ ¬∀x(¬A(x) ∩ ¬B)

law
≡ ¬(∀x¬A(x) ∩ ¬B)

law,thm
≡ (¬∀x¬A(x) ∪ ¬¬B)

thm
≡ (∃xA(x) ∪ B)

We leave completion and explanation of all details as it as
and exercise

Equational Laws of Quantifiers

Distributivity Laws

Let A(x),B(x) be any formulas with a free variable x

Law of distributivity of universal quantifier over conjunction

∀x (A(x) ∩ B(x)) ≡ (∀xA(x) ∩ ∀xB(x))

Law of distributivity of existential quantifier over disjunction

∃x (A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))

Equational Laws of Quantifiers

Alternations of Quantifiers

Let A(x, y) be any formula with a free variables x, y

∀x∀y (A(x, y) ≡ ∀y∀x (A(x, y)

∃x∃y (A(x, y) ≡ ∃y∃x (A(x, y)

Equational Laws of Quantifiers

Renaming the Variables

Let A(x) be any formula with a free variablex and let y be a
variable that does not occur in A(x) y, then the following
holds

∀xA(x) ≡ ∀yA(y)

∃xA(x) ≡ ∃yA(y)

Equational Laws of Quantifiers

Restricted De Morgan Laws

For any formulas A(x),B(x) of L

¬∀B(x) A(x) ≡ ∃B(x) ¬A(x)

¬∃B(x) A(x) ≡ ∀B(x)¬A(x)

Equational Laws of Quantifiers

Here is a poof of first equality

The proof of the second one is similar and is left as an
exercise.

¬∀B(x) A(x) ≡ (¬∀x (B(x)⇒ A(x)) ≡

¬∀x (¬B(x) ∪ A(x)) ≡ ∃x ¬(¬B(x) ∪ A(x)) ≡

∃x (¬¬B(x) ∩ ¬A(x)) ≡ ∃x (B(x) ∩ ¬A(x)) ≡ ∃B(x) ¬A(x))

Equational Laws of Quantifiers

Restricted Introduction and Elimination Laws
Let B be a formula that does not contain any free
occurrence of x

then the following logical equivalences hold for any formulas
A(x),B(x),C(x) of L

∀C(x)(A(x) ∪ B) ≡ (∀C(x)A(x) ∪ B)

∃C(x) (A(x) ∩ B) ≡ (∃C(x) A(x) ∩ B)

∀C(x)(A(x)⇒ B) ≡ (∃C(x)A(x)⇒ B)

∀C(x)(B ⇒ A(x)) ≡ (B ⇒ ∀C(x)A(x))

The proofs are similar to the proof of the restricted De
Morgan Laws. The similar generalization of the other
Introduction and Elimination Laws for restricted domain
quantifiers fails

Equational Laws of Quantifiers

We prove by constructing proper counter-models the
following.

∃C(x)(A(x) ∪ B).(∃C(x)A(x) ∪ B)

∀C(x)(A(x) ∩ B).(∀C(x)A(x) ∩ B)

∃C(x)(A(x)⇒ B).(∀C(x)A(x)⇒ B)

∃C(x)(B ⇒ A(x)).(B ⇒ ∃xA(x))

Equational Laws of Quantifiers

Nevertheless it is possible to correctly generalize them all as
to cover quantifiers with restricted domain

We show now how we get the correct generalization of

∃C(x)(A(x) ∪ B).(∃C(x)A(x) ∪ B)

We leave the other cases an exercise

Equational Laws of Quantifiers

Example

The correct restricted quantifiers equality is

∃C(x)(A(x) ∪ B) ≡ (∃C(x)A(x) ∪ (∃x C(x) ∩ B))

We derive it as follows.

∃C(x)(A(x) ∪ B) ≡ ∃x(C(x) ∩ (A(x) ∪ B)) ≡

∃x((C(x)∩A(x))∪(C(x)∩B)) ≡ (∃x(C(x)∩A(x))∪∃x(C(x)∩B))

≡ ∃C(x)A(x) ∪ (∃x C(x) ∩ B))

We leave it as an exercise to specify and write references to
transformation or equational laws used at each step of the
computation

Chapter 8
Classical Predicate Semantics and Proof Systems

Slides Set 3

PART 4: Proof Systems: Soundness and Completeness

Proof Systems: Soundness and Completeness

We adopt now general definitions from chapter 4

concerning proof systems to the case of classical

first order (predicate) logic

Chapters 4 and 5 contain a great array of examples,

exercises, homework problems explaining in a great detail

all notions we introduce here for the predicate case

The examples and exercises we provide here are

not numerous and are restricted to the laws of quantifiers

Proof Systems

Given a predicate language

L = L{¬,∩,∪,⇒,¬}(P,F,C)

Any proof system

S = (L, F , LA , R)

is a predicate (first order) proof system

The predicate proof system S is a Hilbert proof system if the
set R of its rules contains the Modus Ponens rule

(MP)
A ; (A ⇒ B)

B

where A ,B ∈ F

Proof Systems

Semantic Link: Logical Axioms LA

We want the set LA of logical axioms to be a non-empty set of
classical predicate tautologies, i.e.

LA ⊆ Tp

where

Tp = {A of L{¬,∩,∪,⇒,¬}(P,F,C) : |=p A }

We use symbols
|=p , Tp

to stress the fact that we talk about predicate language and
classical predicate tautologies

Rules of Inference

Semantic Link 2: Rules of Inference R

We want the the rules of inference r ∈ R of S to preserve
truthfulness. Rules that do so are called sound

Definition

Given an inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

where P1.P2, . . . ,Pm,C ∈ F

We say that the rule (r) is sound if and only if the following
condition holds for all structures M = [U, I] for L

If M |= {P1,P2, .Pm} then M |= C

Rules of Inference

Exercise
Prove the soundness of the rule

(r)
∀xA(x)

∃xA(x)

Proof
Assume that (r) is not sound
It means that there is a structure M = [U, I], such that

M |= ∀xA(x) and M 6|= ∃x A(x)

Let (M, s) |= ∀x A(x) and (M, s) 6|= ∃x A(x)

It means that (M, s′) |= A(x) for all s′ such that s, s′ agree
on all variables except on x, and it is not true that there is s′

such that s, s′ agree on all variables except on x , and
(M, s′) |= A(x)

This is impossible and this contradiction proves soundness
of (r)

Rules of Inference

Exercise
Prove that the rule

(r)
∃xA(x)

∀xA(x)

is not sound
Proof
Observe that to prove that the rule (r) is not sound we have
to provide an example of an instance of a formula A(x) and
construct a counter model

Let A(x) be an atomic formula P(x,c), for any P ∈ P, #P = 2
We take as a counter model a structure

M = (N, PI :<, cI : 3)

where N is the set of natural numbers

Rules of Inference

Here is a ”shorthand” solution

The atomic formula (∃x P(x, c) becomes in

M = (N, PI :<, cI : 3)

a true mathematical statement (written with logical symbols):

∃n n < 3

The formula (∀x P(x, c) becomes a mathematical statement

∀n n < 3

which is an obviously false in the set N of natural numbers

This proves that the the rule (r) is not sound

Rules of Inference

Definition of Strongly Sound Rule

An inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

is strongly sound if the following condition holds for

all structures M = [U, I] for L

M |= {P1,P2, .Pm} if and only if M |= C

We can, and we do state it informally as

(r) is strongly sound if and only if P1 ∩ P2 ∩ . . . ∩ Pm ≡ C

Rules of Inference

Example

The sound rule

(r1)
¬∀xA(x)

∃x¬A(x)

is strongly sound by De Morgan Laws

Example

The sound rule

(r2)
∀xA(x)

∃xA(x)

is not strongly sound by exercise above

Soundness

Definition of Sound Proof System

Given the predicate (first order) proof system

S = (L, F , LA , R)

We say that S is sound if the following conditions hold

(1) LA ⊆ Tp

(2) Each rule of inference r ∈ R is sound

The proof system S is strongly sound if the condition (2) is
replaced by the following condition (2’)

(2’) Each rule of inference r ∈ R is strongly sound

Soundness Theorem

When we define (develop) a proof system S our first goal is
to make sure that it is a ”sound” one

It means that that all we prove in it is true. The following
theorem establishes this goal

Soundness Theorem for S

Given a predicate proof system S

For any A ∈ F , the following implication holds.

If `S A then |=p A

We write it in a more concise form as

PS ⊆ Tp

Soundness Theorem

Proof of Soundness Theorem

Observe that if we have already proven that S is sound as
stated in the definition the proof of the implication

If `S A then |=p A

is a straightforward application of the mathematical induction
over the length of the formal proof of the formula A

It means that in order to prove the Soundness Theorem for a
proof system S it is enough to verify the two conditions of the
soundness definition, i.e. to verify

(1) LA ⊆ Tp and

(2) each rule of inference r ∈ R is sound

CompletessTheorem

Proving Soundness Theorem for any proof system S is
indispensable and moreover, the proof is quite easy

The next step in developing a logic (classical predicate logic
in our case now) is to answer the following necessary and
difficult question

Given a proof system S about which we know that all it
proves is true (tautology)

Can we prove all we know to be true ?. It means:

Can S prove all tautologies?

Proving the following theorem establishes this goal

CompletenessTheorem

Completeness Theorem for S

Given a predicate proof system S

For any A ∈ F , the following holds

`S A if and only if |=p A

We write it in a more concise form as

PS = Tp

CompletenessTheorem

The Completeness Theorem consists of two parts

Part 1: Soundness Theorem

PS ⊆ Tp

Part 2: Completeness part of the Completeness Theorem

Tp ⊆ PS

CompletenessTheorem

There are many methods and techniques fo rproving the
CompletenessTheorem

It applies even for classical proof systems (logics) alone

Non-classical logics often require new and usually very
sophisticated methods

CompletenessTheorem

We presented two very different proofs of the

Completeness Theorem for classical propositional

Hilbert style proof system in chapter 5

Then we presented yet another very different constructive

proofs for automated theorem proving systems for classical

propositional logic chapter 6

As a next step we present a standard proof of the

Completeness Theorem for Hilbert style proof system

for classical predicate logic in the next chapter 9

