
LOGICS FOR COMPUTER SCIENCE:
Classical and Non-Classical

Springer 2019

Anita Wasilewska

Chapter 6
Automated Proof Systems

Completeness of Classical Propositional Logic

CHAPTER 6 SLIDES

Chapter 6
Automated Proof Systems

Completeness of Classical Propositional Logic

Slides Set 1

PART 1: Proof System RS

Automated Search for Proofs: Decomposition Trees

PART 2: Proof System RS

Strong Soundness and Constructive Completeness

PART 3: Proof Systems RS1, RS2

Chapter 6
Automated Proof Systems

Completeness of Classical Propositional Logic

Slides Set 2

PART 4: Gentzen Sequent Systems GL, G

Strong Soundness and Constructive Completeness

Slides Set 3

PART 5: Original Gentzen Systems LK, LI

Classical and Intiutionistic Completeness

Hauptzatz Theorem

Chapter 6
Automated Proof Systems

Completeness of Classical Propositional Logic

Slides Set 1

PART 1: Proof System RS

Automated Search for Proofs: Decomposition Trees

Gentzen Style Proof Systems

Hilbert style systems are easy to define and admit different

proofs of Completeness Theorem

They are difficult to use by humans, not mentioning computer

Their emphasis is on logical axioms, keeping the rules of

inference, with obligatory Modus Ponens, at a minimum

Gentzen style proof systems reverse this situation by

emphasizing the importance of inference rules, reducing the

role of logical axioms to an absolute minimum

Gentzen Style Proof Systems

The Gentzen type systems may be less intuitive then

the Hilbert systems but they allow us to define effective

automatic procedures for proof search, what was impossible

in a case of the Hilbert systems

For this reason they are called automated proof systems

They serve as formal models of computing systems that

automate the reasoning process

Gentzen Style Proof Systems

The Gentzen formalizations, as they are also called, were

invented by Gerald Gentzen in 1934, hence the name

Gentzen proof systems for classical and intuitionistic

predicate logics introduced special expressions built out

of formulas and called sequents

This is why the Gentzen style systems using sequents

as basic expressions are often called Gentzen sequent

formalizations

Gentzen Style Proof Systems

We present in Slides Set 2 our own Gentzen sequent

systems GL and G and prove their completeness

We also present a propositional version of Gentzen

original system LK and discuss the original proof of

Hauptsatz Theorem

Hauptsatz Theorem is literally rendered as the Main

Theorem and is known as Cut-elimination Theorem

We prove the equivalency of the cut-free propositional

LK system and the complete proof system G

Gentzen Style Proof Systems

A propositional version of the historical Gentzen

original formalization LI for intuitionistic logic is presented

and discussed in Chapter 7

The original classical and intuitionistic predicate systems

LK and LI are discussed in Chapter 9

Gentzen Style Proof Systems

The other historically important automated proof systems

RS and QRS are due to Rasiowa and Sikorski (1960)

Rasiowa and Sikorski proof systems for classical

propositional and predicate logic use as basic expressions

sequences of formulas that are less complicated then

the original Gentzen sequents

Rasiowa and Sikorski proof systems are simpler

and are easier to understand then the Gentzen sequent
systems

This is why the Rasiowa and Sikorski proof systems are the

first to be presented here

Gentzen Style Proof Systems

Historical importance and lasting influence of

Rasiowa and Sikorski work lays in the fact that they were

the first to use the proof searching capacity of their proof

system to define a constructive method of proving the

completeness theorem for both propositional and predicate

classical logic

We introduce and explain in detail their constructive

method and use it prove the completeness of

the RS system and the systems RS1 and RS2

Gentzen Style Proof Systems

We also generalize the constructive method developed by

Rasiowa and Sikorski to the Gentzen sequent systems

and prove the completeness of GL and G

The completeness proof for classical predicate logic

system RSQ is presented in Chapter 9

RS Proof System

RS Proof System

Components of RS

Language
L{¬,⇒,∪,∩}

Expressions

We adopt as the set of expressions E the set F ∗ of all finite
sequences of formulas

E = F ∗

Notation

Elements of E are finite sequences of formulas and we
denote them by

Γ,∆,Σ . . .

with indices if necessary.

RS Proof System

Semantic Link

The the intuitive meaning of a sequence Γ ∈ F ∗ is that the
truth assignment v makes it true if and only if it makes the
formula of the form of the disjunction of all formulas of Γ true

For any sequence Γ ∈ F ∗

Γ = A1,A2, ...,An

we denote
δΓ = A1 ∪ A2 ∪ ... ∪ An

We define as the next step a formal semantics for RS

Formal Semantics for RS

Formal Semantics

Let v : VAR −→ {T ,F} be a truth assignment and

v∗ its classical semantics extension to the set of formulas F

We formally extend v to the set F ∗ of all finite sequences of
F as follows

v∗(Γ) = v∗(δΓ) = v∗(A1) ∪ v∗(A2) ∪ ... ∪ v∗(An)

Formal Semantics for RS

Model

The sequence Γ is said to be satisfiable if there is a truth
assignment v : VAR −→ {T ,F} such that v∗(Γ) = T

We write it as
v |= Γ

and call v a model for Γ

Counter- Model

The sequence Γ is said to be falsifiable if there is a truth
assignment v, such that v∗(Γ) = F

Such a truth assignment v is called a counter-model for Γ

Formal Semantics for RS

Tautology

The sequence Γ is said to be a tautology if and only if
v∗(Γ) = T for all truth assignments v : VAR −→ {T ,F}

We write
|= Γ

to denote that Γ is a tautology

Example

Example

Let Γ be a sequence

a, (b ∩ a),¬b , (b ⇒ a)

The truth assignment v such that

v(a) = F and v(b) = T

falsifies Γ, i.e. is a counter-model for Γ as shows the
following computation

v∗(Γ) = v∗(δΓ) = v∗(a) ∪ v∗(b ∩ a) ∪ v∗(¬b) ∪ v∗(b ⇒ a) =
F ∪ (F ∩ T) ∪ F ∪ (T ⇒ F) = F ∪ F ∪ F ∪ F = F

Exercise

Exercise

1. Let Γ be a sequence

a, (¬b ∩ a),¬b , (a ∪ b)

and let v be a truth assignment for which v(a) = T

Prove that
v |= Γ

2. Let Γ be a sequence

a, (¬b ∩ a),¬b , (a ∪ b)

Prove that
|= Γ

Exercise

Solution

1. Γ is a sequence

a, (¬b ∩ a),¬b , (a ∪ b)

We evaluate

v∗(Γ) = v∗(δΓ) = v∗(a) ∪ v∗(¬b ∩ a) ∪ v∗(¬b) ∪ v∗(a ∪ b) =
T ∪ v∗(¬b ∩ a) ∪ v∗(¬b) ∪ v∗(a ∪ b) = T

We proved
v |= Γ

Exercise

Solution

2. Assume now that Γ is falsifiable i.e. that we have a
truth assignment v for which

v∗(Γ) = v∗(δΓ) = v∗(a)∪ v∗(¬b ∩a)∪ v∗(¬b)∪ v∗(a ∪b) = F

This is possible only when (in short-hand notation)

a ∪ (¬b ∩ a) ∪ ¬b ∪ a ∪ b = F

what is impossible as (¬b ∪ b) = T for all v

This contradiction proves that Γ is a tautology

Rules of inference

Rules of inference are of the form:

Γ1

Γ
or

Γ1 ; Γ2

Γ

where Γ1, Γ2 are called premisses and Γ is called the
conclusion of the rule

Each rule of inference introduces a new logical connective or
a negation of a logical connective

We name the rule that introduces the logical connective ◦
in the conclusion sequent Γ by (◦)

The notation (¬◦) means that the negation of the logical
connective ◦ is introduced in the conclusion sequence Γ

Rules of inference of RS

Rules of Inference

RS contains seven inference rules:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

Before we define the rules of RS we need to introduce
some definitions.

Literals

Definition

Any propositional variable, or a negation of propositional
variable is called a literal

The set
LT = VAR ∪ {¬a : a ∈ VAR}

is called a set of all propositional literals

The variables are called positive literals

Negations of variables are called negative literals

Literals

We denote by
Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗

Logical Axioms of RS

Logical Axioms

We adopt as an logical axiom of RS any sequence of

literals which contains a propositional variable and

its negation, i.e any sequence

Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

where a ∈ VAR is any propositional variable

We denote by LA the set of all logical axioms of RS

Logical Axioms of RS

Semantic Link

Consider axiom
Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Directly from the extension of the notion of tautology to RS we

have that for any truth assignment v : VAR −→ {T ,F}

v∗(Γ
′

1,¬a, Γ
′

2, a, Γ
′

3) = v∗(Γ
′

1) ∪ v∗(¬a) ∪ v∗(a) ∪ v∗(Γ
′

2, Γ
′

3) =

v∗(Γ
′

1) ∪ T ∪ v∗(Γ
′

2, Γ
′

3) = T

The same applies to the axiom

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

We have thus proved the following

Fact

Logical axioms of RS are tautologies

Inference Rules of RS

Disjunction rules

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆
, (¬∪)

Γ
′

, ¬A , ∆ ; Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

Conjunction rules

(∩)
Γ
′

, A , ∆ ; Γ
′

, B , ∆

Γ′ , (A ∩ B), ∆
, (¬∩)

Γ
′

, ¬A , ¬B , ∆

Γ′ , ¬(A ∩ B), ∆

Inference Rules of RS

Implication rules

(⇒)
Γ
′

, ¬A ,B , ∆

Γ′ , (A ⇒ B), ∆
, (¬ ⇒)

Γ
′

, A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ⇒ B), ∆

Negation rule

(¬¬)
Γ
′

, A , ∆

Γ′ , ¬¬A , ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Proof System RS

Formally we define the system RS as follows

RS = (L{¬,⇒,∪,∩}, F
∗, LA , R)

where the set of inference rules is

R = {(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)}

and LA is the set of logical axioms

Formal Proofs

Definition

By a formal proof of a sequence Γ in the proof system RS
we understand any sequence

Γ1, Γ2, Γn

of sequences of formulas (elements of F ∗, such that

Γ1 ∈ LA and Γn = Γ

and for all 1 ≤ i ≤ n

Γi ∈ AL , or Γi is a conclusion of one of the inference rules
of RS with all its premisses placed in the sequence
Γ1Γ2, . . . , Γi−1

Formal Proofs

When he proof system under consideration is fixed, we will
write, as usual,

` Γ

instead of `RS Γ to denote that Γ has a formal proof in RS

As the proofs in RS are sequences (definition of the formal
proof) of sequences of formulas (definition of RS) we will not
use ”,” to separate the steps of the proof, and write the
formal proof as

Γ1; Γ2; Γn

Formal Proofs

We write, however, the formal proofs in RS in a form of

tree proofs rather then in a form of sequences expressions

We write a proofs in form of a tree such that

1. all leafs of the tree are axioms

2. nodes are sequences such that each sequence on the
tree tree follows from the ones immediately preceding it by
one of the rules

3. The root is a the therem

Moreover, we write the tree proofs with the node on the top,
and leafs on the very bottom

We adopt hence the following definition

Proof Trees

Definition

By a proof tree in RS of Γ we understand a tree

TΓ

built out of Γ ∈ E satisfying the following conditions:

1. The topmost sequence, i.e the root of TΓ is the
sequence Γ

2. all leafs are axioms

2. the nodes are sequences such that each sequence on
the tree follows from the ones immediately preceding it by
one of the inference rules

Proof Trees

We picture, and write our proof trees with the root

on the top, and the leafs on the very bottom

Additionally we write our proof trees indicating the

name of the inference rule used at each step of the proof

Example

Assume that a proof of a sequence Γ from some

three axioms was obtained by the subsequent use of the rules

(∩), (∪), (∪), (∩), (∪), and (¬¬), (⇒)

We represent it as the following tree

Proof Trees

The tree TΓ

Γ

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

conclusion of (∩)

| (∪)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom

Proof Trees

The Proof Trees represent a certain visualization

for the proofs and proof search

Any formal proof in can be represented in a tree form and
vice- versa

Any proof tree can be re-written in a linear form as

a previously defined formal proof

Example

The proof tree in RS of the de Morgan Law

A = (¬(a ∩ b)⇒ (¬a ∪ ¬b))

is the as follows

Proof Trees

The tree TA

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

¬¬(a ∩ b), (¬a ∪ ¬b)

| (¬¬)

(a ∩ b), (¬a ∪ ¬b)∧
(∩)

a, (¬a ∪ ¬b)

| (∪)

a,¬a,¬b

b , (¬a ∪ ¬b)

| (∪)

b ,¬a,¬b

Formal Proof

To obtain a formal proof (written in a vertical form) of A
it we just write down the tree as a sequence, starting from the
leafs
and going up (from left to right) to the root

a,¬a,¬b

b ,¬a,¬b

a, (¬a ∪ ¬b)

b , (¬a ∪ ¬b

(a ∩ b), (¬a ∪ ¬b)

¬¬(a ∩ b), (¬a ∪ ¬b)

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

Example

Example

A search for the proof in RS of other de Morgan Law

A = (¬(a ∪ b)⇒ (¬a ∩ ¬b))

consists of building a certain tree and proceeds as follows.

Example

The tree TA

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

| (∪)

a, b , (¬a ∩ ¬b)∧
(∩)

a, b ,¬a a, b ,¬b

Example

We construct its formal proof , as before, written in a vertical
manner

Here it is

a, b ,¬b

a, b ,¬a

a, b , (¬a ∩ ¬b)

(a ∪ b), (¬a ∩ ¬b)

¬¬(a ∪ b), (¬a ∩ ¬b)

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

Decomposition Trees

The goal in inventing proof systems like RS is to facilitates

automatic proof search

We conduct such proof search by building what is called a

decomposition tree

A decomposition tree TA for the formula

A = (((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

is build as follows

Decomposition Trees

TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

RS Decomposition Rules
and

Decomposition Trees

Decomposition Trees

The process of searching for a proof of a formula A ∈ F

in RS consists of building a certain tree TA , called a

decomposition tree

Building a decomposition tree is really a proof search

We define it by transforming the RS ineference rules into

corresponding decomposition rules

Decomposition Rules

RS Decomposition Rules

Disjunction

(∪)
Γ
′

, (A ∪ B), ∆

Γ′ , A ,B , ∆
, (¬∪)

Γ
′

, ¬(A ∪ B), ∆

Γ′ , ¬A , ∆ ; Γ′ , ¬B , ∆

Conjunction

(∩)
Γ
′

, (A ∩ B), ∆

Γ′ ,A ,∆ ; Γ′ , B ,∆
, (¬∩)

Γ
′

, ¬(A ∩ B), ∆

Γ′ , ¬A ,¬B , ∆

Decomposition Rules

Implication

(⇒)
Γ
′

, (A ⇒ B), ∆

Γ′ , ¬A ,B , ∆
, (¬ ⇒)

Γ
′

, ¬(A ⇒ B), ∆

Γ′ ,A ,∆ ; Γ′ , ¬B , ∆

Negation

(¬¬)
Γ
′

, ¬¬A , ∆

Γ′ , A , ∆

where Γ
′

∈ F ′
∗, ∆ ∈ F ∗, A ,B ∈ F

Tree Rules

We write the Decomposition Rules in a visual tree form as
follows

Tree Rules

(∪) rule

Γ
′

, (A ∪ B), ∆

| (∪)

Γ
′

, A ,B , ∆

Tree Rules

(¬∪) rule

Γ
′

, ¬(A ∪ B), ∆∧
(¬∪)

Γ
′

, ¬A , ∆ Γ
′

, ¬B , ∆

(∩) rule

Γ
′

, (A ∩ B), ∆∧
(∩)

Γ
′

, A , ∆ Γ
′

, B , ∆

Tree Rules

(¬∪) rule

Γ
′

, ¬(A ∩ B), ∆

| (¬∩)

Γ
′

, ¬A ,¬B , ∆

(⇒) rule

Γ
′

, (A ⇒ B), ∆

| (⇒)

Γ
′

, ¬A ,B , ∆

Tree Rules

(¬ ⇒) rule

Γ
′

, ¬(A ⇒ B), ∆∧
(¬ ⇒)

Γ
′

, A , ∆ Γ
′

, ¬B , ∆

(¬¬) rule

Γ
′

, ¬¬A , ∆

| (¬¬)

Γ
′

, A , ∆

Definitions and Observations

Observe that we use the same names for the inference

and decomposition rules

We do so because once the we have built a decomposition

tree for a formula A with all leaves being axioms,

it constitutes a proof of A in RS with branches labeled by

the proper inference rules

Now we still need to introduce few standard and useful

definitions and observations.

Definitions and Observations

Definition

A sequence Γ
′

built only out of literals, i.e. Γ ∈ F ′∗ is called

an indecomposable sequence

Definition

A formula A that is not a literal, i.e. A ∈ F − LT is called a

decomposable formula

Definition

A sequence Γ that contains a decomposable formula is

called a decomposable sequence

Definitions and Observations

Observation 1

For any decomposable sequence, i.e. for any Γ < LT∗

there is exactly one decomposition rule that can be applied

to it

This rule is determined by the first decomposable

formula in Γ and by the main connective of that formula

Definitions and Observations

Observation 2

If the main connective of the first decomposable formula

is ∪,∩, ⇒,

then the decomposition rule determined by it is

(∪), (∩), (⇒), respectively

Observation 3

If the main connective of the first decomposable formula A
is negation ¬

then the decomposition rule is determined by the

second connective of the formula A

The corresponding decomposition rules are

(¬∪), (¬∩), (¬¬), (¬ ⇒)

Decomposition Lemma

Because of the importance of the Observation 1 we re-write

it in a form of the following

Decomposition Lemma

For any sequence Γ ∈ F ∗,

Γ ∈ LT∗ or Γ is in the domain of exactly one of RS
Decomposition Rules

This rule is determined by the first decomposable formula

in Γ and by the main connective of that formula

Decomposition Tree Definition

Definition: Decomposition Tree TA

Let A ∈ F , we define the decomposition tree TA as follows

Step 1.

The formula A is the root of TA

For any other node Γ of the tree we follow the steps below

Step 2.

If Γ is indecomposable then Γ becomes a leaf of the tree

Decomposition Tree Definition

Step 3.

If Γ is decomposable, then we traverse Γ from left

to right and identify the first decomposable formula B

By the Decomposition Lemma, there is exactly one

decomposition rule determined by the main connective of B

We put its premiss as a node below, or its left and right

premisses as the left and right nodes below, respectively

Step 4.

We repeat Step 2 and Step 3 until we obtain only leaves

Decomposition Theorem

We now prove the following Decomposition Tree Theorem.

This Theorem provides a crucial step in the proof of the

Completeness Theorem for RS

Decomposition Tree Theorem

For any sequence Γ ∈ F ∗ the following conditions hold

1. TΓ is finite and unique

2. TΓ is a proof of Γ in RS if and only if all its leafs are
axioms

3. 0RS Γ if and only if TΓ has a non- axiom leaf

Theorem

Proof

The tree TΓ is unique by the Decomposition Lemma

It is finite because there is a finite number of logical

connectives in Γ and all decomposition rules diminish the

number of connectives

If the tree TΓ has a non- axiom leaf it is not a proof

by definition

By 1. it also means that the proof does not exist

Example

Example

Let’s construct, as an example a decomposition tree TA of

the following formula A

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

The formula A forms a one element decomposable

sequence

The first decomposition rule used is determined by its

main connective

We put a box around it, to make it more visible

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

Example

The first and only decomposition rule to be applied is (∪)

The first segment of the decomposition tree TA is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b)⇒ ¬a), (¬a ⇒ ¬c)

Example

Now we decompose the sequence

((a ∪ b)⇒ ¬a), (¬a ⇒ ¬c)

It is a decomposable sequence with the first, decomposable
formula

((a ∪ b)⇒ ¬a)

The next step of the construction of our decomposition tree is

determined by its main connective⇒ and we put the box

around it
((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

Example

The decomposition tree becomes now

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬(a ∪ b),¬a, (¬a ⇒ ¬c)

Example

The next sequence to decompose is

¬(a ∪ b),¬a, (¬a ⇒ ¬c)

with the first decomposable formula

¬(a ∪ b)

Its main connective is ¬, so to find the appropriate rule we

have to examine next connective, which is ∪

The decomposition rule determine by this stage of

decomposition is (¬∪)

Example

Next stage of the construction of the tree TA is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a ⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c) ¬b ,¬a, (¬a ⇒ ¬c)

Example

Finally, the complete TA is

((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a ⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a ⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c)

| (⇒)

¬a,¬a, ¬¬ a,¬c

| (¬¬)

¬a,¬a, a,¬c

¬b ,¬a, (¬a ⇒ ¬c)

| (⇒)

¬b ,¬a, ¬¬ a,¬c

| (¬¬)

¬b ,¬a, a,¬c

Example

All leaves of TA are axioms

The tree TA is a proof of A in RS, i.e.

`RS ((a ∪ b)⇒ ¬a) ∪ (¬a ⇒ ¬c))

Example

Example Given a formula A and its decomposition tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

Example

There is a leaf ¬a, b ,¬a, c of the tree TA that is not an

axiom. By the Decomposition Tree Theorem

0RS ((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

It means that the proof in RS of the formula

((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) does not exists

Completeness Theorem

Our main goal is to prove the Completeness Theorem for RS

We prove first the following Completeness Theorem for
formulas A ∈ F

Completeness Theorem 1 For any formula A ∈ F

`RS A if and only if |= A

and then we generalize it to the following

Completeness Theorem 2 For any Γ ∈ F ∗,

`RS Γ if and only if |= Γ

Do do so we need to introduce a new notion of a

Strong Soundness and prove that the RS is strongly sound

Part 2: Strong Soundness
and

Constructive Completeness

Strong Soundness

Definition

Given a proof system

S = (L, E, LA , R)

Definition

A rule r ∈ R such that the conjunction of all its premisses
is logically equivalent to its conclusion is called

strongly sound

Definition

A proof system S is called strongly sound if and only if

all its rules r ∈ R are strongly sound

Strong Soundness of RS

Theorem
The proof system RS is strongly sound
Proof
We prove as an example the strong soundness of two of
inference rules: (∪) and (¬∪)

Proof for all other rules follows the same patterns and is left
as an exercise
By definition of strong soundness we have to show that
If P1, P2 are premisses of a given rule and C is its
conclusion, then for all v,

v∗(P1) = v∗(C)

in case of one premiss rule and

v∗(P1) ∩ v∗(P2) = v∗(C)

in case of the two premisses rule.

Strong Soundness of RS

Consider the rule (∪)

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆

We evaluate:

v∗(Γ
′

,A ,B ,∆) = v∗(δ{Γ′ ,A ,B ,∆}) = v∗(Γ
′

)∪v∗(A)∪v∗(B)∪v∗(∆)

= v∗(Γ
′

) ∪ v∗(A ∪ B) ∪ v∗(∆) = v∗(δ{Γ′ ,(A∪B),∆})

= v∗(Γ
′

, (A ∪ B),∆)

Strong Soundness of RS

Consider the rule (¬∪)

(¬∪)
Γ
′

, ¬A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

We evaluate:

v∗(P1) ∩ v∗(P2) = v∗(Γ
′

,¬A ,∆)∩v∗(Γ
′

,¬B ,∆)

= (v∗(Γ
′

) ∪ v∗(¬A) ∪ v∗(∆))∩(v∗(Γ
′

) ∪ v∗(¬B) ∪ v∗(∆))

= (v∗(Γ
′

,∆) ∪ v∗(¬A))∩(v∗(Γ
′

,∆) ∪ v∗(¬B))

=distrib (v∗(Γ
′

,∆) ∪ (v∗(¬A) ∩ v∗(¬B))

= v∗(Γ
′

) ∪ v∗(∆) ∪ v∗(¬A ∩ ¬B) =deMorgan v∗(δ{Γ′ ,¬(A∪B),∆}

= v∗(Γ
′

, ¬(A ∪ B), ∆) = v∗(C)

Soundness Theorem

Observe that the strong soundness notion implies
soundness (not only by name!)

Obviously the LA of RS are tautologies , hence we have also
proved the following

Soundness Theorem for RS

For any Γ ∈ F ∗,

If `RS Γ, then |= Γ

In particular, for any A ∈ F ,

If `RS A , then |= A

Strong Soundness

We proved that all the rules of inference of RS of are

strongly sound, i.e. C ≡ P and C ≡ P1 ∩ P2

Strong soundness of the rules hence means that if at least

one of premisses of a rule is false, so is its conclusion

Given a formula A, such that its TA has a branch

ending with a non-axiom leaf

By strong soundness, any v that make this non-axiom leaf

false also falsifies all sequences on that branch and hence

falsifies the the formula A

Counter Model Theorem

We have proved the following

Counter Model Theorem

Let A ∈ F be such that its decomposition tree TA contains
a non- axiom leaf LA

Any truth assignment v that falsifies LA is a counter

model for A

Any truth assignment that falsifies a non- axiom leaf is

called a counter-model for A determined by the

decomposition tree TA

Counter Model Example

Consider a tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

Counter Model Example

The tree TA has a non-axiom leaf

LA : ¬a, b ,¬a, c

We want to define a truth assignment v : VAR −→ {T ,F}
falsifies this leaf LA

Observe that v must be such that

v∗(¬a, b ,¬a, c) = v∗(¬a) ∪ v∗(b) ∪ v∗(¬a) ∪ v∗(c) =

¬v(a) ∪ v(b) ∪ ¬v(a) ∪ v(c) = F

It means that all components of the disjunction must be put
to F

Counter Model Example

We hence get that v must be such that

v(a) = T , v(b) = F , v(c) = F

By the Counter Model Theorem, the v determined by the

non-axiom leaf also falsifies the formula A

It proves that v is a counter model for A and

6|= (((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

Counter Model

The Counter Model Theorem says that F determined by the
non-axiom leaf ”climbs” the tree TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c)) = F

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c) = F∧
(∩)

(a ⇒ b), (a ⇒ c) = F

| (⇒)

¬a, b , (a ⇒ c) = F

| (⇒)

¬a, b ,¬a, c = F

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

axiom

Counter Model

Observe that the same counter model construction
applies to any other non-axiom leaf, if exists

The other non-axiom leaf defines another F that also

”climbs the tree” picture, and hence defines another
counter- model
for A

By Decomposition Tree Theorem all possible restricted
counter-models for A are those determined by

all non- axioms leaves of the TA

In our case the formula TA has only one non-axiom leaf,

and hence only one restricted counter model

RS Completeness Theorem

Completeness Theorem (Completeness Part)

For any A ∈ F ,

If |= A , then `RS A

We prove instead the opposite implication

Completeness Theorem

If 0RS A then 6|= A

Proof of Completeness Theorem

Proof of Completeness Theorem
Assume that A is any formula is such that

0RS A

By the Decomposition Tree Theorem the TA contains a
non-axiom leaf
The non-axiom leaf LA defines a truth assignment v which
falsifies it as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

Hence by Counter Model Theorem we have that v also
falsifies A , i.e.

6|= A

PART3:
Proof Systems RS1 and RS2

RS1 Proof System

Poof System RS1

Language of RS1 is the same as the language of RS i.e.

L = L{¬,⇒,∪,∩}

Expressions
E = F ∗

is the set of expressions of RS1

Notation

Elements of E are finite sequences of formulas and we
denote them by

Γ,∆,Σ . . .

with indices if necessary.

Rules of inference of RS1

Rules of inference

RS1 contains seven inference rules, denoted by the same
symbols as the rules of RS

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

The inference rules of RS1 are quite similar to the rules of RS

Observe them carefully to see where lies the difference

Reminder

Any propositional variable, or a negation of a propositional
variable is called a literal

The set
LT = VAR ∪ {¬a : a ∈ VAR}

is called a set of all propositional literals

Literals Notation

We denote, as before, by

Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗

Logical Axioms

Logical Axioms

We adopt all logical axioms of RS as the axioms of RS1,
i.e.

Γ
′

1, a, Γ
′

2, ¬a, Γ
′

3

Γ
′

1, ¬a, Γ
′

2, a, Γ
′

3

where a ∈ VAR is any propositional variable

Inference Rules of RS1

Disjunction rules

(∪)
Γ, A ,B , ∆

′

Γ, (A ∪ B), ∆′ (¬∪)
Γ, ¬A , ∆

′

; Γ, ¬B , ∆
′

Γ, ¬(A ∪ B), ∆′

Conjunction rules

(∩)
Γ, A , ∆

′

; Γ, B , ∆
′

Γ, (A ∩ B), ∆′ (¬∩)
Γ, ¬A , ¬B , ∆

′

Γ, ¬(A ∩ B), ∆′

Inference Rules of RS1

Implication rules

(⇒)
Γ, ¬A ,B , ∆

′

Γ, (A ⇒ B), ∆′ (¬ ⇒)
Γ, A , ∆

′

: Γ, ¬B , ∆
′

Γ, ¬(A ⇒ B), ∆′

Negation rule

(¬¬)
Γ, A , ∆

′

Γ, ¬¬A , ∆′

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Proof System RS1

Formally we define the system RS1 as follows

RS1 = (L{¬,⇒,∪,∩}, E, LA , R)

where

R = {(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)}

for the inference rules is defined above and LA is the set of
all logical axioms is the same as for RS

System RS1

Exercises

E1. Construct a proof in RS1 of a formula

A = (¬(a ∩ b)⇒ (¬a ∪ ¬b))

E2. Prove that RS1 is strongly sound

E3. Define in your own words, for any formula A , the
decomposition tree TA in RS1

E4. Prove Completeness Theorem for RS1

Exercises Solutions

E1. The decomposition tree TA is a proof of A in RS1 as all
leaves are axioms

TA

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

(¬¬(a ∩ b), (¬a ∪ ¬b)

| (∪)

¬¬(a ∩ b),¬a,¬b

| (¬¬)

(a ∩ b),¬a,¬b∧
(∩)

a,¬a,¬b b ,¬a,¬b

Exercises Solutions

E2. Prove that RS1 is strongly sound

Observe that the system RS1 is obtained from RS by
changing the sequence Γ

′

into Γ and the sequence ∆ into
∆
′

in all of the rules of inference of RS

These changes do not influence the essence of proof of
strong soundness of the rules of RS

One has just to replace the sequence Γ
′

by Γ and ∆ by ∆
′

in the the proof of strong soundness of each rule of RS to
obtain the corresponding proof of strong soundness of
corresponding rule of RS1

Strong Soundness of RS1

We do it, for example for the rule (∪) as follows

(∪)
Γ, A ,B , ∆

′

Γ, (A ∪ B), ∆′

We evaluate:

v∗(Γ,A ,B ,∆
′

) = v∗(δ{Γ,A ,B ,∆′ }) = v∗(Γ)∪v∗(A)∪v∗(B)∪v∗(∆
′

)

= v∗(Γ) ∪ v∗(A ∪ B) ∪ v∗(∆
′

) = v∗(δ{Γ,(A∪B),∆
′
})

= v∗(Γ, (A ∪ B),∆
′

)

Decomposition Trees in RS1

E3. Define in your own words, for any formula A , the
decomposition tree TA in RS1

The definition of the decomposition tree TA is in its essence
similar to the one for RS except for the changes which reflect
the differences in the corresponding rules of inference

Decomposition Trees in RS1

Definition

To construct the decomposition tree TA we follow the steps
below

Step 1

Decompose formula A using a rule defined by its main
connective

Step 2

Traverse resulting sequence Γ on the new node of the tree
from right to left and find the first decomposable formula

Step 3

Repeat Step 1 and Step 2 until there is no more
decomposable formulas

End of the decomposition tree construction

Completeness Theorem for RS1

E4. Prove the following Completeness Theorem

For any A ∈ F ,

If |= A , then `RS1 A

We prove instead the opposite implication

Completeness Theorem

If 0RS1 A then 6|= A

Completeness Theorem for RS1

Observe that directly from the definition of the the
decomposition tree TA we have that the following holds

Fact 1: The decomposition tree TA is a proof if and only if
all leaves are axioms

Fact 2: The proof does not exist otherwise, i.e.

0RS1 A if and only if there is a non- axiom leaf on TA

Fact 2 holds because the tree TA is unique

Proof of Completeness Theorem for RS1

Observe that we need Facts 1, 2 in order to prove the
Completeness Theorem by construction of a counter-model
generated by a the a non- axiom leaf
Proof
Assume that A is any formula such that

0RS1 A

By Fact 2 the decomposition tree TA contains a non-axiom
leaf LA

We use the non-axiom leaf LA and define a truth
assignment v which falsifies A as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

This proves that
6|= A

System RS2 Definition

RS2 Definition

System RS2 is a proof system obtained from RS by changing
the sequences Γ

′

into Γ in all of the rules of inference of RS

The logical axioms LA remind the same

Observe that now the decomposition tree may not be unique

Exercise 1

Construct two decomposition trees in RS2 of the formula

(¬(¬a ⇒ (a ∩ ¬b))⇒ (¬a ∩ (¬a ∪ ¬b)))

RS2 Exercises

T1A

(¬(¬a => (a ∩ ¬b)) => (¬a ∩ (¬a ∪ ¬b)))

| (⇒)

¬¬(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (⇒)

¬¬a, (a ∩ ¬b), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

a, (a ∩ ¬b), (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a, a, (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a, a.¬a, (¬a ∪ ¬b)

| (∪)

a, a.¬a,¬a,¬b

axiom

a, a, (¬a ∪ ¬b)

| (∪)

a, a,¬a,¬b

axiom

a,¬b , (¬a ∩ (¬a ∪ ¬b))∧
(∩)

a,¬b ,¬a

axiom a,¬b , (¬a ∪ ¬b)

| (∪)

a,¬b ,¬a,¬b

axiom

RS2 Exercises

T2A

(¬(¬a => (a ∩ ¬b)) => (¬a ∩ (¬a ∪ ¬b)))

| (⇒)

¬¬(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))

| (¬¬)

(¬a => (a ∩ ¬b)), (¬a ∩ (¬a ∪ ¬b))∧
(∩)

(¬a => (a ∩ ¬b)),¬a

| (⇒)

(¬¬a, (a ∩ ¬b)),¬a

| (¬¬)

a, (a ∩ ¬b),¬a∧
(∩)

a, a,¬a

axiom

a,¬b ,¬a

axiom

(¬a => (a ∩ ¬b)), (¬a ∪ ¬b)

| (∪)

(¬a => (a ∩ ¬b)),¬a,¬b

| (⇒)

(¬¬a, (a ∩ ¬b),¬a,¬b

| (¬¬)

a, (a ∩ ¬b),¬a,¬b∧
(∩)

a, a,¬a,¬b

axiom

a,¬b ,¬a,¬b

axiom

System RS2

Exercise 2

Explain why the system RS2 is strongly sound

You can use the soundness of the system RS

Solution

The only difference between RS and RS2 is that in RS2

each inference rule has at the beginning a sequence of any

formulas, not only of literals, as in RS

So there are many ways to apply rules as the decomposition

rules while constructing the decomposition tree

But it does not affect strong soundness, since for all rules of

RS2 premisses and conclusions are still logically equivalent

as they were in RS

RS2 Exercises

Consider, for example, RS2 rule

(∪)
Γ,A ,B ,∆

Γ, (A ∪ B),∆

We evaluate

v∗(Γ,A ,B ,∆) = v∗(Γ) ∪ v∗(A) ∪ v∗(B) ∪ v∗(∆) =

v∗(Γ) ∪ v∗(A ∪ B) ∪ v∗(∆) = v∗(Γ, (A ∪ B),∆)

Similarly, as in RS, we show all other rules of RS2 to be

strongly sound, thus RS2 is also strongly sound

RS2 Exercises

Exercise 3

Define shortly, in your own words, for any formula A , its

decomposition tree TA in RS2

Justify why your definition is correct

Show that in RS2 the decomposition tree for some

formula A may not be unique

RS2 Exercises

Solution

Given a formula A

The decomposition tree TA can be defined as follows

It has A as a root

For each node,

if there is a rule of RS2 which conclusion has the same form
as node sequence, i.e. there is a decomposition rule to be
applied,

then the node has children that are premises of the rule

RS2 Exercises

If the node consists only of literals (i.e. no decomposition

rules to be applied),

then it does not have any children

The last statement defines a termination condition for the tree

This definition correctly defines a decomposition tree as

it identifies and uses appropriate the decomposition rules

RS2 Exercises

Since in RS2 all rules of inference have a sequence Γ

instead of Γ′ as it was defined for in RS, the choice

of the decomposition rule for a node may be not unique

For example consider a node

(a => b), (b ∪ a)

The Γ in the RS2 rules is a sequence of formulas, not literals,

so for this node we can choose as a decomposition rule

either rule (=>) or rule (∪)

This leads to a non-unique tree

RS2 Exercises

Exercise 4

Prove the Completeness Theorem for RS2

Solution

We need to prove the completeness part only, as the
soundness has been already proved, i.e. we have to prove the
implication: for any formula A ,

if 0RS2 A then 6|= A

Assume 0RS2 A ,

Then every decomposition tree of A has at least one
non-axiom leaf

Otherwise, there would exist a tree with all axiom leaves and
it would be a proof for A

RS2 Exercises

Let TA be a set of all decomposition trees of A

We choose an arbitrary TA ∈ TA with at least one non-axiom
leaf LA

The non-axiom leaf LA defines a truth assignment v which

falsifies A , as follows:

v(a) =


F if a appears in LA

T if ¬a appears in LA

any value if a does not appear in LA

The value for a sequence that corresponds to the leaf in is F

Since, because of the strong soundness F ”climbs” the tree,

we found a counter-model for A, i.e.

6|= A

RS2 Exercises

Exercise 5 Write a procedure TREEA such that for any
formula A of RS2 it produces its unique decomposition tree

Procedure TREEA (Formula A, Tree T)
{

B = ChoseLeftMostFormula(A) // Choose the left most
formula that is not a literal

c = MainConnective(B) // Find the main connective of B
R = FindRule(c)// Find the rule which conclusion that

has this connective
P = Premises(R)// Get the premises for this rule
AddToTree(A ,P)// add premises as children of A to the

tree
For all p in P // go through all premises

TREEA (p,T) // build subtrees for each premiss
}

RS2 Exercises

Exercise 6

Prove completeness of your Procedure TREEA

Procedure TREEA provides a unique tree, since it always

chooses the most left indecomposable formula for a choice of

a decomposition rule and there is only one such rule

This procedure is equivalent to RS system, since with

the decomposition rules of RS the most left decomposable

formula is always chosen

RS system is complete, thus this Procedure is complete

Chapter 6
Automated Proof Systems

Completeness of Classical Propositional Logic

Slides Set 2

PART 4: Gentzen Sequent Systems GL, G

Strong Soundness and Constructive Completeness

Gentzen Sequent Systems GL, G

The book own Gentzen style proof systems GL and G for the

classical propositional logic presented here are inspired by

and are versions of the original (1934) Gentzen system LK

Their axioms, the rules of inference of the proof system

considered here operate on expressions called by Gentzen,

sequents

The original system LK is presented and discussed in detail

in Slides Set 3

Gentzen Sequent System GL

The system GL presented here is the most similar in its

structure to the system RS and is the first to be considered

GL admits a constructive proof of the Completeness

Theorem

The proof is very similar to the proof of the completeness of

the system RS

Gentzen Sequent System GL

GL Componenets

Language

We adopt a propositional language

L = L{∪,∩,⇒,¬}

with the set of formulas denoted by F and we add a new

symbol −→ called a Gentzen arrow to it

It means we consider formally a new language

L1 = L ∪ {−→}

Gentzen Sequent System GL

As the next step we build expressions called sequents

The sequents are built out of finite sequences (empty

included) of formulas of L{∪,∩,⇒,¬} and the Gentzen arrow

−→ as additional symbol

We denote, as in the RS type systems, the finite sequences

(with indices if necessary) of of formulas of L{∪,∩,⇒,¬} by

Greek capital letters
Γ,∆,Σ, . . .

with indices if necessary

We define a sequent as follows

Sequent Definition

Definition

For any Γ, ∆ ∈ F ∗, the expression

Γ −→ ∆

is called a sequent

Γ is called the antecedent of the sequent

∆ is called the succedent of the sequent

Each formula in Γ and ∆ is called a sequent formula.

Gentzen Sequent

Intuitively, we interpret semantically a sequent

A1, ...,An −→ B1, ...,Bm

where n,m ≥ 1, as a formula

(A1 ∩ ... ∩ An)⇒ (B1 ∪ ... ∪ Bm)

of the language L{∪,∩,⇒,¬}

Gentzen Sequents

The sequent
A1, ...,An −→

where m ≥ 1 means that A1 ∩ ... ∩ An yields a
contradiction

The sequent
−→ B1, ...,Bm

where m ≥ 1 means semantically T ⇒ (B1 ∪ ... ∪ Bm)

The empty sequent
−→

means a contradiction

Gentzen Sequents

Given non empty sequences Γ, ∆

We denote by σΓ any conjunction of all formulas of Γ

We denote by δ∆ any disjunction of all formulas of ∆

The intuitive semantics of a non- empty sequent Γ −→ ∆
is

Γ −→ ∆ ≡ (σΓ ⇒ δ∆)

Formal Semantics

Formal semantics

Let v : VAR −→ {T ,F} be a truth assignment and v∗ its
extension to the set of formulas F of L{∪,∩,⇒,¬}
We extend v∗ to the set

SQ = { Γ −→ ∆ : Γ,∆ ∈ F ∗ }

of all sequents as follows

For any sequent Γ −→ ∆ ∈ SQ

v∗(Γ −→ ∆) = v∗(σΓ)⇒ v∗(δ∆)

Formal Semantics

Special Cases

When Γ = ∅ or ∆ = ∅ we define

v∗(−→ ∆) = (T ⇒ v∗(δ∆))

and
v∗(Γ −→) = (v∗(σΓ)⇒ F)

Formal Semantics

Model

The sequent Γ −→ ∆ is satisfiable if there is a truth
assignment v : VAR −→ {T ,F} such that

v∗(Γ −→ ∆) = T

Such a truth assignment v is called a model for Γ −→ ∆

We write
v |= Γ −→ ∆

Formal Semantics

Counter- model

The sequent Γ −→ ∆ is falsifiable if there is a truth
assignment v, such that v∗(Γ −→ ∆) = F

In this case v is called a counter-model for Γ −→ ∆

We write it as

v 6|= Γ −→ ∆

Formal Semantics

Tautology

A sequent Γ −→ ∆ is a tautology if

v∗(Γ −→ ∆) = T for all truth assignments v : VAR −→ {T ,F}

We write it
|= Γ −→ ∆

Example

Example

Let Γ −→ ∆ be a sequent

a, (b ∩ a) −→ ¬b , (b ⇒ a)

The truth assignment v for which

v(a) = T and v(b) = T

is a model for Γ −→ ∆ as shows the following computation

v∗(a, (b ∩ a) −→ ¬b , (b ⇒ a)) =

v∗(σ{a,(b∩a)})⇒ v∗(δ{¬b ,(b⇒a)})

= v(a) ∩ (v(b) ∩ v(a))⇒ ¬v(b) ∪ (v(b)⇒ v(a))

= T∩T∩T ⇒ ¬T∪(T ⇒ T) = T ⇒ (F∪T) = T ⇒ T = T

Example

Observe that the truth assignment v for which

v(a) = T and v(b) = T

is the only one for which

v∗(Γ) = v∗(a, (b ∩ a) = T

and we proved that it is a model for

a, (b ∩ a) −→ ¬b , (b ⇒ a)

It is hence impossible to find v which would falsify it, what

proves that

|= a, (b ∩ a) −→ ¬b , (b ⇒ a)

Indecomposable Sequents

Definition

Finite sequences formed out of positive literals i.e. out of

propositional variables are called indecomposable

We denote them by
Γ
′

, ∆
′

, . . .

with indices, if necessary.

A sequent is indecomposable if it is formed out of

indecomposable sequences, i.e. is of the form

Γ
′

−→ ∆
′

for any Γ
′

,∆
′

∈ VAR∗

Indecomposable Sequents

Remark

Remember that in the GL system the symbols

Γ
′

, ∆
′

,

denote sequences of positive literals i.e. variables

They do not denote the sequences of literals as they did

in the RS type systems

GL Components: Axioms

Logical Axioms LA

We adopt as an axiom any sequent of variables

(positive literals) which contains a propositional variable that
appears

on both sides of the sequent arrow −→, i.e any sequent

of the form

Γ′1, a, Γ
′
2 −→ ∆′1, a,∆

′
2

for any a ∈ VAR and any sequences Γ′1, Γ
′
2,∆

′
1,∆

′
2 ∈ VAR∗

GL Components: Axioms

Semantic Link
Consider axiom

Γ′1, a, Γ
′
2 −→ ∆′1, a,∆

′
2

We evaluate (in shorthand notation), for any truth assignment
v : VAR −→ {T ,F}

v∗(Γ′1, a, Γ′2 −→ ∆′1, a,∆′2) =

(σΓ′1 ∩ a ∩ σΓ′2) ⇒ (δ∆′1 ∪ a ∪ δ∆′2) = T

The evaluation is correct because

|= (((A ∩ a) ∩ B)⇒ (C ∪ a) ∪ D)))

We have thus proved the following.
Fact
Logical axioms of GL are tautologies

GL Components: Rules

Inference rules

Let Γ
′

,∆
′

∈ VAR∗ and Γ,∆ ∈ F ∗

Conjunction rules

(∩ →)
Γ
′

, A ,B , Γ −→ ∆
′

Γ′ , (A ∩ B), Γ −→ ∆′

(→ ∩)
Γ −→ ∆, A , ∆

′

; Γ −→ ∆, B , ∆
′

Γ −→ ∆, (A ∩ B) ∆′

GL Rules

Disjunction rules

(→ ∪)
Γ −→ ∆, A ,B , ∆

′

Γ −→ ∆, (A ∪ B), ∆′

(∪ →)
Γ
′

, A , Γ −→ ∆
′

; Γ
′

, B , Γ −→ ∆
′

Γ′ , (A ∪ B), Γ −→ ∆′

GL Rules

Implication rules

(→⇒)
Γ
′

, A , Γ −→ ∆, B , ∆
′

Γ′ , Γ −→ ∆, (A ⇒ B), ∆′

(⇒→)
Γ
′

, Γ −→ ∆, A , ∆
′

; Γ
′

, B , Γ −→ ∆,∆
′

Γ′ , (A ⇒ B), Γ −→ ∆,∆′

GL Rules

Negation rules

(¬ →)
Γ
′

, Γ −→ ∆, A , ∆
′

Γ′ , ¬A , Γ −→ ∆,∆′

(→ ¬)
Γ
′

, A , Γ −→ ∆,∆
′

Γ′ , Γ −→ ∆, ¬A , ∆′

Gentzen System GL Definition

Definition

GL = (L{∪,∩,⇒,¬}, SQ , LA , R)

where
SQ = { Γ −→ ∆ : Γ,∆ ∈ F ∗ }

R = {(∩ −→), (−→ ∩), (∪ −→), (−→ ∪), (⇒−→), (−→⇒)}

∪ {(¬ −→), (−→ ¬)}

We write, as usual,
`GL Γ −→ ∆

to denote that Γ −→ ∆ has a formal proof in GL

For any formula A ∈ F

`GL A if ad only if −→ A

Proof Trees

We consider, as we did with RS the proof trees for GL, i.e.

we define

A proof tree, or GL-proof of Γ −→ ∆ is a tree

TΓ−→∆

of sequents satisfying the following conditions:

1. The topmost sequent, i.e the root of TΓ−→∆ is Γ −→ ∆

2. All leafs are axioms

3. The nodes are sequents such that each sequent

on the tree follows from the ones immediately preceding it

by one of the rules of inference

Proof Trees

Remark

The proof search in GL as defined by the decomposition

tree for a given formula A is not always unique

We show an example on the next slide

Example

A tree-proof in GL of the de Morgan Law

−→ (¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (−→⇒)

¬(a ∩ b) −→ (¬a ∪ ¬b)

| (−→ ∪)

¬(a ∩ b) −→ ¬a,¬b

| (−→ ¬)

b ,¬(a ∩ b) −→ ¬a

| (−→ ¬)

b , a,¬(a ∩ b) −→

| (¬ −→)

b , a −→ (a ∩ b)∧
(−→ ∩)

b , a −→ a b , a −→ b

Example

Here is another tree-proof in GL of the de Morgan Law

−→ (¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (−→⇒)

¬(a ∩ b) −→ (¬a ∪ ¬b)

| (−→ ∪)

¬(a ∩ b) −→ ¬a,¬b

| (−→ ¬)

b ,¬(a ∩ b) −→ ¬a

| (¬ −→)

b −→ ¬a, (a ∩ b)∧
(−→ ∩)

b −→ ¬a, a

| (−→ ¬)

b , a −→ a

b −→ ¬a, b

| (−→ ¬)

b , a −→ b

Decomposition Trees

The process of searching for proofs of a formula A in GL
consists, as in the RS type systems, of building certain trees,
called decomposition trees

Their construction is similar to the one for RS type systems

We take a root of a decomposition tree TA of of a formula A
a sequent −→ A

For each node, if there is a rule of GL which conclusion has
the same form as node sequent, then the node has children
that are premises of the rule

If the node consists only of a sequent built only out of
variables then it does not have any children

This is a termination condition for the tree

Decomposition Trees

We prove that each formula A generates a finite set

TA

of decomposition trees such that the following holds

If thereexist a tree TA ∈ TA whose all leaves are axioms,

then tree TA constitutes a proof of A in GL

If all trees in TA have at least one non-axiom leaf, the

proof of A does not exist

Decomposition Trees

The first step in defining a notion of a decomposition tree

consists of transforming the inference rules of GL, as we did in

the case of the RS type systems, into corresponding

decomposition rules

Decomposition Rules of GL

Decomposition rules

Let Γ
′

,∆
′

∈ VAR∗ and Γ,∆ ∈ F ∗

Conjunction rules

(∩ →)
Γ
′

, (A ∩ B), Γ −→ ∆
′

Γ′ , A ,B , Γ −→ ∆′

(→ ∩)
Γ −→ ∆, (A ∩ B) ∆

′

Γ −→ ∆, A , ∆′ ; Γ −→ ∆, B , ∆′

Decomposition Rules of GL

Disjunction rules

(→ ∪)
Γ −→ ∆, (A ∪ B), ∆

′

Γ −→ ∆, A ,B , ∆′

(∪ →)
Γ
′

, (A ∪ B), Γ −→ ∆
′

Γ′ , A , Γ −→ ∆′ ; Γ′ , B , Γ −→ ∆′

Decomposition Rules of GL

Implication rules

(→⇒)
Γ
′

, Γ −→ ∆, (A ⇒ B), ∆
′

Γ′ , A , Γ −→ ∆, B , ∆′

(⇒→)
Γ
′

, (A ⇒ B), Γ −→ ∆,∆
′

Γ′ , Γ −→ ∆, A , ∆′ ; Γ′ , B , Γ −→ ∆,∆′

Decomposition Rules of GL

Negation rules

(¬ →)
Γ
′

, ¬A , Γ −→ ∆,∆
′

Γ′ , Γ −→ ∆, A , ∆′

(→ ¬)
Γ
′

, Γ −→ ∆, ¬A , ∆
′

Γ′ , A , Γ −→ ∆,∆′

Decomposition Tree Definition

Definition

For each formula A ∈ F , a decomposition tree TA is a tree
build as follows

Step 1. The sequent −→ A is the root of TA

For any node Γ −→ ∆ of the tree we follow the steps below

Step 2. If Γ −→ ∆ is indecomposable, then Γ −→ ∆

becomes a leaf of the tree

Decomposition Tree Definition

Step 3. If Γ −→ ∆ is decomposable

then we pick a decomposition rule that matches the sequent

of the current node

To do so we proceed as follows

1. Given a node Γ −→ ∆

We traverse Γ from left to right to find the first

decomposable formula

Its main connective ◦ identifies a possible decomposition

rule (◦ −→)

Then we check if this decomposition rule (◦ −→) applies

If it does we put its conclusion(s) as leaf (leaves)

Decomposition Tree Definition

2. We traverse ∆ from right to left to find the first
decomposable formula

Its main connective ◦ identifies a possible decomposition
rule (−→ ◦)

Then we check if this decomposition rule applies

If it does we put its conclusion(s as leaf (leaves)

3. If 1. and 2. apply we choose one of the rules

Step 4. We repeat Step 2. and Step 3. until we obtain

only leaves

Decomposition Tree Definition

Observe that a decomposable Γ −→ ∆ is always in the

domain of one of the decomposition rules (◦ −→), (−→ ◦),

or is in the domain of both of them

Hence the tree TA may not be unique

All possible choices of 3. give all possible decomposition

trees

System GL Exercises

Exercise

Prove, by constructing a proper decomposition tree that

`GL((¬a ⇒ b)⇒ (¬b ⇒ a))

Solution

By definition,we have that

`GL((¬a ⇒ b)⇒ (¬b ⇒ a)) if and only if

`GL −→ ((¬a ⇒ b)⇒ (¬b ⇒ a))

We construct a decomposition tree T→A as follows

System GL Exercises

T→A

−→ ((¬a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

¬b , (¬a ⇒ b) −→ a

| (→ ¬)

(¬a ⇒ b) −→ b , a∧
(⇒−→)

−→ ¬a, b , a

| (→ ¬)

a −→ b , a

axiom

b −→ b , a

axiom

All leaves of the tree are axioms, hence we have found the
proof of A in GL

System GL Exercises

Exercise

Prove, by constructing proper decomposition trees that

0GL ((a ⇒ b)⇒ (¬b ⇒ a))

Solution

For some formulas A , their decomposition tree T→A may not
be unique

Hence we have to construct all possible decomposition
trees to show that none of them is a proof, i.e. to show that
each of them has a non axiom leaf.

We construct the decomposition trees for −→ A as follows

System GL Exercises

T1→A

−→ ((a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒) (one choice)

(a ⇒ b) −→ (¬b ⇒ a)

| (→⇒) (first of two choices)

¬b , (a ⇒ b) −→ a

| (¬ →) (one choice)

(a ⇒ b) −→ b , a∧
(⇒−→) (one choice)

−→ a, b , a

non − axiom

b −→ b , a

axiom

The tree contains a non- axiom leaf, hence it is not a proof

We have one more tree to construct

System GL Exercises

T2→A

−→ ((a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒) (one choice)

(a ⇒ b) −→ (¬b ⇒ a)∧
(⇒−→) (second choice)

−→ (¬b ⇒ a), a

| (−→⇒) (one choice)

¬b −→ a, a

| (¬ →) (one choice)

−→ b , a, a

non − axiom

b −→ (¬b ⇒ a)

| (→⇒) (one choice)

b ,¬b −→ a

| (¬ →) (one choice)

b −→ b , a

axiom

All possible trees end with a non-axiom leaf. It proves that

0GL ((a ⇒ b)⇒ (¬b ⇒ a))

System GL Exercises

Does the tree below constitute a proof in GL ? Justify your answer

T→A

−→ ¬¬((¬a ⇒ b)⇒ (¬b ⇒ a))

| (→ ¬)

¬((¬a ⇒ b)⇒ (¬b ⇒ a)) −→

| (¬ →)

−→ ((¬a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

(¬a ⇒ b),¬b −→ a

| (¬ →)

(¬a ⇒ b) −→ b , a∧
(⇒−→)

−→ ¬a, b , a

| (→ ¬)

a −→ b , a

axiom

b −→ b , a

axiom

System GL Exercises

Solution
The tree T→A is not a proof in GL because a rule
corresponding to the decomposition step below does not
exists in GL

(¬a ⇒ b),¬b −→ a

| (¬ →)

(¬a ⇒ b) −→ b , a

It is a proof is some system GL1 that has all the rules of GL
except its rule (¬ →)

(¬ →)
Γ
′

, Γ −→ ∆, A , ∆
′

Γ′ , ¬A , Γ −→ ∆,∆′

This rule has to be replaced in by the rule:

(¬ →)1
Γ, Γ

′

−→ ∆,A ,∆
′

Γ,¬A , Γ′ −→ ∆,∆′

Exercises

Exercise 1

Write all possible proofs of

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

Exercise 2

Find a formula which has a unique decomposition tree

Exercise 3

Describe for which kind of formulas the decomposition tree is
unique

GL Soundness and Completeness

GL Strong Soundness

The system GL admits a constructive proof of the

Completeness Theorem, similar to completeness proofs for

RS type proof systems

The completeness proof relays on the strong soundness

property of the inference rules

We are going now prove the strong soundness property

of the proof system GL

GL Strong Soundness

Proof of strong soundness property

We have already proved that logical axioms of GL are

tautologies, so we have to prove now that its rules of

inference are strongly sound

Proofs of strong soundness of rules of inference of GL are

more involved then the proofs for the RS type rules

We prove as an example the strong soundness of four

of inference rules

GL Strong Soundness

By definition of strong soundness we have to show that that
for all rules of inference of GL the following conditions hold

If P1, P2 are premisses of a given rule and C is its
conclusion,

then for all truth assignments v : VAR −→ {T ,F},

v∗(P1) = v∗(C) in case of one premiss rule, and

v∗(P1) ∩ v∗(P2) = v∗(C) in case of a two premisses rule

GL Strong Soundness

We prove as an example the strong soundness of the
following rules

(∩ →), (→ ∩), (∪ →), (→ ¬)

In order to prove it we need additional classical logical
equivalencies listed below

You can find a list of most basic classical equivalences in
Chapter 3

((A ⇒ B) ∩ (A ⇒ C)) ≡ (A ⇒ (B ∩ C))

((A ⇒ C) ∩ (B ⇒ C)) ≡ ((A ∪ B)⇒ C)

((A ∩ B)⇒ C) ≡ (A ⇒ (¬B ∪ C))

GL Strong Soundness

Strong soundness of (∩ →)

(∩ →)
Γ
′

,A ,B , Γ −→ ∆
′

Γ′ , (A ∩ B), Γ −→ ∆′

= v∗(Γ
′

,A ,B , Γ −→ ∆
′

)

= (v∗(Γ
′

) ∩ v∗(A) ∩ v∗(B) ∩ v∗(Γ))⇒ v∗(∆
′

)

= (v∗(Γ
′

) ∩ v∗(A ∩ B) ∩ v∗(Γ))⇒ v∗(∆
′

)

= v∗(Γ
′

, (A ∩ B), Γ −→ ∆
′

)

GL Strong Soundness

Strong soundness of (→ ∩)

(→ ∩)
Γ −→ ∆,A ,∆

′

; Γ −→ ∆,B ,∆
′

Γ −→ ∆, (A ∩ B),∆′

v∗(Γ −→ ∆,A ,∆
′

) ∩ v∗(Γ −→ ∆,B ,∆
′

)

= (v∗(Γ)⇒ v∗(∆) ∪ v∗(A) ∪ v∗(∆
′

)) ∩ (v∗(Γ)⇒
v∗(∆) ∪ v∗(B) ∪ v∗(∆

′

))

[we use : ((A ⇒ B) ∩ (A ⇒ C)) ≡ (A ⇒ (B ∩ C))]

= v∗(Γ)⇒
((v∗(∆) ∪ v∗(A) ∪ v∗(∆

′

)) ∩ (v∗(∆) ∪ v∗(B) ∪ v∗(∆
′

)))

[we use commutativity and distributivity]

= v∗(Γ)⇒ (v∗(∆) ∪ (v∗(A ∩ B)) ∪ v∗(∆
′

))

= v∗(Γ −→ ∆, (A ∩ B),∆
′

)

GL Strong Soundness

Strong soundness of (∪ →)

(∪ →)
Γ
′

,A , Γ −→ ∆
′

; Γ
′

,B , Γ −→ ∆
′

Γ′ , (A ∪ B), Γ −→ ∆′

v∗(Γ
′

,A , Γ −→ ∆
′

) ∩ v∗(Γ
′

,B , Γ −→ ∆
′

)

= (v∗(Γ
′

) ∩ v∗(A) ∩ v∗(Γ))⇒
v∗(∆

′

)) ∩ (v∗(Γ
′

) ∩ v∗(B) ∩ v∗(Γ))⇒ v∗(∆
′

))

[we use: ((A ⇒ C) ∩ (B ⇒ C)) ≡ ((A ∪ B)⇒ C)]

= (v∗(Γ
′

)∩v∗(A)∩v∗(Γ))∪ (v∗(Γ
′

)∩v∗(B)∩v∗(Γ))⇒ v∗(∆
′

)

= ((v∗(Γ
′

) ∩ v∗(Γ)) ∩ v∗(A)) ∪ ((v∗(Γ
′

) ∩ v∗(Γ)) ∩ v∗(B))⇒
v∗(∆

′

)

[we use commutativity and distributivity]

= ((v∗(Γ
′

) ∩ v∗(Γ)) ∩ (v∗(A ∪ B))⇒ v∗(∆
′

)

= v∗(Γ
′

, (A ∪ B), Γ −→ ∆
′

)

GL Strong Soundness

Strong soundness of (→ ¬)

(→ ¬)
Γ
′

,A , Γ −→ ∆,∆
′

Γ′ , Γ −→ ∆,¬A ,∆′

v∗(Γ
′

,A , Γ −→ ∆,∆
′

)

= v∗(Γ
′

) ∩ v∗(A) ∩ v∗(Γ)⇒ v∗(∆) ∪ v∗(∆
′

)

= (v∗(Γ
′

) ∩ v∗(Γ)) ∩ v∗(A)⇒ v∗(∆) ∪ v∗(∆
′

)

[we use: ((A ∩ B)⇒ C) ≡ (A ⇒ (¬B ∪ C))]

= (v∗(Γ
′

) ∩ v∗(Γ))⇒ ¬v∗(A) ∪ v∗(∆) ∪ v∗(∆
′

)

= (v∗(Γ
′

) ∩ v∗(Γ))⇒ v∗(∆) ∪ v∗(¬A) ∪ v∗(∆
′

)

= v∗(Γ
′

, Γ −→ ∆,¬A ,∆
′

)

GL Strong Soundness

The above shows the premises and conclusions are logically
equivalent

Therefore the four rules are strongly sound

This ends the proof

Observe that the strong soundness implies soundness (not
only by name) hence we have proved the following

Soundness Theorem

For any sequent Γ −→ ∆ ∈ SQ ,

if `GL Γ −→ ∆ then] |= Γ −→ ∆

In particular, for any A ∈ F ,

if `GL A then |= A

GL Strong Soundness

The strong soundness of the rules of inference means that if
at least one of premisses of a rule is false, the conclusion of
the rule is also false

Hence given a sequent Γ −→ ∆ ∈ SQ , such that its
decomposition tree TΓ−→∆ has a branch ending with a
non-axiom leaf

It means that any truth assignment v that makes this
non-axiom leaf bf false also falsifies all sequents on that
branch

Hence v falsifies the sequent Γ −→ ∆

Counter Model

In particular, given a sequent

−→ A

and its decomposition tree

T−→A

any v, that falsifies its non-axiom leaf is a counter-model
for the formula A

We call such v a counter model determined by the
decomposition tree

Counter Model Theorem

We have hence proved the following

Counter Model Theorem

Given a sequent Γ −→ ∆, such that its decomposition tree
TΓ−→∆ contains a non- axiom leaf LA

Any truth assignment v that falsifies the non-axiom leaf LA

is a counter model for Γ −→ ∆

In particular, given a formula
A ∈ F , and its decomposition tree TA with a non-axiom
leaf, this leaf let us define a counter-model for A
determined by the decomposition tree TA

Exercise

Exercise

We know that the system GL is strongly sound

Prove, by constructing a counter-model determined by a
proper decomposition tree that

6|= ((b ⇒ a)⇒ (¬b ⇒ a))

We construct the decomposition tree for the formula

A = ((b ⇒ a)⇒ (¬b ⇒ a)) as follows

Exercise

T→A

−→ ((b ⇒ a)⇒ (¬b ⇒ a))

| (→⇒)

(b ⇒ a) −→ (¬b ⇒ a)

| (→⇒)

¬b , (b ⇒ a) −→ a

| (¬ →)

(b ⇒ a) −→ b , a∧
(⇒−→)

−→ b , b , a

non − axiom

a −→ b , a

axiom

Exercise

The non-axiom leaf LA we want to falsify is

−→ b , b , a

Let v : VAR −→ {T ,F} be a truth assignment

By definition of semantic for sequents we have that

v∗(−→ b , b , a) = (T ⇒ v(b) ∪ v(b) ∪ v(a))

Hence v∗(−→ b , b , a) = F if and only if

(T ⇒ v(b) ∪ v(b) ∪ v(a)) = F if and only if
v(b) = v(a) = F

The counter model determined by the T→A is any
v : VAR −→ {T ,F} such that

v(b) = v(a) = F

Counter Model Theorem

The Counter Model Theorem, says that the logical value F
determined by the evaluation a non-axiom leaf LA ”climbs”
the decomposition tree. We picture it as follows

T→A

−→ ((b ⇒ a)⇒ (¬b ⇒ a)) F

| (→⇒)

(b ⇒ a) −→ (¬b ⇒ a) F

| (→⇒)

¬b , (b ⇒ a) −→ a F

| (¬ →)

(b ⇒ a) −→ b , a F∧
(⇒−→)

−→ b , b , a F

non − axiom

a −→ b , a

axiom

Counter Model Theorem

By Counter Model Theorem, any truth assignment

v : VAR −→ {T ,F}

such that
v(b) = v(a) = F

falsifies the sequence −→ A

We evaluate

v∗(−→ A) = T ⇒ v∗(A) = F if and only if v∗(A) = F

This proves that v is a counter model for A and we proved
that

6|= A

GL Completeness

Our goal now is to prove the Completeness Theorem for GL

Completeness Theorem
For any formula A ∈ F ,

`GL A if and only if |= A

Moreover

For any sequent Γ −→ ∆ ∈ SQ ,

`GL Γ −→ ∆ if and only if |= Γ −→ ∆

GL Completeness

Proof

We have already proved the Soundness Theorem, so we
only need to prove the implication:

if |= A then `GL A

We prove instead of the logically equivalent opposite
implication:

if 0GL A then 6|= A

GL Completeness

Assume 0GL A , i.e. 0GL−→ A

Let TA be a set of all decomposition trees of −→ A

As 0GL−→ A each tree T→A in the set TA has a
non-axiom leaf. We choose an arbitrary T→A ∈ TA

Let LA = Γ
′

−→ ∆
′

be a non-axiom leaf of T→A

We define a truth assignment v : VAR −→ {T ,F} which
falsifies LA = Γ

′

−→ ∆
′

as follows

v(a) =


T if a appears in Γ′

F if a appears in ∆′

any value if a does not appear in Γ′ → ∆′

By Counter Model Theorem

6|= A

Gentzen Proof System G

Gentzen Proof System G

Gentzen Proof system G

We obtain the proof system G from the system GL by
changing the indecomposable sequences Γ

′

, ∆
′

into any
sequences Σ, Λ ∈ F ∗ in all of the rules of inference of GL

The logical axioms LA remain the same as in GL, i.e.

Axioms of G

Γ′1, a, Γ′2 −→ ∆′1, a, ∆′2

where

a ∈ VAR and Γ′1, Γ
′
2,∆

′
1,∆

′
2 ∈ VAR∗

Gentzen Proof System G

Rules of Inference

Conjunction

(∩ →)
Σ, A ,B , Γ −→ Λ

Σ, (A ∩ B), Γ −→ Λ

(→ ∩)
Γ −→ ∆,A ,Λ ; Γ −→ ∆,B ,Λ

Γ −→ ∆, (A ∩ B),Λ

Disjunction

(→ ∪)
Γ −→ ∆,A ,B ,Λ

Γ −→ ∆, (A ∪ B),Λ

(∪ →)
Σ,A , Γ −→ Λ ; Σ,B , Γ −→ Λ

Σ, (A ∪ B), Γ −→ Λ

Gentzen Proof System G

Implication

(→⇒)
Σ,A , Γ −→ ∆,B ,Λ

Σ, Γ −→ ∆, (A ⇒ B),Λ

(⇒→)
Σ, Γ −→ ∆,A ,Λ ; Σ,B , Γ −→ ∆,Λ

Σ, (A ⇒ B), Γ −→ ∆,Λ

Negation rules

(¬ →)
Σ, Γ −→ ∆,A ,Λ

Σ,¬A , Γ −→ ∆,Λ
, (→ ¬)

Σ,A , Γ −→ ∆,Λ

Σ, Γ −→ ∆,¬A ,Λ

where

Γ,∆, Σ. Λ ∈ F ∗

System G Exercises

Exercises

Follow the example of the GL system and adopt all needed
definitions and proofs to prove the completeness of the
system G

Here are steps S1 - S10 needed to carry a full proof of the
Completeness Theorem

We leave completion of them as series of Exercises

Write careful and full solutions for each of S1 - S10 steps

Base them on corresponding proofs for GL system

System G Exercises

Here the steps

S1 Explain why the system G is strongly sound. You can use
the strong soundness of the system GL

S2 Prove, as an example, a strong soundness of 4 rules of G

S3 Prove the the strong soundness of G

S4 Define shortly, in your own words, for any formula A ∈ F ,
its decomposition tree T→A

System G Exercises

S5 Extend your definition of T→A to a decomposition tree
TΓ→∆ for any Γ→ ∆ ∈ SQ

S6 Prove that for any Γ→ ∆ ∈ SQ , all decomposition trees
TΓ→∆ are finite

S7 Give an example of formulas A ,B ∈ F such that that
the tree T→A is unique and the tree T→B is not unique

System G Exercises

S8 Prove the following Counter Model Theorem for G

Theorem

Given a sequent Γ −→ ∆, such that its decomposition tree
TΓ−→∆ contains a non- axiom leaf LA

Any truth assignment v that falsifies the non-axiom leaf LA

is a counter model for Γ −→ ∆

In particular, given a formula A ∈ F , and its decomposition
tree TA with a non-axiom leaf, this leaf let us define a
counter-model for A determined by the decomposition tree
TA

System G Exercises

S8 Prove the following Completeness Theorem for G

Theorem

1. For any formula A ∈ F ,

`G A if and only if |= A

2. For any sequent Γ −→ ∆ ∈ SQ ,

`G Γ −→ ∆ if and only if |= Γ −→ ∆

Chapter 6
Automated Proof Systems

Completeness of Classical Propositional Logic

Slides Set 3

PART 5: Original Gentzen Systems LK, LI

Classical and Intiutionistic Completeness Theorem

and Hauptzatz Theorem

Original Gentzen Systems LK, LI

The original systems LK and LI were created by Gentzen in
1935 for classical and intuitionistic predicate logics,
respectively

We present now their propositional verisons and use the
same names LK and LI

The proof system LI for intuitionistic logic is a particular case
of the proof system LK

Original Gentzen Systems LK, LI

Both systems LK and LI have two groups of inference rules

They both have a special rule called a cut rule

First group consists of a set of rules similar to the rules of
systems GL and G callled Logical Rules

Second group contains a new type of rules

We call them Structural Rules

Original Gentzen Systems LK, LI

The cut rule in Gentzen sequent systems corresponds to the
Modus Ponens rule in Hilbert proof systems

Modus Ponens is a particular case of the cut rule

The cut rule is needed to carry out the original Gentzen
proof of the completeness of the system LK and for proving
the adequacy of LI system for intituitionistic logic

Original Gentzen Systems LK, LI

Gentzen proof of completeness of LK was not direct

He used the completeness of already known Hilbert proof
system H and proved that any formula provable in the
systems H is also provable in LK

Hence the need of the cut rule

Original Gentzen Systems LK, LI

For the system LI he proved only the adequacy of LI system
for intituitionistic logic since the semantics for the intuitionistic
logic didn’t yet exist

He used the acceptance of Heying intuitionistic axiom
system as a definition of the intuitionistic logic and proved
that any formula provable in the Heyting system is also
provable in LI

Original Gentzen Systems LK, LI

Observe that by presence of the cut rule, Gentzen systems
LK and LI are also Hilbert system

What distinguishes them from all other known Hilbert proof
systems is the fact that the cut rule could be eliminated f

This is Gentzen famous Hauptzatz Theorem, also called Cut
Elimination Theorem

The elimination of the cut rule and the structure of other
rules makes it possible to define an effective automatic
procedures for proof search, what is impossible in a case of
the Hilbert style systems

Original Gentzen Systems LK, LI

Gentzen in his proof of Hauptzatz Theorem developed a
powerful technique of proof adaptable to other logics

We present it here in classical propositional case and show
how to adapt it to the intuitionistic case

Gentzen proof is purely syntactical

The proof defines a constructive method of transformation
of any formal proof (derivation) of a sequent Γ −→ ∆ that
uses the cut rule (and other rules) into its proof without use
of the cut rule

Hence the English name Cut Elimination Theorem

Gentzen System LK

LK Components

LK Components

Language

L = L{¬,∩,∪,⇒} and E = SQ

for
SQ = {Γ −→ ∆ : Γ,∆ ∈ F ∗}

Logical Axioms

There is only one logical axiom, namely

A −→ A

where A is any formula of L

LK Components

Rules of Inference

Group one: Structural Rules
Weakening

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→ ∆

Γ −→ ∆, A
Contraction

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆,A

LK Components

Exchange

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2

Cut Rule

(cut)
Γ −→ ∆, A ; A , Σ −→ Θ

Γ,Σ −→ ∆,Θ

A is called a cut formula

LK Components

Group Two: Logical Rules

Conjunction rules

(∩ →)1
A , Γ −→ ∆

(A ∩ B), Γ −→ ∆

(∩ →)2
B , Γ −→ ∆

(A ∩ B), Γ −→ ∆

(→ ∩)
Γ −→ ∆, A ; Γ −→ ∆, B , ∆

Γ −→ ∆, (A ∩ B)

LK Components

Disjunction rules

(→ ∪)1
Γ −→ ∆, A

Γ −→ ∆, (A ∪ B)

(→ ∪)2
Γ −→ ∆, B

Γ −→ ∆, (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆

LK Components

Implication rules

(−→⇒)
A , Γ −→ ∆, B

Γ −→ ∆, (A ⇒ B)

(⇒−→)
Γ −→ ∆, A ; B , Γ −→ ∆

(A ⇒ B), Γ −→ ∆

Negation rules

(¬ −→)
Γ −→ ∆, A
¬A , Γ −→ ∆

(−→ ¬)
A , Γ −→ ∆

Γ −→ ∆, ¬A

LK Definition

Classical System LK

We define the classical Gentzen system LK as

LK = (L, SQ , LA ,R)

where

R = { Structural Rules, Cut Rule, Logical Rules)

as defined by the components definitions

LI Definition

Intuitionistic System LI

We define the intuitionistic Gentzen system LI as

LI = (L, ISQ , AL ,R)

R = { I - Structural Rules, I - Cut Rule, I -Logical Rules)

where R are the LK rules restricted to the set ISQ of the
intuitionistic sequents defined as follows

ISQ = {Γ −→ ∆ : ∆ consists of at most one formula }

We will study the intuitionistic system LI in Chapter 7

Classical System LK

We say that a formula A ∈ F has a proof in LK and denote
it by

`LK A

if the sequent −→ A has a proof in LK, i.e. we write

`LK A if and only if `LK −→ A

LK Proof Trees

We write formal proofs in LK, as we did for other Gentzen
style proof systems in a form of the proof trees defined as
follows

Definition

By a proof tree of a sequent Γ −→ ∆ in LK we understand
a tree

DΓ−→∆

satisfying the following conditions:

1. The topmost sequent, i.e the root of DΓ−→∆ is Γ −→ ∆

2. All leaves are axioms

3. The nodes are sequents such that each sequent on the
tree follows from the ones immediately preceding it by one
of the rules

Derivations in LK

Proofs are often called derivations

In particular, Gentzen, in his work used the term derivation
for the proof and we will use this notion as well

This is why we denote the proof trees by D, for the derivation

Finding derivations D in LK is a complex process

LK logical rules are different, then in GL and G

Consequently, proofs rely strongly on use of the structural
rules

Derivations in LK

For example, a derivation of Excluded Middle (A ∪ ¬A)
formula in LK is as follows

D

−→ (A ∪ ¬A)

| (→ contr)

−→ (A ∪ ¬A), (A ∪ ¬A)

| (→ ∪)1

−→ (A ∪ ¬A), A

| (→ exch)

−→ A , (A ∪ ¬A)

| (→ ∪)1

−→ A , ¬A

| (→ ¬)

A −→ A

axiom

Derivations in LK

Here is as yet another example a cut free derivation in LK
D

−→ (¬(A ∩ B)⇒ (¬A ∪ ¬B))

| (→⇒)

(¬(A ∩ B) −→ (¬A ∪ ¬B))

| (→ ¬)

−→ (¬A ∪ ¬B), (A ∩ B)∧
(⇒−→)

−→ (¬A ∪ ¬B), A

| (→ exch)

−→ A , (¬A ∪ ¬B)

| (→ ∪)1

−→ A ,¬A

| (→ ¬)

A −→ A

axiom

−→ (¬A ∪ ¬B), B

| (→ exch)

−→ B , (¬A ∪ ¬B)

| (→ ∪)1

−→ B ,¬B

B −→ B

axiom

LK Soundness

LK Soundness

Observe that the Logical Rules of LK are similar in their
structure to the rules of the system G

Hence LK Logical Rules admit similar proof of their
soundness

The sound rules

(→ ∩)1, (→ ∩)2 and (→ ∪)1, (→ ∪)2

are not strongly sound because

A . (A ∩ B), B . (A ∩ B) and A . (A ∪ B), B . (A ∪ B)

All other Logical Rules are strongly sound.

LK Soundness

The Contraction and Exchange structural rules are strongly
sound as for any formulas A ,B ∈ F ,

A ≡ (A ∩ A), A ≡ (A ∪ A) and

(A ∩ B) ≡ (B ∩ A), (A ∩ B) ≡ (B ∩ A)

The Weakening rule is sound because (we use shorthand
notation)

if (Γ⇒ ∆) = T then ((A ∩ Γ)⇒ ∆) = T

for any logical value of the formula A

Obviously
(Γ⇒ ∆) . ((A ∩ Γ)⇒ ∆))

i.e. the Weakening rule is not strongly sound

LK Soundness

The Cut rule is sound as the fact that

(Γ⇒ (∆ ∪ A)) = T and ((A ∩ Σ)⇒ Λ) = T

implies that
((Γ ∩ Σ) ⇒ (∆ ∪ Λ)) = T

Cut rule is not strongly sound

Any truth assignment such that

Γ = T and ∆ = Σ = Λ = A = F

proves that

(Γ −→ ∆, A) ∩ (A , Σ −→ Λ) . (Γ,Σ −→ ∆,Λ)

LK Soundness

Obviously, the Logical Axiom is a tautology, i.e.

|= A −→ A

We have proved that LK is sound and the following theorem
holds

Soundness Theorem

For any sequent Γ −→ ∆,

if `LK Γ −→ ∆, then |= Γ −→ ∆

In particular, for any A ∈ F ,

if `LK A , then |= A

LK Completeness

LK Completeness

We follow Gentzen original proof of completeness of LK

We choose any complete Hilbert proof system for the LK
language

L = L{¬,∩,∪,⇒}

and prove, after Gentzen, its equivalency with LK

Gentzen referred to the Hilbert-Ackerman (1920) system
(axiomatization) included in chapter 5

We choose the Rasiowa-Sikorski (1952) formalization R
also included in Chapter 5

LK Completeness

We choose the formalization R for two reasons

First, it reflexes a connection between classical and
intuitionistic logics very much in a spirit Gentzen relationship
between LK and LI

We obtain a complete proof system I from R by just
removing the last axiom A12

Second, both sets of axioms reflect the best what set of
rovable formulas is needed to conduct algebraic proofs of
completeness of R and I, as discussed in Chapter 7

Hilbert System R

The set of logical axioms of the poof system R

A1 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A2 (A ⇒ (A ∪ B))

A3 (B ⇒ (A ∪ B))

A4 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A5 ((A ∩ B)⇒ A)

A6 ((A ∩ B)⇒ B)

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩ B)))

A8 ((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C))

A9 (((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C))

A10 (A ∩ ¬A)⇒ B)

A11 ((A ⇒ (A ∩ ¬A))⇒ ¬A)

Hilbert System R

A12 (A ∪ ¬A)

where A ,B ,C ∈ F are any formulas

We adopt a Modus Ponens

(MP)
A ; (A ⇒ B)

B
as the only inference rule

We define the proof system R as

R = (L{¬,∩,∪,⇒}, F , {A1 − A12}, (MP))

where A1 - A12 are logical axioms defined above

Hilbert System R

The system R is complete, i.e. we have the following

R Completeness Theorem

For any formula A ∈ F ,

`R A if and only if |= A

We leave it as an exercise to show that all axioms A1 - A12
of the system R are provable in LK

Moreover, the Modus Ponens rule of R is a particular case
of the Cut rule, namely

(MP)
−→ A ; A −→ B

−→ B
This proves the following theorem

Hilbert System R

Provability Theorem

For any formula A ∈ F

if `R A , then `LK A

Directly from the above provability theorem, the soundness of
LK and the completeness of R we get the following

LK Completeness Theorem

For any formula A ∈ F

`LK A if and only if |= A

Hauptzatz

Hauptzatz

Here is Gentzen original formulation of the Hauptzatz
Theorems for classical LK and intuitionistic LI proof systems

They are also routinely called the Cut Elimination Theorems

LK Hauptzatz

Every derivation in LK can be transformed into another LK
derivation of the same sequent, in which no cuts occur

LI Hauptzatz

Every derivation in LI can be transformed into another LI
derivation of the same sequent, in which no cuts occur

Mix Rule

Hauptzatz proof is quite long and very involved. We present
its main and most important steps

To facilitate the proof we introduce as Gentzen did, a general
form of the cut rule, called a mix rule

It is defined as follows

(mix)
Γ −→ ∆ ; Σ −→ Θ

Γ,Σ∗ −→ ∆∗,Θ

where Σ∗,∆∗ are obtained from Σ,∆ by removing all
occurrences of a common formula A

The formula A is now called a mix formula

Mix Example

Here are some examples of an applications of the mix rule
Observe t hat the mix rule applies, as the cut does, to only
one mix formula at the time
b is the mix formula in

(mix)
a −→ b , ¬a ; (b ∪ c), b , b ,D, b −→

a, (b ∪ c), D −→ ¬a

B is the mix formula in

(mix)
A −→ B , B , ¬A ; (b ∪ c), B , B ,D, B −→ ¬B

A , (b ∪ c), D −→ ¬A ,¬B

¬A is the mix formula in

(mix)
A −→ B ,¬A , ¬A ; ¬A , B , B ,¬A ,B −→ ¬B

A , B , B −→ B ,¬B

Mix and Cut

Notice, that every derivation with cut may be transformed into
a derivation with mix

We do so by means of a number of weakenings and
interchanges, i.e. multiple application of the weakening
rules exchange rules

Conversely, every mix may be transformed into a cut
derivation by means of a certain number of preceding
exchanges and contractions, though we do not use this fact
in the Hauptzatz proof

Observe that cut is a particular case of mix

Two Hauptzatz Theorems

There are two Hauptzatz theorems: classical LK Hauptzatz
and LI Hauptzatz

The proof of intuitionistic LI Hauptzatz is basically the same
as for LK

We must just be careful and add, at each step, the restriction
made to the ISQ sequents and the form of the LI rules of
inference. These restrictions do not alter the flow and validity
of the LK proof

We discuss and present now the proof of LK Hauptzatz

We leave it as a homework exercise to re-write this proof the
case of for LI

Proof of LK Hauptzatz

Proof of LK Hauptzatz

We conduct the proof in three main steps

Step 1: we consider only derivations in which only mix rule
is used

Step 2: we consider first derivation with a certain Property H
(to be defined) and prove an H Lemma for them

The H Lemma is the most crucial for the proof of the
Hauptzatz

Property H

Property H

We say that a derivation DΓ−→∆ of a sequent Γ −→ ∆ has
a Property H if it satisfies the the following conditions

1. The root Γ −→ ∆ of the derivation DΓ−→∆ is
obtained by direct use of the mix rule

It means that the mix rule is the last rule used in the
derivation of Γ −→ ∆

2. The derivation DΓ−→∆ does not contain any other
application of the mix rule

H Lemma

H Lemma

Any derivation that fulfills the Property H may be transformed
into a derivation of the same sequent in which no mix occurs

Step 3: we use the H Lemma and to prove the Hauptzatz

Proof of Hauptzatz

Step 3: Hauptzatz proof from H Lemma

Let D be any derivation (tree proof)
Let Γ −→ ∆ be any node on D such that its sub-tree
DΓ−→∆ has the Property H

By H Lemma the sub-tree DΓ−→∆ can be replaced by a tree
D∗Γ−→∆ in which no mix occurs
The rest of D remains unchanged

We repeat this procedure for each node N, such that the
sub-tree DN has the Property H until every application of
mix rule has systematically been eliminated

This ends the proof of Hauptzatz provided the H Lemma has
already been proved

Proof of H Lemma

Step 2: proof of H lemma

We consider derivation tree D with the Property H
It means that D is such that the mix rule is the last rule of
inference used and D does not contain any other application
of the mix rule

Observe that D contains only one application of mix rule,
and the mix rule, contains only one mix formula A
Mix rule used may contain many copies of A, but there
always is only one mix formula A. We call A the mix formula
of D

We define two important notions: degree n and rank r of the
derivation D

Degree of D

Definition

Given a derivation tree D with the Property H

Let A ∈ F be the mix formula of D The degree n ≥ 0 of A
is called the degree of the derivation D

We write it as
degD = deg A = n

Degree of D

Definition
Given a derivation tree D with the Property H
We define the rank r of D as a sum of its left rank Lr and
right rank Rr of D, i.e.

r = Lr + Rr

where:

1. left rank Lr of D is the largest number of consecutive
nodes on the branch of D staring with the node containing
the left premiss of the mix rule, such that each sequent on
these nodes contains the mix formula in the succedent;
2. right rank Rr of D is the largest number of consecutive
nodes on the branch of D staring with the node containing
the right premiss of the mix rule, such that each sequent on
these nodes contains the mix formula in the antecedent.

Proof of H Lemma

We prove the H Lemma by carrying out two inductions

One on the degree n, the other on the rank r, of the
derivation D

It means we prove the H Lemma for a derivation of the
degree n, assuming it to hold for derivations of a lower
degree as long as n , 0, i.e. we assume that derivations of
lower degree can be already transformed into derivations
without mix

Proof of H Lemma

The lowest possible rank is evidently 2

We begin by considering the case 1 when the rank is r = 2

We carry induction with respect to the degree n of the
derivation D

After that we examine the case 2 when the rank is r > 2

and we assume that the H Lemma already holds for
derivations of the same degree, but a lower rank

Proof of H Lemma

Case 1. Rank of r =2

We carry induction with respect to the degree n of derivation
D, i.e. with respect to degree n ≥ 0 of the mix formula

We split the induction cases to consider in two groups

GROUP 1. Axioms and Structural Rules

GROUP 2. Logical Rules

We present now some cases of rules of inference as
examples. There are some more cases presented in the
chapter, and the rest are left as exercises

Proof of H Lemma

Observe that first group contains cases that are especially
simple in that they allow the mix to be immediately
eliminated

The second group contains the most important cases since
their consideration brings out the basic idea behind the whole
proof

Here we use the induction hypothesis with respect do the
degree of the derivation. We reduce each one of the cases to
transformed derivations of a lower degree

Proof of H Lemma

GROUP 1. Axioms and Structural Rules

1. The left premiss of the mix rule is an axiom

A −→ A

Then the sub-tree of D containing mix is as follows

A , Σ∗ −→ ∆∧
(mix)

A −→ A Σ −→ ∆

Proof of H Lemma

We transform it, and replace it in the derivation tree D by

A , Σ∗ −→ ∆

(possibly several exchanges and contractions)

Σ −→ ∆

Such obtained tree D∗ proves the same sequent as D and
contains no mix

Proof of H Lemma

2 . The right premiss of the mix rule is an axiom A −→ A
Then the sub-tree of D containing mix is as follows

Σ −→ ∆∗, A∧
(mix)

Σ −→ ∆ A −→ A

We transform it, and replace it in D by

Σ −→ ∆∗, A

(possibly several exchanges and contractions)

Σ −→ ∆

Such obtained D∗ proves the same sequent and contains no
mix

Proof of H Lemma

Suppose that neither of premisses of mix is an axiom

As the rank is r=2 , the right and left ranks are requal 1

This means that in the sequents on the nodes directly below
left premiss of the mix, the mix formula A does not occur in
the succedent; in the sequents on the nodes directly below
right premiss of the mix, the mix formula A does not occur
in the antecedent

In general, if a formula occurs in the antecedent (succedent)
of a conclusion of a rule of inference, it is either obtained by a
logical rule or by a contraction rule

Proof of H Lemma

3. The left premiss of the mix rule is the conclusion of a
contraction rule. The sub-tree of D containing mix is:

Γ, Σ∗ −→ ∆, Θ∧
(mix)

Γ −→ ∆, A

| (→ contr)

Γ −→ ∆

Σ −→ Θ

Proof of H Lemma

We transform it, and replace it in D by

Γ, Σ∗ −→ ∆, Θ

(possibly several weakenings and exchanges)

Γ −→ ∆

Such obtained D∗ contains no mix

Observe that the whole branch of D that starts with the node
Σ −→ Θ disappears

4. The right premiss of the mix rule is the conclusion of a
contraction rule (→ contr). It is a dual case to 3. s left as
an exercise

Proof of H Lemma

GROUP 2. Logical Rules

1. The mix formula is (A ∩ B) The left premiss of the mix
rule is the conclusion of a rule (→ ∩). The right premiss of
the mix rule is the conclusion of a rule (∩ →)1

The sub-tree T of D containing mix is:

Γ, Σ −→ ∆, Θ∧
(mix)

Γ −→ ∆, (A ∩ B)∧
(→ ∩)

Γ −→ ∆,A Γ −→ ∆,B

(A ∩ B), Σ −→ Θ

| (∩ →)1

A ,Σ −→ Θ

Proof of H Lemma

We transform T into T∗ as follows.

Γ, Σ −→ ∆, Θ

(possibly several weakenings and exchanges)

Γ, Σ∗ −→ ∆∗, Θ∧
(mix)

Γ −→ ∆,A A ,Σ −→ Θ

We replace T by T∗ in D and obtain D∗

Proof of H Lemma

Now we can apply induction hypothesis with respect to the
degree of the mix formula

The mix formula A in D∗ has a lower degree then the mix
formula (A ∩ B)

By the inductive assumption the derivation D∗, and hence the
derivation D may be transformed into one without mix

2. The case when the left premiss of themix rule is the
conclusion of a rule (→ ∩) and right premiss of the mix rule
is the conclusion of a rule (∩ →)2 is dual to 1. and is left as
exercise

Proof of H Lemma

3. The main connective of the mix formula is ∪, i.e. the mix
formula is (A ∪ B)

This case is to be dealt with symmetrically to the ∩ cases
and is presented in the book chapter 6

4. The main connective of the mix formula is ¬, i.e. the mix
formula is ¬A

This case is also presented in the book chapter 6

We consider now a slightly more complicated case of the
implication, i.e. the case of the mix formula (A ⇒ B)

Proof of H Lemma

5. The main connective of the mix formula is ⇒, i.e. the
mix formula is (A ⇒ B)

Here is the sub-tree T of D containing the application of the
mix rule

Γ, Σ −→ ∆, Θ∧
(mix)

Γ −→ ∆, (A ⇒ B)

| (→⇒)

A , Γ −→ ∆, B

(A ⇒ B), Σ −→ Θ∧
((⇒→)

Σ −→ Θ, A B , Σ −→ Θ,

Proof of H Lemma

We transform Tinto T∗ as follows.

Γ, Σ −→ ∆, Θ

(possibly several weakenings and exchanges)

Σ, Γ∗,Σ∗∗ −→ Θ∗,∆∗,Θ∧
(mix)

Σ −→ Θ, A A , Γ, Σ∗,−→ ∆∗, Θ∧
(mix)

A , Γ −→ ∆, B B , Σ −→ Θ,

Proof of H Lemma

The asteriks are, of course, intended as follows

Σ∗, ∆∗ results from Σ,∆ by the omission of all formulas
B

Γ∗, Σ∗∗, Θ∗ results from Γ, Σ∗, Θ by the omission of all
formulas A

Proof of H Lemma

We replace the sub-tree T by T∗ in D and obtain D∗

Now we have two mixes, but both mix formulas A and B are
of a lower degree then n

We first apply the inductive assumption to the lower mix
(formula B) and the lower mix is eliminated

We then apply by the inductive assumption and eliminate the
upper mix (formula A)

This ends the proof of the case of the rank r=2

Proof of H Lemma

Case r > 2

In the case r = 2, we reduced the derivation to one of lower
degree. Now we proceed to reduce the derivation to one of
the same degree, but of a lower rank

This allows us to to be able to carry the induction with
respect to the rank r of the derivation

We use the inductive assuption in all cases except, as before,
a case of an axiom or structural rules

In these cases the mix can be eliminated immediately, as it
was eliminated in the previous case of rank r = 2

Proof of H Lemma

In a case of logical rules we obtain the reduction of the mix
to derivations with mix of a lower ranks which consequently
can be eliminated by the inductive assumption

We carry proofs for two logical rules (→ ∩) and (∪ →)

The proof for all other rules is similar and is left as exercise

We consider only the case of left rank Lr= 1 and right rank
Rr > 1

The symmetrical case of left rank Lr > 1 and right rank Rr = 1
is left as an exercise

Proof of H Lemma

Case: Lr = 1 and Rr = r > 1

The right premiss of the mix is a conclusion of the inference
rule (→ ∩) , i.e. it is of a form

Γ −→ ∆, (A ∩ B)

where Γ contains a mix formula M

The left premiss of the mix is a sequent

Θ −→ Σ

and Σ contains the mix formula M

Proof of H Lemma

The sub-tree T of D containing the application of the mix
rule is

Θ, Γ∗ −→ Σ∗,∆, (A ∩ B)∧
(mix)

Θ −→ Σ Γ −→ ∆, (A ∩ B)∧
(→ ∩)

Γ −→ ∆,A Γ −→ ∆,B

Proof of H Lemma

We transform T into T∗ as follows

Θ, Γ∗ −→ Σ∗,∆, (A ∩ B)∧
(→ ∩)

Θ, Γ∗ −→ Σ∗,∆,A Θ, Γ∗ −→ Σ∗,∆,B

We perform mix on the left branch

Θ, Γ∗ −→ Σ∗,∆,A∧
(mix)

Θ −→ Σ Γ −→ ∆,A

Proof of H Lemma

We perform mix on the right branch

Θ, Γ∗ −→ Σ∗,∆,B∧
(mix)

Θ −→ Σ Γ −→ ∆,B

We replace T by T∗ in D and obtain D∗

Now we have two mixes, but both have the right rank Rr = r-1
and both of them can be eliminated by the inductive
assumption

Proof of H Lemma

Case: Lr = 1 and Rr = r > 1

The right premiss of the mix is a conclusion of the rule
(∪ →), i.e. it is of a form

(A ∪ B), Γ −→ ∆

and Γ contains a mix formula M

The left premiss of the mix is a sequent

Θ −→ Σ

and Σ contains the mix formula M

Proof of H Lemma

The sub-tree T of D containing the application of the mix
rule is

Θ, (A ∪ B)∗, Γ∗ −→ Σ∗,∆∧
(mix)

Θ −→ Σ (A ∪ B), Γ −→ ∆∧
(∪ →)

A , Γ −→ ∆ B , Γ −→ ∆

Proof of H Lemma

(A ∪ B)∗ stands either for (A ∪B) or for nothing according
as (A ∪ B) is unequal or equal to the mix formula M

The mix formula M certainly occurs in Γ

For otherwise M would been equal to (A ∪ B) and the right
rank Rr would be equal to 1 contrary to the assumption that
Rr > 1

Proof of H Lemma

We transform T into T∗ as follows

Θ, (A ∪ B), Γ∗ −→ Σ∗,∆∧
(∪ →)

A ,Θ, Γ∗ −→ Σ∗,∆ B ,Θ, Γ∗ −→ Σ∗,∆

We perform mix on the left branch

A ,Θ, Γ∗ −→ Σ∗,∆

(some weakenings, exchanges)

Θ,A ∗, Γ∗ −→ Σ∗,∆∧
(mix)

Θ −→ Σ A , Γ −→ ∆

Proof of H Lemma

We perform mix on the right branch

B ,Θ, Γ∗ −→ Σ∗,∆

(some weakenings, exchanges)

Θ,B∗, Γ∗ −→ Σ∗,∆∧
(mix)

Θ −→ Σ B , Γ −→ ∆

Proof of H Lemma

Now we have two mixes

But both have the right rank Rr = r-1 and hence both of them
can be eliminated by the inductive assumption

We replace T by T∗ in D and obtain D∗

This ends the proof of the Hauptzatz Lemma

We have hence completed the proof of the Hauptzatz
Theorem

LK and LI Hauptzatz Theorems

LK and LI Hauptzatz Theorems

Let’s denote by LK - c and LI - c the systems LK, LI
without the cut rule, i.e. we put

LK − c = LK − {(cut)}

LI − c = LI − {(cut)}

We re-write the Hauptzatz Theorems as follows.

LK and LI Hauptzatz Theorem

LK Hauptzatz

For every LK sequent Γ −→ ∆,

`LK Γ −→ ∆ if and only if `LK−c Γ −→ ∆

LI Hauptzatz

For every LI sequent Γ −→ ∆,

`LI Γ −→ ∆ if and only if `LI−c Γ −→ ∆

This is why the cut-free Gentzen systems LK-c and LI -c are
just called LK, LI, respectively

LK-c Completeness

Directly from the LK Completeness Theorem and the LK
Hauptzatz Theorem we get that the following.

LK-c Completeness Theorem

For any sequent Γ −→ ∆,

`LK−c Γ −→ ∆ if and only if |= Γ −→ ∆

LK and GK Systems Equivalency

GK System

Let G be the Gentzen sequents proof system defined
previously
We replace the logical axiom of G

Γ′1, a, Γ′2 −→ ∆′1, a, ∆′2

where a ∈ VAR is any propositional variable and

Γ′1, Γ
′
2, ∆′1, ∆′2 ∈ VAR∗

are any indecomposable sequences, by a new logical
axiom

Γ1, A , Γ2 −→ ∆1, A , ∆2

for any A ∈ F and any sequences

Γ1, Γ2,∆1,∆2 ∈ SQ

GK System

We call a resulting proof system GK, i.e. we defined it as
follows

GK = (L{∪,∩,⇒,¬}, SQ , LA , R)

where LA is the new axiom defined above and R is the set
of rules of the system G

Observe that the only difference between the systemsGK
and G is the form of their logical axioms, both being
tautologies

We get the proof of completeness of GK in the same way
as we proved it for G, i.e. we have the following

GK Completeness

GK Completeness Theorem

For any formula A ∈ F ,

`GK A if and only if |= A

For any sequent Γ −→ ∆ ∈ SQ

`GK Γ −→ ∆ if and only if |= Γ −→ ∆

LK and GK Systems Equivalency

By the GK, LK-c Completeness Theorems we get the
equivalency of GK and the cut free LK-c proof systems

LK, GK Equivalency Theorem

The proof systems GK and the cut free LK are equivalent,
i.e for any sequent Γ −→ ∆,

`LK Γ −→ ∆ if and only if `GK Γ −→ ∆

