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PART 1: Hilbert Proof Systems: Proof System H1



Hilbert Proof Systems

Hilbert proof systems are based on a language with

implication and contain Modus Ponens as a rule of inference

Modus Ponens is probably the oldest of all known rules of

inference as it was already known to the Stoics (3 B.C.)

It is also considered as the most natural to our intuitive

thinking and the proof systems containing i Modus Ponens as

the inference rule play a special role in logic.

Hilbert systems put major emphasis on logical axioms,

keeping the rules of inference to minimum often

admitting Modus Ponens as the sole rule of inference



Hilbert Proof Systems

There are many proof systems that describe classical

propositional logic, i.e. that are complete with respect to

the classical semantics

We present a Hilbert proof system for the classical

propositional logic and discuss two ways of proving the

Completeness Theorem for it

The first proof is based on the one included in Elliott

Mendelson’s book Introduction to Mathematical Logic

It is is a constructive proof that shows how one can use

the assumption that a formula A is a tautology

in order to construct its formal proof



Hilbert Proof Systems

The second proof is non-constructive

Its importance lies in a fact that the methods it uses can be

applied to the proof of completeness theorem for classical
predicate logic as we present it in (chapter 9)

It also generalizes to some non-classical logics



Hilbert Proof Systems

We prove completeness part of the Completeness Theorem

by proving the converse implication to it

We show how one can deduce that a formula A is not

a tautology from the fact that it does not have a proof

It is hence called a counter-model construction proof

Both proofs relay on the Deduction Theorem and so this is
the theorem we are now going to prove



Hilbert Proof System H1

We consider now a Hilbert proof system H1 based on a

language with implication as the only connective

The proof system H1 has only two logical axioms

and has the Modus Ponens as a sole rule of inference



Hilbert Proof System H1

Definition

Hilbert system H1 is defined as follows

H1 = ( L{⇒}, F , {A1,A2}, MP )

A1 (Law of simplification)

(A ⇒ (B ⇒ A))

A2 (Frege’s Law)

((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

MP is the Modus Ponens rule

MP
A ; (A ⇒ B)

B

where A, B, C are any formulas from F



Formal Proofs in H1

The formal proof of
(A ⇒ A)

in H1 is a sequence

B1, B2, B3, B4,B5

as defined below
B1 ((A ⇒ ((A ⇒ A)⇒ A))⇒ ((A ⇒ (A ⇒ A))⇒ (A ⇒ A)))
axiom A2 for A = A , B = (A ⇒ A), and C = A

B2 (A ⇒ ((A ⇒ A)⇒ A))
axiom A1 for A = A , B = (A ⇒ A)

B3 A ⇒ (A ⇒ A))⇒ (A ⇒ A)))
MP application to B1 and B2

B4 (A ⇒ (A ⇒ A)),
axiom A1 for A = A , B = A

B5 (A ⇒ A)
MP application to B3 and B4



Formal Proofs in H1

We have hence proved the following

Fact

For any A ∈ F , `H1(A ⇒ A)

It is easy to see that the proof of (A ⇒ A) wasn’t

constructed automatically

The main step in its construction was the choice of a proper

form (substitution) of logical axioms to start with, and to

continue the proof with

This choice is far from obvious for un-experienced human

and impossible for a machine, as the number of

possible substitutions is infinite



Formal Proofs in H1

In Chapter 4 we gave some examples of simple

proof systems with inference rules such that it was
possible to

”reverse” the usual way they were used

We could use them in a reverse manner in order to search
for proofs.

Moreover and we were able to do so in an effective

and fully automatic way

We called such proof systems syntactically decidable and
we defined them formally as follows



Syntactically Decidable Proof Systems

Definition

A proof system S = (L,E, LA ,R) for which there is an

effective mechanical procedure that finds (generates) a

formal proof of any expression E ∈ E, if it exists,

is called a syntactically semi- decidable system

If additionally there is an effective method of deciding that

if a proof of E is not found that it does not exist,

the system S is called syntactically decidable

Otherwise S is syntactically undecidable



Searching for Proofs in a Proof Systems

We will argue now, that the presence of Modus Ponens
inference rule in Hilbert systems makes them syntactically
undecidable

A general procedure for automated search for proofs in a
proof system S can be stated is as follows.

Let B be an expression of the system S that is not an axiom

If B has a proof in S, B must be the conclusion of one of
the inference rules

Let’s say it is a rule r

We find all its premisses, i.e. we evaluate r−1(B)

If all premisses are axioms, the proof is found

Otherwise we repeat the procedure for any non-axiom
premiss



Search for Proof by the Means of MP

Search for proofs in any Hilbert System S must involve,
between other rules, if any, the Modus Ponens inference rule

Lets analyze a search for proofs by the means of Modus
Ponens rule MP

The MP rule says: given two formulas A and (A ⇒ B) we
conclude a formula B

Assume now that we have a certain formula, we name it for
convenience B

We want to find a proof of B

If B is an axiom, we have the proof; the formula itself



Search for Proof by the Means of MP

If B is not an axiom, it was obtained by the application of the
Modus Ponens rule, to certain two formulas A and (A ⇒ B)

But there is infinitely many of formulas A , (A ⇒ B), as A is
any formula. It means that in for any B, MP−1(B) is
countably infinite

Obviously, we have the following

Fact

Every Hilbert System S is not syntactically decidable

In particular, the system H1 is not syntactically decidable



Semantic Links

Semantic Link 1

System H1 is sound under classical, Ł, H semantics and

not sound under K semantics

We leave the proof of the following theorem (by induction with

respect of the length of the formal proof) as an easy exercise

Soundness Theorem for H1

For any A ∈ F , if `H1 A , then |= A



Semantic Links

Semantic Link 2

The system H1 is not complete under classical semantics

It means that we have to show that not all classical

tautologies have a proof in H1

We have proved in Chapter 3 that one needs ¬ and one of the

other connectives ∪,∩,⇒ to express all classical connectives,

and hence all classical tautologies

For example we can’t express negation in term of

implication alone and so a tautology (¬¬A ⇒ A)

is not definable in the language of H1 , hence

0H1 (¬¬A ⇒ A)



Proof from Hypothesis

We have constructed a formal proof of

(A ⇒ A)

in H1 on a base of logical axioms, as an example of
complexity of finding proofs in Hilbert systems

In order to make the construction of formal proofs easier by
the use of previously proved formulas we use the notion of
a formal proof from some hypotheses (and logical axioms) in
any proof system

S = (L, E, LA ,R)

as defined as follows in chapter 4



Proof from Hypothesis

Given a proof system S = (L,E, LA ,R)

While proving expressions we often use some extra
information available, besides the axioms of the proof system

This extra information is called hypothesis in the proof

Let Γ ⊆ E be a set expressions called hypothesis

Definition

A proof of E ∈ E from the set of hypothesis Γ in S is a
formal proof in S, where the expressions from Γ are
treated as additional hypothesis added to the set LA of the
logical axioms of the system S

Notation: Γ `S E

We read it : E has a proof in S from the set Γ (and the
logical axioms LA)



Formal Definition

Definition

We say that E ∈ E has a formal proof in S

from the set Γ and the logical axioms LA and denote it as
Γ `S E

if and only if there is a sequence

A1, ... , An

of expressions from E, such that

A1 ∈ LA ∪ Γ, An = E

and for each 1 < i ≤ n, either Ai ∈ LA ∪ Γ or Ai is

a direct consequence of some of the preceding

expressions by virtue of one of the rules of inference of S



Special Cases

Case 1: Γ ⊆ E is a finite set and Γ = {B1,B2, ...,Bn}

We write
B1,B2, ...,Bn `S E

instead of {B1,B2, ...,Bn} `S E

Case 2: Γ = ∅

By the definition of a proof of E from Γ, ∅ `S E means
that in the proof of E we use only the logical axioms LA of S

We hence write
`S E

to denote that E has a proof from Γ = ∅



Proof from Hypothesis in H1

Show that

(A ⇒ B), (B ⇒ C) `H1 (A ⇒ C)

We construct a formal proof

B1,B2, .....B7

B1 : (B ⇒ C), B2 : (A ⇒ B),
hypothesis hypothesis

B3 : ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C))),
axiom A2



Proof from Hypothesis in H1

B4 : ((B ⇒ C)⇒ (A ⇒ (B ⇒ C))),
axiom A1 for A = (B ⇒ C), B = A

B5 : (A ⇒ (B ⇒ C)),
B1 and B4 and MP

B6 : ((A ⇒ B)⇒ (A ⇒ C)), B7 : (A ⇒ C)
MP



Deduction Theorem

In mathematical arguments, one often proves a statement B
on the assumption of some other statement A and then
concludes that we have proved the implication ”if A, then B”

This reasoning is justified a theorem, called a Deduction
Theorem

Reminder

We write Γ,A ` B for Γ ∪ {A } ` B

In general, we write Γ,A1,A2, ...,An ` B

for Γ ∪ {A1,A2, ...,An} ` B



Deduction Theorem for H1

Deduction Theorem for H1

For any A ,B ∈ F and Γ ⊆ F

Γ, A `H1 B if and only if Γ `H1 (A ⇒ B)

In particular

A `H1B if and only if `H1 (A ⇒ B)



H1 Formal Proofs

The proof of the following Lemma provides a good example

of multiple applications of the Deduction Theorem

Lemma

For any A ,B ,C ∈ F ,

(a) (A ⇒ B), (B ⇒ C) `H1 (A ⇒ C),

(b) (A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))

Observe that by Deduction Theorem we can re-write (a) as

(a’) (A ⇒ B), (B ⇒ C),A `H1 C



H1 Formal Proofs

Poof of (a’)
We construct a formal proof

B1,B2,B3,B4,B5

of (A ⇒ B), (B ⇒ C),A `H1 C as follows.
B1 : (A ⇒ B)
hypothesis
B2 : (B ⇒ C)
hypothesis
B3 : A
hypothesis
B4 : B
B1,B3 and MP
B5 : C
B2,B4 and MP



H1 Formal Proofs

Thus we proved by Deduction Theorem that (a) holds, i.e.

(A ⇒ B), (B ⇒ C) `H1 (A ⇒ C)

Proof of Lemma part (b)

By Deduction Theorem we have that

(A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))

if and only if

(A ⇒ (B ⇒ C)),B `H1 (A ⇒ C)



Formal Proofs

We construct a formal proof

B1,B2,B3,B4,B5,B6,B7

of (A ⇒ (B ⇒ C)),B `H1 (A ⇒ C) as follows.

B1 : (A ⇒ (B ⇒ C))
hypothesis

B2 : B
hypothesis

B3 : ((B ⇒ (A ⇒ B))
A1 for A = B ,B = A

B4 : (A ⇒ B)
B2,B3 and MP



H1 Formal Proofs

B5 : ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))
axiom A2

B6 : ((A ⇒ B)⇒ (A ⇒ C))
B1,B5 and MP

B7 : (A ⇒ C)

Thus we proved by Deduction Theorem that

(A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))



Simpler Proof

Here i a simpler proof of Lemma part (b)

We apply the Deduction Theorem twice, i.e. we get

(A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))

if and only if

(A ⇒ (B ⇒ C)),B `H1 (A ⇒ C)

if and only if

(A ⇒ (B ⇒ C)),B ,A `H1 C



Simpler Proof

We now construct a proof of (A ⇒ (B ⇒ C)),B ,A `H1 C

as follows

B1 (A ⇒ (B ⇒ C))
hypothesis

B2 B
hypothesis

B3 A
hypothesis

B4 (B ⇒ C)
B1 , B3 and MP

B5 C
B2 , B4 and MP
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The Deduction Theorem for H1

As we now fix the proof system to be H1, we write A ` B
instead of A`H1 B

Deduction Theorem (Herbrand, 1930) for H1

For any formulas A ,B ∈ F ,

If A ` B , then ` (A ⇒ B)

Deduction Theorem (General case) for H1

For any formulas A ,B ∈ F , Γ ⊆ F

Γ, A ` B if and only if Γ ` (A ⇒ B)



Proof of The Deduction Theorem

Proof:
Part 1 We first prove the ”if” part:

If Γ, A ` B then Γ ` (A ⇒ B)

Assume that
Γ, A `B

i.e. that we have a formal proof

B1,B2, ...,Bn

of B from the set of formulas Γ ∪ {A }
We have to show that

Γ ` (A ⇒ B)



Proof of The Deduction Theorem

In order to prove that

Γ ` (A ⇒ B) follows from Γ, A ` B

we prove a stronger statement, namely that

Γ ` (A ⇒ Bi)

for any Bi , 1 ≤ i ≤ n in the formal proof B1,B2, ...,Bn of B
also follows from Γ, A ` B

Hence in particular case, when i = n we will obtain that
Γ ` (A ⇒ B) follows from Γ, A ` B

and that will end the proof of Part 1



Base Step

The proof of Part 1 is conducted by mathematical
induction on i, for 1 ≤ i ≤ n

Step 1 i = 1 (base step)

Observe that when i = 1, it means that the formal proof
B1,B2, ...,Bn contains only one element B1

By the definition of the formal proof from Γ ∪ {A }, we have
that

(1) B1 is a logical axiom, or B1 ∈ Γ , or

(2) B1 = A

This means that B1 ∈ {A1,A2} ∪ Γ ∪ {A }



Base Step

Now we have two cases to consider.

Case1: B1 ∈ {A1,A2} ∪ Γ

Observe that (B1 ⇒ (A ⇒ B1)) is the axiom A1

By assumption B1 ∈ {A1,A2} ∪ Γ

We get the required proof of (A ⇒ B1) from Γ

by the following application of the Modus Ponens rule

(MP)
B1 ; (B1 ⇒ (A ⇒ B1))

(A ⇒ B1)



Base Step

Case 2: B1 = A
When B1 = A then to prove Γ ` (A ⇒ B1)

This means we have to prove

Γ ` (A ⇒ A)

This holds by monotonicity of the consequence and the fact
that we have shown that

`(A ⇒ A)

The above cases conclude the proof for i = 1 of

Γ ` (A ⇒ Bi)



Inductive Step

Inductive Step

Assume that
Γ `(A ⇒ Bk )

for all k < i (strong induction)

We will show that using this fact we can conclude that also

Γ `(A ⇒ Bi)



Inductive Step

Consider a formula Bi in the formal proof

B1,B2, ...,Bn

By definition of the formal proof we have to show the

following tow cases

Case 1 : Bi ∈ {A1,A2} ∪ Γ ∪ {A } and

Case 2: Bi follows by MP from certain Bj ,Bm such that
j < m < i

Consider now the Case 1: Bi ∈ {A1,A2} ∪ Γ ∪ {A }

The proof of (A ⇒ Bi)

from Γ in this case is obtained from the proof of the Step
i = 1 by replacement B1 by Bi

and is omitted here as a straightforward repetition



Inductive Step

Case 2:

Bi is a conclusion of (MP)

If Bi is a conclusion of (MP), then we must have two
formulas Bj ,Bm in the formal proof

B1,B2, ...,Bn

such that j < i, m < i, j , m and

(MP)
Bj ; Bm

Bi



Inductive Step

By the inductive assumption the formulas Bj , Bm are
such that Γ ` (A ⇒ Bj) and Γ ` (A ⇒ Bm)

Moreover, by the definition of (MP) rule, the formula Bm has
to have a form (Bj ⇒ Bi)

This means that
Bm = (Bj ⇒ Bi)

The inductive assumption can be re-written as follows

Γ ` (A ⇒ (Bj ⇒ Bi))

for j < i



Inductive Step

Observe now that the formula

((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

is a substitution of the axiom A2 and hence has a proof

in our system

By the monotonicity of the consequence, it also has a proof

from the set Γ, i.e.

Γ ` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))



Inductive Step

We know that

Γ ` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

Applying the rule MP i.e. performing the following

(A ⇒ (Bj ⇒ Bi)) ; ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

((A ⇒ Bj)⇒ (A ⇒ Bi))

we get that also

Γ `((A ⇒ Bj)⇒ (A ⇒ Bi))



Inductive Step

Applying again the rule MP i.e. performing the following

(A ⇒ Bj) ; ((A ⇒ Bj)⇒ (A ⇒ Bi))

(A ⇒ Bi)
)

we get that
Γ `(A ⇒ Bi)

what ends the proof of the inductive step



Proof of the Deduction Theorem

By the mathematical induction principle, we have proved that

Γ `(A ⇒ Bi), for all 1 ≤ i ≤ n

In particular it is true for i = n, i.e. for Bn = B and we
proved that

Γ `(A ⇒ B)

This ends the proof of the first part of the Deduction
Theorem:

If Γ,A `B , then Γ ` (A ⇒ B)



Proof of the Deduction Theorem

The proof of the second part, i.e. of the i
¯
nverse implication:

If Γ ` (A ⇒ B), then Γ, A ` B

is straightforward and goes as follows.

Assume that Γ ` (A ⇒ B)

By the monotonicity of the consequence we have also that
Γ,A ` (A ⇒ B)

Obviously Γ,A ` A

Applying Modus Ponens to the above, we get the proof of
B from {Γ,A }

We have hence proved that Γ,A ` B

This ends the proof



Proof of the Deduction Theorem

Deduction Theorem (General case ) for H1

For any formulas A ,B ∈ F and any Γ ⊆ F

Γ, A ` B if and only if Γ ` (A ⇒ B)

The particular case we get also the particular case

Deduction Theorem (Herbrand, 1930) for H1

For any formulas A ,B ∈ F ,

If A ` B , then ` (A ⇒ B)

is obtained from the above by assuming that the set Γ is
empty
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Proof System H2

The proof system H1 is sound and strong enough to prove
the Deduction Theorem, but, as we proved, is not complete

We extend now the language and the set of logical axioms of
H1 to form a new Hilbert system H2 that is complete with
respect to classical semantics

The proof of Completeness Theorem for H2 is be
presented in the next section (Slides Set 3)



Hilbert System H2 Definition

Definition

H2 = ( L{⇒,¬}, F , {A1,A2,A3} (MP) )

A1 (Law of simplification)
(A ⇒ (B ⇒ A))

A2 (Frege’s Law)
((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

MP (Rule of inference)

(MP)
A ; (A ⇒ B)

B

where A ,B ,C are any formulas of the propositional
language L{⇒,¬}



Deduction Theorem for System H2

Observation 1

The proof system H2 is obtained by adding axiom A3 to the
system H1

Observation 2

The language of H2 is obtained by adding the connective ¬
to the language of H1

Observation 3

The use of axioms A1,A2 in the proof of Deduction
Theorem for the system H1 is independent of the connective
¬ added to the language of H1

Observation 4

Hence the proof of the Deduction Theorem for the system H1

can be repeated as it is for the system H2



Deduction Theorem for System H2

Observations 1-4 prove that he Deduction Theorem holds for
system H2

Deduction Theorem for H2

For any Γ ⊆ F and A ,B ∈ F

Γ, A `H2 B if and only if Γ `H2 (A ⇒ B)

In particular

A `H2B if and only if `H2 (A ⇒ B)



Soundness and CompletenessTheorems

We get by easy verification that H2 is a sound under classical
semantics and hence we have the following

Soundness Theorem H2

For every formula A ∈ F

if `H2 A then |= A

We prove in the next section (Slides Set 3), that H2 is also
complete under classical semantics, i.e. we prove

Completeness Theorem for H2

For every formula A ∈ F ,

`H2 A if and only if |= A



CompletenessTheorems

The proof of completeness theorem (for a given semantics) is
always a main point in creation of any new logic

There are many techniques to prove it, depending on the
proof system, and on the semantics we define for it

We present in the next next section (Slides Set 2) two proofs
of the Completeness Theorem for the system H2

These proofs use very different techniques, hence the reason
of presenting both of them



Proof System H2: Exercises and Examples



Examples and Exercises

We present now some examples of formal proofs in H2

There are two reasons for presenting them

First reason] is that all formulas we provide the formal
proofs for play a crucial role in the proof of Completeness
Theorem for H2

The second reason is that they provide a ”training ground”
for a reader to learn how to develop formal proofs

For this reason we write some formal proofs in a full detail
and we leave some for the reader to complete in a way
explained in the following example



Important Lemma

We write ` instead of `H2 for the sake of simplicity

Reminder

In the construction of the formal proofs we often use the
Deduction Theorem and the following Lemma 1 that was
proved in the previous section

Lemma 1

(a) (A ⇒ B), (B ⇒ C) `H2 (A ⇒ C)

(b) (A ⇒ (B ⇒ C)) `H2 ((B ⇒ (A ⇒ C))



Example 1

Example 1

Here are consecutive steps

B1, ...,B5, B6

of the proof in H2 of (¬¬B ⇒ B)

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B3 : (¬B ⇒ ¬B)

B4 : ((¬B ⇒ ¬¬B)⇒ B)

B5 : (¬¬B ⇒ (¬B ⇒ ¬¬B))

B6 : (¬¬B ⇒ B)



Exercise 1

Exercise 1

Complete the proof presented in Example 1 by providing
comments how each step of the proof was obtained

Remark

The solution presented on the next slide shows how to write
details of solutions

Solutions of other problems presented later are less
detailed



Exercise 1 Solution

Solution

The comments that complete the proof are as follows.

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

Axiom A3 for A = ¬B , B = B

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B1 and Lemma 1 (b) for
A = (¬B ⇒ ¬¬B), B = (¬B ⇒ ¬B), C = B,

i.e. we have

((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B)) ` ((¬B ⇒ ¬B)⇒
((¬B ⇒ ¬¬B)⇒ B))



Exercise 1 Solution

B3 : (¬B ⇒ ¬B)

We proved for H1 and hence for H2 that ` (A ⇒ A) and we
substitute A = ¬B

B4 : ((¬B ⇒ ¬¬B)⇒ B)

B2, B3 and MP

B5 : (¬¬B ⇒ (¬B ⇒ ¬¬B))

Axiom A1 for A = ¬¬B , B = ¬B

B6 : (¬¬B ⇒ B)

B4, B5 and Lemma 1 (a) for
A = ¬¬B , B = (¬B ⇒ ¬¬B),C = B

i.e. we have

(¬¬B ⇒ (¬B ⇒ ¬¬B)), ((¬B ⇒ ¬¬B)⇒ B) ` (¬¬B ⇒ B)



Proofs from Axioms Only

General remark

Observe that in steps

B2,B3,B5,B6

of the proof we called on previously proved facts and used
them as a part of the proof

We can always obtain a formal proof that uses only axioms
of the system by inserting previously constructed formal
proofs of these facts into the places occupying by the
respective steps B2,B3,B5,B6 where these facts were used



Proofs from Axioms

Example

Consider the step

B3 : (¬B ⇒ ¬B)

The formula (¬B ⇒ ¬B) is a previously proved fact

We replace the formula (¬B ⇒ ¬B) (in step step B3 by its
formal proof that uses uses only axioms

We obtain this proof from the the previously constructed proof
of (A ⇒ A) by replacing A by ¬B

The last step of the inserted proof becomes now ”old” step
B3 and we re-numerate all other steps accordingly



Proofs from Axioms Only

Here are consecutive first THREE steps of the proof of
(¬¬B ⇒ B)

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B3 : (¬B ⇒ ¬B)

We insert now the proof of (¬B ⇒ ¬B) after step B2 and
erase the B3

The last step of the inserted proof becomes the erased B3



Proofs from Axioms Only

A part of new transformed proof is

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B)) (Old B1 )

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B)) (Old B2 )

We insert here the proof from axioms only of Old B3

B3 : ((¬B ⇒ ((¬B ⇒ ¬B)⇒ ¬B))⇒ ((¬B ⇒ (¬B ⇒
¬B))⇒ (¬B ⇒ ¬B))), ( New B3 )

B4 : (¬B ⇒ ((¬B ⇒ ¬B)⇒ ¬B))

B5: ((¬B ⇒ (¬B ⇒ ¬B))⇒ (¬B ⇒ ¬B)))

B6: (¬B ⇒ (¬B ⇒ ¬B))

B7: (¬B ⇒ ¬B) ( Old B3 )



Proofs from Axioms Only

We repeat our procedure by replacing the step B2 by its
formal proof as defined in the proof of the Lemma 1 (b)

We continue the process for all other steps which involved
application of the Lemma 1 until we get a full formal proof
from the axioms of H2 only

Usually we don’t do it and we don’t need to do it, but it is
important to remember that it always can be done



Example 2

Example 2

Here are consecutive steps

B1, B2, ....., B5

in a proof of (B ⇒ ¬¬B)

B1 ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))

B2 (¬¬¬B ⇒ ¬B)

B3 ((¬¬¬B ⇒ B)⇒ ¬¬B)

B4 (B ⇒ (¬¬¬B ⇒ B))

B5 (B ⇒ ¬¬B)



Exercise 2

Exercise 2

Complete the proof presented in Example 2 by providing
detailed comments how each step of the proof was obtained.

Solution

The comments that complete the proof are as follows.

B1 ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))

Axiom A3 for A = B , B = ¬¬B

B2 (¬¬¬B ⇒ ¬B)

Example 1 for B = ¬B



Exercise 2

B3 ((¬¬¬B ⇒ B)⇒ ¬¬B)

B1,B2 and MP

i.e. we have that
(¬¬¬B⇒¬B);((¬¬¬B⇒¬B)⇒((¬¬¬B⇒B)⇒¬¬B))

((¬¬¬B⇒B)⇒¬¬B)

B4 (B ⇒ (¬¬¬B ⇒ B))

Axiom A1 for A = B , B = ¬¬¬B

B5 (B ⇒ ¬¬B)

B3,B4 and Lemma 1 (a) for
A = B , B = (¬¬¬B ⇒ B),C = ¬¬B,

i.e. we have that

(B ⇒ (¬¬¬B ⇒ B)), ((¬¬¬B ⇒ B)⇒ ¬¬B) ` (B ⇒ ¬¬B)



Example 3

Example 3

Here are consecutive steps

B1, B2, ..., B12 in a proof of (¬A ⇒ (A ⇒ B))

B1 ¬A

B2 A

B3 (A ⇒ (¬B ⇒ A))

B4 (¬A ⇒ (¬B ⇒ ¬A))

B5 (¬B ⇒ A)

B6 (¬B ⇒ ¬A)

B7 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))



Example 3

B8 ((¬B ⇒ A)⇒ B)

B9 B

B10 ¬A ,A ` B

B11 ¬A ` (A ⇒ B)

B12 (¬A ⇒ (A ⇒ B))

Exercise 3

1. Complete the proof from the Example 3 by providing
comments how each step of the proof was obtained.

2. Prove that
¬A , A ` B



Exercise 4

Example 4

Here are consecutive steps B1, ...,B7

in a proof of ((¬B ⇒ ¬A)⇒ (A ⇒ B))

B1 (¬B ⇒ ¬A)

B2 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

B3 (A ⇒ (¬B ⇒ A))

B4 ((¬B ⇒ A)⇒ B)

B5 (A ⇒ B)

B6 (¬B ⇒ ¬A) ` (A ⇒ B)

B7 ((¬B ⇒ ¬A)⇒ (A ⇒ B))

Exercise 4

Complete the proof from Example 4 by providing comments
how each step of the proof was obtained



Example 5

Example 5

Here are consecutive steps B1, ...,B9

in a proof of ((A ⇒ B)⇒ (¬B ⇒ ¬A))

B1 (A ⇒ B)

B2 (¬¬A ⇒ A)

B3 (¬¬A ⇒ B)

B4 (B ⇒ ¬¬B)

B5 (¬¬A ⇒ ¬¬B)

B6 ((¬¬A ⇒ ¬¬B)⇒ (¬B ⇒ ¬A))

B7 (¬B ⇒ ¬A)

B8 (A ⇒ B) ` (¬B ⇒ ¬A)

B9 ((A ⇒ B)⇒ (¬B ⇒ ¬A))



Exercise 5

Exercise 5

Complete the proof of Example 5 by providing comments how
each step of the proof was obtained.

Solution

B1 (A ⇒ B)
Hypothesis

B2 (¬¬A ⇒ A)
Example 1 for B = A

B3 (¬¬A ⇒ B)
Lemma 1 (a) for A = ¬¬A , B = A , C = B

B4 (B ⇒ ¬¬B)
Example 2



Exercise 5

B5 (¬¬A ⇒ ¬¬B)

Lemma 1 (a) for A = ¬¬A , B = B , C = ¬¬B

B6 ((¬¬A ⇒ ¬¬B)⇒ (¬B ⇒ ¬A))

Example 4 for B = ¬A , A = ¬B

B7 (¬B ⇒ ¬A)

B5, B6 and MP

B8 (A ⇒ B) ` (¬B ⇒ ¬A)

B1 − B7

B9 ((A ⇒ B)⇒ (¬B ⇒ ¬A))

Deduction Theorem



Example 6

Example 6

Prove that

` (A ⇒ (¬B ⇒ (¬(A ⇒ B))))

Solution

Here are consecutive steps (with comments) of building the
formal proof

B1 A , (A ⇒ B) ` B

This is MP



Example 6

B2 A ` ((A ⇒ B)⇒ B)

Deduction Theorem

B3 ` (A ⇒ ((A ⇒ B)⇒ B))
Deduction Theorem

B4 ` (((A ⇒ B)⇒ B)⇒ (¬B ⇒ ¬(A ⇒ B)))

Example 5 for A = (A ⇒ B), B = B

B5 ` (A ⇒ (¬B ⇒ (¬(A ⇒ B)))

B3, B4 and Lemma 2 (a) for

A = A B = ((A ⇒ B)⇒ B), C = (¬B ⇒ (¬(A ⇒ B))

Observe that the proof presented is not the only proof



Example 7

Example 7

Here are consecutive steps B1, ...,B12

in a proof of ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

B1 (A ⇒ B)

B2 (¬A ⇒ B)

B3 ((A ⇒ B)⇒ (¬B ⇒ ¬A))

B4 (¬B ⇒ ¬A)

B5 ((¬A ⇒ B)⇒ (¬B ⇒ ¬¬A))

B6 (¬B ⇒ ¬¬A)

B7 ((¬B ⇒ ¬¬A)⇒ ((¬B ⇒ ¬A)⇒ B)))



Example 7

B8 ((¬B ⇒ ¬A)⇒ B)

B9 B

B10 (A ⇒ B), (¬A ⇒ B) ` B

B11 (A ⇒ B) ` ((¬A ⇒ B)⇒ B)

B12 ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

Exercise 7

Complete the proof in Example 7 by providing comments how
each step of the proof was obtained



Exercise 7

Exercise 7

Solution

B1 (A ⇒ B)
Hypothesis

B2 (¬A ⇒ B)
Hypothesis

B3 ((A ⇒ B)⇒ (¬B ⇒ ¬A))
Example 5

B4 (¬B ⇒ ¬A)
B1,B3 and MP

B5 ((¬A ⇒ B)⇒ (¬B ⇒ ¬¬A))
Example 5 for A = ¬A , B = B

B6 (¬B ⇒ ¬¬A)
B2,B5 and MP



Exercise 7

B7 ((¬B ⇒ ¬¬A)⇒ ((¬B ⇒ ¬A)⇒ B)))
Axiom A3 for B = B , A = ¬A

B8 ((¬B ⇒ ¬A)⇒ B)
B6, B7 and MP

B9 B
B4, B8 and MP

B10 (A ⇒ B), (¬A ⇒ B) ` B
B1 − B9

B11 (A ⇒ B) ` ((¬A ⇒ B)⇒ B)
Deduction Theorem

B12 ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))
Deduction Theorem



Example 8

Example 8

Here are consecutive steps

B1, ...,B3

in a proof of
((¬A ⇒ A)⇒ A)

B1 ((¬A ⇒ ¬A)⇒ ((¬A ⇒ A)⇒ A)))

B2 (¬A ⇒ ¬A)

B3 ((¬A ⇒ A)⇒ A))



Exercise 8

Exercise 8

Complete the proof of Example 8 by providing comments how
each step of the proof was obtained

Solution

B1 ((¬A ⇒ ¬A)⇒ ((¬A ⇒ A)⇒ A)))

Axiom A3 for B = A

B1 (¬A ⇒ ¬A)

Already proved (A ⇒ A) for A = ¬A

B1 ((¬A ⇒ A)⇒ A))

B1,B2 and MP



LEMMA

We summarize all the formal proofs in H2 provided in our
Examples and Exercises in a form of a following lemma

Lemma

The following formulas are provable in H2

1. (A ⇒ A)

2. (¬¬B ⇒ B)

3. (B ⇒ ¬¬B)

4. (¬A ⇒ (A ⇒ B))

5. ((¬B ⇒ ¬A)⇒ (A ⇒ B))

6. ((A ⇒ B)⇒ (¬B ⇒ ¬A))

7. (A ⇒ (¬B ⇒ (¬(A ⇒ B)))

8. ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

9. ((¬A ⇒ A)⇒ A)



Completeness Theorem for H2

Formulas 1, 3, 4, and 7-9 from the set of provable formulas
from the Lemma are all formulas needed together with the
logical axioms of H2 to execute the two proofs of the
Completeness Theorem for H2

We present these proofs in the Slides Set 3

The two proofs represent two different methods of proving
the Completeness Theorem



Chapter 5
Hilbert Proof Systems

Completeness of Classical Propositional Logic

Slides Set 3

PART 4: Completeness Theorem Proof One : Constructive
Proof



Completeness Theorem: Proof One

The Proof One of the Completeness Theorem for H2

presented here is similar in its structure to the proof of the
Deduction Theorem

The Proof One is due to Kalmar, 1935 and is a detailed
version of the one published in Elliott Mendelson’s book
Introduction to Mathematical Logic, 1987

The Proof One is, as Deduction Theorem was, constructive

It means it defines a method how one can use the
assumption that a formula A is a tautology in order to
construct its formal proof



Completeness Theorem: Proof One

The Proof One relies heavily on the Deduction Theorem and
is very elegant and simple but its methods are applicable
only to the classical propositional logic

The Proof One is specific to a propositional language

L{¬, ⇒}

and to the proof system H2

Nevertheless, the H2 based Proof One can be adopted and
extended to other classical propositional languages
containing implication and negation



Completeness Theorem: Proof One

For example we can adopt the Proof One to languages

L{¬, ∪, ⇒}, L{¬, ∩, ∪,⇒}, L{¬, ∩, ∪,⇒,⇔}

and appropriate proof systems based for them

We do so by adding new special logical axioms to the logical
axioms of the proof system H2

Such obtained proof systems are called extensions of the
system H2



Completeness Theorem: Proof One

One can think about the system H2 with its axiomatization
given by set

{A1,A2,A3}

of logical axioms, and its language

L{¬, ⇒}

as in a sense, a ”minimal” Hilbert System for classical
propositional logic

The Proof One can not be extended to the classical
predicate logic, neither to the variety of non-classical logics



Proof System H2

Reminder: H2 is the following proof system:

H2 = ( L{⇒,¬}, F , {A1,A2,A3}, MP )

The axioms A1 − A3 are defined as follows.

A1 (A ⇒ (B ⇒ A)),

A2 ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C))),

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

(MP)
A ; (A ⇒ B)

B



Proof System H2

Obviously, the selected axioms A1,A2,A3 are tautologies,
and the MP rule leads from tautologies to tautologies.

Hence our proof system H2 is sound and the following
theorem holds

Soundness Theorem

For every formula A ∈ F ,

If `H2 A , then |= A



System H2 Lemma

We have proved and presented in Slides Set 2 the following

Lemma

The following formulas a are provable in H2

1. (A ⇒ A)

2. (¬¬B ⇒ B)

3. (B ⇒ ¬¬B)

4. (¬A ⇒ (A ⇒ B))

5. ((¬B ⇒ ¬A)⇒ (A ⇒ B))

6. ((A ⇒ B)⇒ (¬B ⇒ ¬A))

7. (A ⇒ (¬B ⇒ (¬(A ⇒ B)))

8. ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

9. ((¬A ⇒ A)⇒ A)



Proof One

The Proof One of Completeness Theorem presented here is
very elegant and simple, but is applicable only to the
classical propositional logic

This proof is, as was the proof of Deduction Theorem, a fully
constructive

The technique it uses , because of its specifics can’t be used
even in a case of classical predicate logic, not to mention
variaty of non-classical logics



Completeness Theorem

The Proof One is similar in its structure to the proof of the
Deduction Theorem and is due to Kalmar, 1935

It is a constructive proof and relies heavily on the Deduction
Theorem

It is possible to prove the Completeness Theorem
independently of the Deduction Theorem and we will discus
such a proofs in later chapters



Main Lemma

Some Notations
We write ` A instead of `S A as the system S is fixed.

Let A be a formula and b1, b2, ..., bn be all propositional
variables that occur in A, we write it as A = A(b1, b2, ..., bn)

Lemma Definition
Let v be a truth assignment v : VAR −→ {T ,F}

We define, for A , b1, b2, ..., bn and truth assignment v
corresponding formulas A ′, B1,B2, ...,Bn as follows:

A ′ =

{
A if v∗(A) = T
¬A if v∗(A) = F

Bi =

{
bi if v(bi) = T
¬bi if v(bi) = F

for i = 1, 2, ..., n



Examples

Example

Let A be a formula (a ⇒ ¬b)

Let v be such that v(a) = T , v(b) = F

In this case we have that b1 = a, b2 = b, and

v∗(A) = v∗(a ⇒ ¬b) = v(a)⇒ ¬v(b)= T ⇒ ¬F = T

The corresponding A ′,B1,B2 are:

A ′ = A as v∗(A) = T

B1 = a as v(a) = T

B2 = ¬b as v(b) = F



Examples

Example 2

Let A be a formula ((¬a ⇒ ¬b)⇒ c)

and let v be such that v(a)= T, v(b) =F, v(c)=F

Evaluate A ′, B1, ...Bn as defined by the definition 1

In this case n = 3 and b1 = a, b2 = b , b3 = c

and we evaluate

v∗(A) = v∗((¬a ⇒ ¬b)⇒ c) = ((¬v(a)⇒ ¬v(b))⇒
v(c)) = ((¬T ⇒ ¬F)⇒ F) = (T ⇒ F) = F

The corresponding A ′,B1,B2,B2 are:

A ′ = ¬((¬a ⇒ ¬b)⇒ c) as v∗(A) = F

B1 = a as v(a) = T , B2 = ¬b as v(b) = F , and

B3 = ¬c as v(c) = F



Main Lemma

The Main Lemma stated below describes a method of
transforming a semantic notion of a tautology into a
syntactic notion of provability

It defines, for any formula A and a truth assignment v a
corresponding deducibility relation

Main Lemma
For any formula A = A(b1, b2, ..., bn) and any truth
assignment v
If A

′

, B1 , B2, ..., Bn are corresponding formulas defined by
Lemma Definition, then

B1,B2, ...,Bn ` A ′



Examples

Example
Let A be a formula (a ⇒ ¬b)

Let v be such that v(a) = T , v(b) = F

We have that A ′ = A , B1 = a, B2 = ¬b

Main Lemma asserts that

a,¬b ` (a ⇒ ¬b)

Example
Let A be a formula ((¬a ⇒ ¬b)⇒ c) and let v be
such that v(a)= T, v(b) =F, v(c)=F

Main Lemma asserts that

a,¬b ,¬c ` ¬((¬a ⇒ ¬b)⇒ c)



Proof of the Main Lemma

The proof is by induction on the degree of the formula A

Base Case n = 0

In this case A is atomic and so consists of a single
propositional variable, say a

If v∗(A) = T then we have by Lemma Definition

A ′ = A = a, B1 = a

We obtain, by definition of provability from a set Γ of
hypothesis for Γ = {a} that

a ` a



Proof of the Main Lemma

If v∗(A) = F we have by Lemma Definition that

A ′ = ¬A = ¬a and B1 = ¬a

We obtain, by definition of provability from a set Γ of
hypothesis for Γ = {¬a} that

¬a ` ¬a

This proves that Main Lemma holds for n=0



Proof of the Main Lemma

Inductive Step
Assume that the Main Lemma holds for any formula with
j < n connectives
Need to prove: the Main Lemma holds for A with n
connectives

There are several sub-cases to deal with

Case: A is ¬A1

By the inductive assumption we have the formulas

A
′

1, B1,B2, ...,Bn

corresponding to the A1 and the propositional variables
b1, b2, ..., bn in A1, such that

B1,B2, ...,Bn ` A
′

1



Proof of the Main Lemma

Observe that the formulas A and ¬A1 have the same
propositional variables

So the corresponding formulas

B1, B2, . . . , Bn

are the same for both of them

We are going to show that the inductive assumption allows
us to prove that

B1,B2, ...,Bn ` A
′

There are two cases to consider.



Proof of the Main Lemma

Case: v∗(A1) = T

If v∗(A1) = T then by Lemma Definition A
′

1 = A1 and by
the inductive assumption

B1,B2, ...,Bn ` A1

In this case: v∗(A) = v∗(¬A1) = ¬v∗(T) = F

So we have that
A
′

= ¬A = ¬¬A1



Proof of the Main Lemma

By Lemma formula 3. we have that that

` (A1 ⇒ ¬¬A1)

we obtain by the monotonicity that also

B1,B2, ...,Bn ` (A1 ⇒ ¬¬A1)

By inductive assumption

B1,B2, ...,Bn ` A1

and by MP we have

B1,B2, ...,Bn ` ¬¬A1

and as A
′

= ¬A = ¬¬A1 we get B1,B2, ...,Bn ` ¬A and
so we proved that

B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: v∗(A1) = F

If v∗(A1) = F then A
′

1 = ¬A1 and v∗(A) = T so

A
′

= A

Therefore by the inductive assumption we have that

B1,B2, ...,Bn ` ¬A1

as A
′

= ¬A1 we get

B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: A is (A1 ⇒ A2)

If A is (A1 ⇒ A2) then A1 and A2 have less than n
connectives

A = A(b1, ... bn) so there are some subsequences
c1, ..., ck and d1, ...dm for k ,m ≤ n of the sequence
b1, ..., bn such that

A1 = A1(c1, ..., ck ) and A2 = A(d1, ...dm)



Proof of the Main Lemma

A1 and A2 have less than n connectives and so by the
inductive assumption we have appropriate formulas
C1, ...,Ck and D1, ...Dm such that

C1,C2, . . . ,Ck ` A1
′

and D1,D2, . . . ,Dm ` A2
′

and C1,C2, ...,Ck , D1,D2, ...,Dm are subsequences of
formulas B1,B2, ...,Bn corresponding to the propositional
variables in A

By monotonicity we have the also

B1,B2, ...,Bn ` A1
′

and B1,B2, ...,Bn ` A2
′

Now we have the following sub-case to consider



Proof of the Main Lemma

Case: v∗(A1) = v∗(A2) = T

If v∗(A1) = T then A1
′

= A1 and

if v∗(A2) = T then A2
′

= A2

We also have v∗(A1 ⇒ A2) = T and so A
′

= (A1 ⇒ A2)

By the above and the inductive assumption

B1,B2, ...,Bn ` A2

and By Axiom 1 and by monotonicity we have

B1,B2, ...,Bn ` (A2 ⇒ (A1 ⇒ A2))

By above and MP we have B1,B2, ...,Bn ` (A1 ⇒ A2)
that is

B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: v∗(A1) = T , v∗(A2) = F
If v∗(A1) = T then A1

′

= A1 and
if v∗(A2) = F then A2

′

= ¬A2

Also we have in this case v∗(A1 ⇒ A2) = F and so
A
′

= ¬(A1 ⇒ A2)

By the above, the inductive assumption and monotonicity
B1,B2, ...,Bn ` ¬A2

By Lemma 7. and by monotonicity we have

B1,B2, ...,Bn ` (A1 ⇒ (¬A2 ⇒ ¬(A1 ⇒ A2)))

By above and MP twice we have
B1,B2, ...,Bn ` ¬(A1 ⇒ A2) that is

B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: v∗(A1) = F

Observe that if v∗(A1) = F then A1
′

is ¬A1 and,
whatever value v gives A2, we have

v∗(A1 ⇒ A2) = T

So A
′

is (A1 ⇒ A2)

Therefore
B1,B2, . . . ,Bn ` ¬A1

From Lemma formula 4. and by monotonicity we have

B1, B2, ..., Bn ` (¬A1 ⇒ (A1 ⇒ A2))



Proof of the Main Lemma

By Modus Ponens we get that

B1,B2, ...,Bn ` (A1 ⇒ A2)

that is
B1,B2, ...,Bn ` A

′

We have covered all cases and, by mathematical induction
on the degree of the formula A we got

B1,B2, ...,Bn ` A
′

This ends the proof of the Main Lemma



Proof One of Completeness Theorem



Proof of Completeness Theorem

Now we use the Main Lemma to prove the following

Completeness Theorem (Completeness Part)
For any formula A ∈ F

if |= A then ` A

Proof
Assume that |= A
Let b1, b2, ..., bn be all propositional variables that occur in
the formula A , i.e.

A = A(b1, b2, ..., bn)

By the Main Lemma we know that, for any truth assignment
v, the corresponding formulas A

′

, B1 , B2, ..., Bn can be
found such that

B1,B2, ...,Bn ` A
′



Proof Completeness Theorem

Note that in this case A
′

= A for any v since |= A

We have two cases.

1. If v is such that v(bn) = T , then Bn = bn and

B1,B2, ..., bn ` A

2. If v is such that v(bn) = F , then Bn = ¬bn and by
the Main Lemma

B1,B2, ...,¬bn ` A

So, by the Deduction Theorem we have

B1,B2, ...,Bn−1 ` (bn ⇒ A)

and
B1,B2, ...,Bn−1 ` (¬bn ⇒ A)



Proof of Completeness Theorem

By Lemma formula 8.

`((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

for A = bn, B = A
By monotonicity we have that

B1,B2, ...,Bn−1 ` ((bn ⇒ A)⇒ ((¬bn ⇒ A)⇒ A))

Applying Modus Ponens twice we get that

B1,B2, ...,Bn−1 ` A

Similarly, v∗(Bn−1) may be T or F
Applying the Main Lemma , the Deduction Theorem,
monotonicity, Lemma formula 8. and Modus Ponens twice
we can eliminate Bn−1 just as we have eliminated Bn

After n steps, we finally obtain proof of A in H2, i.e. we
proved that

` A



Constructiveness of the Proof

Observe that the proof of the Completeness Theorem is
constructive

Moreover, we have used in it only Main Lemma and
Deduction Theorem which both have constructive proofs

We can hence reconstruct proofs in each case when we
apply these theorems back to the original axioms of H2



Constructiveness of the Proof

The same applies to the proofs in H2 of all formulas 1. - 9. of
the Lemma

It means that for any A , such that

|= A

the set VA of all v restricted to A provides a method of a
construction of the formal proof of A in H2



Example

Example

The proof of Completeness Theorem defines a method of
efficiently combining truth assignments v ∈ VA restricted to
A while constructing the proof of A

Let’s consider a tautology A , where the formula A is

A(a, b , c) = ((¬a ⇒ b)⇒ (¬(¬a ⇒ b)⇒ c)

We present on the next slides all steps of the Proof One as
applied to A



Example

Given

A(a, b , c) = ((¬a ⇒ b)⇒ (¬(¬a ⇒ b)⇒ c)

By the Main Lemma and the assumption that

|= A(a, b , c)

any v ∈ VA defines formulas Ba , Bb , Bc such that

Ba ,Bb ,Bc ` A

The proof is based on a method of using all v ∈ VA (there
are 8 of them) to define a process of elimination of all
hypothesis Ba ,Bb ,Bc to construct the proof of A , ı.e. to
prove that

` A



Example

Step 1: elimination of Bc

Observe that by definition, Bc is c or ¬c depending on
the choice of v ∈ VA

We choose two truth assignments v1 , v2 ∈ VA such that

v1 | {a, b} = v2 | {a, b} and v1(c) = T , v2(c) = F

Case 1: v1(c) = T
By by definition Bc = c
By our choice, the assumption that |= A and the Main
Lemma applied to v1

Ba ,Bb , c ` A

By Deduction Theorem we have that

Ba ,Bb ` (c ⇒ A)



Example

Case 2: v2(c) = F

By definition Bc = ¬c

By our choice, assumption that |= A , and the Main Lemma
applied to v2

Ba ,Bb ,¬c ` A

By the Deduction Theorem we have that

Ba ,Bb ` (¬c ⇒ A)



Example

By Lemma formula 8. for A = c, B = A we have that

` ((c ⇒ A)⇒ ((¬c ⇒ A)⇒ A))

By monotonicity we have that

Ba ,Bb ` ((c ⇒ A)⇒ ((¬c ⇒ A)⇒ A))

Applying Modus Ponens twice to the above property and
properties on the previous slide we get that

Ba ,Bb ` A

We have eliminated Bc



Example

Step 2: elimination of Bb from Ba ,Bb ` A
We repeat the Step 1
As before we have 2 cases to consider: Bb = b or Bb = ¬b
We choose two truth assignments w1 , w2 ∈ VA such
that

w1| {a} = w2 | {a} = v1 | {a} = v2 | {a} and w1(b) = T , w2(b) = F

Case 1: w1(b) = T and by definition Bb = b
By our choice, assumption that |= A and the Main Lemma
applied to w1

Ba , b ` A

By Deduction Theorem we have that

Ba ` (b ⇒ A)



Example

Case 2: w2(b) = F and by definition Bb = ¬b

By choice, assumption that |= A and the Main Lemma
applied to w2

Ba ,¬b ` A

By the Deduction Theorem we have that

Ba ` (¬b ⇒ A)



Example

By Lemma formula 8. for A = b , B = A we have that

` ((b ⇒ A)⇒ ((¬b ⇒ A)⇒ A))

By monotonicity

Ba ` ((b ⇒ A)⇒ ((¬b ⇒ A)⇒ A))

Applying Modus Ponens twice to the above property and
properties from the previous slide we get that

Ba ` A

We have eliminated Bb



Example

Step 3: elimination] of Ba from Ba ` A

We repeat the Step 2

As before we have 2 cases to consider: Ba = a or Ba = ¬a

We choose two truth assignments g1 , g2 ∈ VA such that

g1(a) = T and g2(a) = F

Case 1: g1(a) = T , and by definition Ba = a

By the choice, assumption that |= A , and the Main Lemma
applied to g1

a ` A

By Deduction Theorem we have that

` (a ⇒ A)



Example

Case 2: g2(a) = F and by definition Ba = ¬a

By the choice, assumption that |= A , and the Main Lemma
applied to g2

¬a ` A

By the Deduction Theorem we have that

` (¬a ⇒ A)



Example

By Lemma formula 8. for A = a, B = A we have that

` ((a ⇒ A)⇒ ((¬a ⇒ A)⇒ A))

Applying Modus Ponens twice to the above property and
properties from previous slides we get that

` A

We have eliminated Ba , Bb , Bc and constructed the proof
of A in S



Exercises

Exercise 1

The Lemma listed formulas 1. - 9. that we said they were
needed for both proofs of the Completeness Theorem.

List all the formulas from tLemma that are are needed for
the Proof One alone



Exercises

Exercise 2

The system H2 was defined and the Proof One was carried
out for the language L{⇒,¬}
Extend the system H2 and the Proof One to the language
L{⇒,∪,¬} by adding all new cases concerning the new
connective ∪

List all new formulas needed to be added as new Axioms to
H2 to be able to follow the methods of the original Proof One

Exercise 3

Repeat the Exercise 2 for he language

L{⇒, ∪, ∩ ¬}
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PART 6: Completeness Theorem Proof Two:

A Counter- Model Existence Method



Completeness Theorem Proof Two

Our goal now is to prove the following

Completeness Theorem (Completeness Part)

For any formula A ∈ F of H2

if |= A then ` A

We do so by proving its logically equivalent opposite

implication:
If 0 A , then 6|= A

Hence the Proof Two consists of using the information that

a formula A is not provable to show the existence of a

counter-model for A



Completeness Theorem Proof Two

The Proof Two is much more complicated then the Proof One

The main point of the proof is a general, non- constructive
method for proving existence of a counter-model for any
non-provable formula A

The generality of the method makes it possible to adopt it for
other cases of predicate and some non-classical logics

This is why we call the Proof Two a counter-model
existence method



Proof Two Steps

The construction of a counter-model for any non-provable
formula A presented in this proof is abstract, not constructive,
as it was in the Proof One

It can be generalized to the case of predicate logic, and many
of non-classical logics; propositional and predicate.

This is the reason we present it here



Proof Two Steps

We remind that 6|= A means that there is a truth assignment
v : VAR −→ {T ,F}, such that (as we are in classical
semantics) v∗(A) = F

We assume that A does not have a proof i.e. 0 A we use
this information in order to define a general method of
constructing v, such that v∗(A) = F

This is done in the following steps.



Proof Two Steps

Step 1

Definition of a special set of formulas ∆∗

We use the information 0 A to define a set of formulas ∆∗

such that ¬A ∈ ∆∗

Step 2

Definition of the counter - model

We define the variable truth assignment v : VAR −→ {T ,F}
as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a



Proof 2 Steps

Step 3

We prove that v is a counter-model for A

We first prove a following more general property of v

Property

The set ∆∗ and v defined in the Steps 1 and 2 are such
that for every formula B ∈ F

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B

We then use the Step 3 to prove that v∗(A) = F



Main Notions

The definition, construction and the properties of the set ∆∗

and hence the Step 1, are the most essential for the Proof
Two

The other steps have mainly technical character

The main notions involved in the proof are: consistent set,
complete set and a consistent complete extension of a set of
formulas

We are going prove some essential facts about them.



Consistent and Inconsistent Sets

There exist two definitions of consistency; semantical and
syntactical

Semantical definition uses the notion of a model and says:

A set is consistent if it has a model

Syntactical definition uses the notion of provability and
says:

A set is consistent if one can’t prove a contradiction from it



Consistent and Inconsistent Sets

In our proof of the Completeness Theorem we use the
following formal syntactical definition of consistency of a set
of formulas

Definition of a consistent set

We say that a set ∆ ⊆ F of formulas is consistent if and
only if
there is no a formula A ∈ F such that

∆ ` A and ∆ ` ¬A



Consistent and Inconsistent Sets

Definition of an inconsistent set

A set ∆ ⊆ F is inconsistent if and only if there is a
formula A ∈ F such that

∆ ` A and ∆ ` ¬A

The notion of consistency, as defined above, is characterized
by the following Consistency Lemma



Consistency Condition Lemma

Lemma Consistency Condition

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent

(i) ∆ is consistent

(ii) there is a formula A ∈ F such that ∆ 0 A



Proof of Consistency Lemma

Proof

To establish the equivalence of (i) and (ii) we prove the
corresponding opposite implications

We prove the following two cases

Case 1 not (ii) implies not (i)

Case 2 not (i) implies not (ii)



Proof of Consistency Lemma

Case 1

Assume that not (ii)

It means that for all formulas A ∈ F we have that

∆ ` A

In particular it is true for a certain A = B and for a certain
A = ¬B i.e.

∆ ` B and ∆ ` ¬B

and hence it proves that ∆ is inconsistent

i.e. not (i) holds



Proof of Consistency Lemma

Case 2

Assume that not (i), i.e that ∆ is inconsistent

Then there is a formula A such that ∆ ` A and ∆ ` ¬A

Let B be any formula

We proved ( Lemma formula 6.) that ` (¬A ⇒ (A ⇒ B))

By monotonicity

∆ ` (¬A ⇒ (A ⇒ B))

Applying Modus Ponens twice to ¬A first, and to A next
we get that ∆ ` B for any formula B

Thus not (ii) and it ends the proof of the Consistency
Condition Lemma



Inconsistency Condition Lemma

Inconsistent sets are hence characterized by the following
fact

Lemma Inconsistency Condition

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent:

(i) ∆ is inconsistent,

(i) for any formula A ∈ F ∆ ` A



Finite Consequence Lemma

We remind here property of the finiteness of the
consequence operation.

Lemma Finite Consequence

For every set ∆ of formulas and for every formula A ∈ F

∆ ` A if and only if there is a finite set ∆0 ⊆ ∆ such
that ∆0 ` A

Proof

If ∆0 ` A for a certain ∆0 ⊆ ∆,
hence by the monotonicity of the consequence, also ∆ ` A



Finite Consequence Lemma

Assume now that ∆ ` A and let

A1,A2, ...,An

be a formal proof of A from ∆

Let
∆0 = {A1,A2, ...,An} ∩∆

Obviously, ∆0 is finite and A1,A2, ...,An is a formal proof
of A from ∆0



Finite Inconsistency Theorem

The following theorem is a simple corollary of just proved
Finite Consequence Lemma

Theorem Finite Inconsistency

(1.) If a set ∆ is inconsistent, then it has a finite
inconsistent subset ∆0

(2.) If every finite subset of a set ∆ is consistent then the
set ∆ is also consistent



Finite Inconsistency Theorem

Proof
If ∆ is inconsistent, then for some formula A ,

∆ ` A and ∆ ` ¬A

By the Finite Consequence Lemma , there are finite subsets
∆1 and ∆2 of ∆ such that

∆1 ` A and ∆2 ` ¬A

The union ∆1 ∪∆2 is a finite subset of ∆ and by
monotonicity

∆1 ∪∆2 ` A and ∆1 ∪∆2 ` ¬A

Hence we proved that ∆1 ∪∆2 is a finite inconsistent
subset of ∆

The second implication (2.) is the opposite to the one just
proved and hence also holds



Consistency Lemma

The following Lemma links the notion of non-provability and
consistency

It will be used as an important step in our Proof Two of the
Completeness Theorem

Lemma

For any formula A ∈ F ,

if 0 A then the set {¬A } is consistent



Consistency Lemma

Proof We prove the opposite implication
If {¬A } is inconsistent, then ` A
Assume that {¬A } is inconsistent
By the Inconsistency Condition Lemma we have that
{¬A } ` B for any formula B, and hence in particular

{¬A } ` A

By Deduction Theorem we get

` (¬A ⇒ A)

We proved ( Lemma formula 9.) that

` ((¬A ⇒ A)⇒ A)

By Modus Ponens we get

` A

This ends the proof



Complete and Incomplete Sets

Another important notion, is that of a complete set of
formulas.

Complete sets, as defined here are sometimes called
maximal, but we use the first name for them.

They are defined as follows.

Definition Complete set

A set ∆ of formulas is called complete if for every formula
A ∈ F

∆ ` A or ∆ ` ¬A

Godel used this notion of complete sets in his
Incompleteness of Arithmetic Theorem

The complete sets are characterized by the following fact.



Complete and Incomplete Sets

Complete Set Condition Lemma

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent

(i) The set ∆ is complete

(ii) For every formula A ∈ F ,

if ∆ 0 A then then the set ∆ ∪ {A } is inconsistent

Proof

We consider two cases

Case 1 We show that (i) implies (ii) and

Case 2 we show that (ii) implies (i)



Complete Set Condition Lemma

Proof of Case 1

Assume (i) and not(ii) i.e.

assume that ∆ is complete and there is a formula A ∈ F
such that ∆ 0 A and the set ∆ ∪ {A } is consistent

We have to show that we get a contradiction

But if ∆ 0 A , then from the assumption that ∆ is complete
we get that

∆ ` ¬A

By the monotonicity of the consequence we have that

∆ ∪ {A } ` ¬A



Complete Set Condition Lemma

We proved (Lemma formula 4. ) ` (A ⇒ A)

By monotonicity ∆ ` (A ⇒ A) and by Deduction Theorem

∆ ∪ {A } ` A

We hence proved that that there is a formula A ∈ F such that

∆ ∪ {A } and ∆ ∪ {A } ` ¬A

i.e. that the set ∆ ∪ {A } is inconsistent

Contradiction



Complete Set Condition Lemma

Proof of Case 2

Assume (ii), i.e. that for every formula A ∈ F

if ∆ 0 A then the set ∆ ∪ {A } is inconsistent

Let A be any formula.

We want to show (i), i.e. to show that the following condition

C : ∆ ` A or ∆ ` ¬A

is satisfied.

Observe that if
∆ ` ¬A

then the condition C is obviously satisfied



Complete Set Condition Lemma

If, on the other hand,
∆ 0 ¬A

then we are going to show now that it must be, under the
assumption of (ii), that ∆ ` A i.e. that (i) holds

Assume that
∆ 0 ¬A

then by (ii) the set ∆ ∪ {¬A } is inconsistent



Complete Set Condition Lemma

The Inconsistency Condition Lemma says

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent:

(i) ∆ is inconsistent,

(i) for any formula A ∈ F , ∆ ` A

We just proved that the set ∆ ∪ {¬A } is inconsistent

So by the the above Lemma we get

∆ ∪ {¬A } ` A



Complete Set Condition Lemma

By the Deduction Theorem ∆ ∪ {¬A } ` A implies that

∆ ` (¬A ⇒ A)

Observe that by Lemma formula 4.

` ((¬A ⇒ A)⇒ A)

By monotonicity

∆ ` ((¬A ⇒ A)⇒ A)

Detaching, by MP the formula (¬A ⇒ A) we obtain that

∆ ` A

This ends the proof that (i) holds.



Incomplete Sets

Definition Incomplete Set

A set ∆ of formulas is called incomplete if it is not
complete i.e. when the following condition holds

There exists a formula A ∈ F such that

∆ 0 A and ∆ 0 ¬A



Incomplete Set Condition Lemma

We get as a direct consequence of the Complete Set
Condition Lemma the following characterization of
incomplete sets

Lemma Incomplete Set Condition

For every set ∆ ⊆ F of formulas, the following conditions
are equivalent:

(i) ∆ is incomplete,

(ii) there is formula A ∈ F such that ∆ 0 A and the set
∆ ∪ {A } is consistent.



Main Lemma: Complete Consistent Extension

Now we are going to prove a Main Lemma that is essential
to the construction of the special set ∆∗ mentioned in the
Step 1 of the proof of the Completeness Theorem and
hence to the proof of the theorem itself

Let’s first introduce one more notion



Complete Consistent Extension

Definition Extension ∆∗ of the set ∆

A set ∆∗ of formulas is called an extension of a set ∆ of
formulas if the following condition holds

{A ∈ F : ∆ ` A } ⊆ {A ∈ F : ∆∗ ` A }

i.e.
Cn(∆) ⊆ Cn(∆∗)

In this case we say also that ∆ extends to the set of
formulas ∆∗



Main Lemma



Main Lemma

Main Lemma Complete Consistent Extension

Every consistent set ∆ of formulas can be extended to a
complete consistent set ∆∗ of formulas
i. e

For every consistent set ∆ there is a set ∆∗ that is
complete and consistent and is an extension of ∆ i.e.

Cn(∆) ⊆ Cn(∆∗)



Proof of the Main Lemma

Proof

Assume that the lemma does not hold, i.e. that there is a
consistent set ∆, such that all its consistent extensions
are not complete

In particular, as ∆ is an consistent extension of itself, we
have that ∆ is not complete

The proof consists of a construction of a particular set
∆∗ and proving that it forms a complete consistent
extension of ∆

This is contrary to the assumption that all its consistent
extensions are not complete



Construction of ∆∗

Construction of ∆∗

As we know, the set F of all formulas is enumerable; they
can hence be put in an infinite sequence

F A1,A2, . . . ,An, . . .

such that every formula of F occurs in that sequence
exactly once

We define, by mathematical induction, an infinite sequence

D {∆n}n∈N

of consistent subsets of formulas together with a sequence

B {Bn}n∈N

of formulas as follows



Construction of ∆∗

Initial Step

In this step we define the sets

∆1,∆2 and the formula B1

and prove that
∆1 and ∆2

are consistent, incomplete extensions of ∆

We take as the first set in D the set ∆, i.e. we define

∆1 = ∆



Construction of ∆∗

By assumption the set ∆, and hence also ∆1 is not
complete.

From the Incomplete Set Condition Lemma we get that
there is a formula B ∈ F such that

∆1 0 B and ∆1 ∪ {B} is consistent

Let B1 be the first formula with this property in the
sequence F of all formulas

We define
∆2 = ∆1 ∪ {B1}



Construction of ∆∗

Observe that the set ∆2 is consistent and

∆1 = ∆ ⊆ ∆2

By monotonicity ∆2 is a consistent extension of ∆

Hence, as we assumed that all consistent extensions of ∆
are not complete, we get that ∆2 cannot be complete, i.e.

∆2 is incomplete



Construction of ∆∗

Inductive Step

Suppose that we have defined a sequence

∆1, ∆2, . . . , ∆n

of incomplete, consistent extensions of ∆ and a
sequence

B1,B2, . . . , Bn−1

of formulas, for n ≥ 2



Construction of ∆∗

Since ∆n is incomplete, it follows from the Incomplete
Set Condition Lemma that

there is a formula B ∈ F such that

∆n 0 B and ∆n ∪ {B} is consistent



Construction of ∆∗

Let Bn be the first formula with this property in the
sequence F of all formulas.

We define
∆n+1 = ∆n ∪ {Bn}

By the definition
∆ ⊆ ∆n ⊆ ∆n+1

and the set ∆n+1 is a consistent extension of ∆

Hence by our assumption that all all consistent extensions o
f ∆ are incomplete we get that

∆n+1

is an incomplete consistent extension of ∆



Construction of ∆∗

By the principle of mathematical induction we have defined
an infinite sequence

D ∆ = ∆1 ⊆ ∆2 ⊆ ...,⊆ ∆n ⊆ ∆n+1 ⊆ ....

such that for all n ∈ N, ∆n is consistent, and each ∆n an
incomplete consistent extension of ∆

Moreover, we have also defined a sequence

B B1,B2, . . . ,Bn, . . .

of formulas, such that for all n ∈ N,

∆n 0 Bn and ∆n ∪ {Bn} is consistent

Observe that Bn ∈ ∆n+1 for all n ≥ 1



Definition of ∆∗

Now we are ready to define ∆∗

Definition of ∆∗

∆∗ =
⋃

n∈N
∆n

To complete the proof our theorem we have now to prove that

∆∗ is a complete consistent extension of ∆



∆∗ Consistent

Obviously directly from the definition ∆ ⊆ ∆∗ and hence
we have the following

Fact 1 ∆∗ is an extension of ∆

By Monotonicity of Consequence Cn(∆) ⊆ Cn(∆∗), hence
extension

As the next step we prove

Fact 2 The set ∆∗ is consistent



∆∗ Consistent

Proof that ∆∗ is consistent

Assume that ∆∗ is inconsistent

By the Finite Inconsistency Theorem there is a finite subset
∆0 of ∆∗ that is inconsistent, i.e.

∆0 ⊆
⋃

n∈N
∆n, ∆0 = {C1, ...,Cn}, ∆0 is inconsistent



Proof of ∆∗ Consistent

We have ∆0 = {C1, . . . ,Cn}

By the definition of ∆∗ for each formula Ci ∈ ∆0

Ci ∈ ∆ki

for certain ∆ki in the sequence

D ∆ = ∆1 ⊆ ∆2 ⊆ ...,⊆ ∆n ⊆ ∆n+1 ⊆ ....

Hence ∆0 ⊆ ∆m for m = max{k1, k2, ..kn}



Proof of ∆∗ Consistent

But we proved that all sets of the sequence D are
consistent

This contradicts the fact that ∆m is consistent

as it contains an inconsistent subset ∆0

This contradiction ends the proof that ∆∗ is consistent



Proof of ∆∗ Complete

Fact 3 The set ∆∗ is complete

Proof Assume that ∆∗ is not complete.

By the Incomplete Set Condition, there is a formula B ∈ F
such that

∆∗ 0 B, and the set ∆∗ ∪ {B} is consistent

By definition of the sequence D and the sequence B of
formulas we have that for every n ∈ N

∆n 0 Bn and the set ∆n ∪ {Bn} is consistent

Moreover Bn ∈ ∆n+1 for all n ≥ 1



Proof of ∆∗ Complete

Since the formula B is one of the formulas of the sequence
B so we get that B = Bj for certain j

By definition, Bj ∈ ∆j+1 and it proves that

B ∈ ∆∗ =
⋃

n∈N
∆n

But this means that ∆∗ ` B

This is a contradiction with the assumption ∆∗ 0 B and it
ends the proof of the Fact 3



Main Lemma

Facts 1- 3 prove that that ∆∗ is a complete consistent
extension of ∆

We hence completed the proof of the Main Lemma

Main Lemma

Every consistent set ∆ of formulas can be extended to a
complete consistent set ∆∗ of formulas



Proof Two of Completeness Theorem



Proof Two of Completeness Theorem

We proved already that H2 is sound, so we have to prove only
the Completeness part of the Completeness Theorem:

For any formula A ∈ F ,

If |= A , then ` A

We prove it by proving its logically equivalent opposite
implication form, i.e we prove now the following

Completeness Theorem

For any formula A ∈ F ,

If 0 A , then 6|= A



Proof Two of Completeness Theorem

Proof

Assume that A does not have a proof, we want to define a
counter-model for A

But if 0 A , then by the Inconsistency Lemma the set {¬A }
is consistent

By the Main Lemma there is a complete, consistent
extension of the set {¬A }

This means that there is a set ∆∗ such that {¬A } ⊆ ∆∗, i.e.

E ¬A ∈ ∆∗ and ∆∗ is complete and consistent



Proof Two of Completeness Theorem

Since ∆∗ is a consistent, complete set, it satisfies the
following form of

Consistency Condition

For any A ∈ F ,

∆∗ 0 A or ∆∗ 0 ¬A

∆∗ i s also complete i.e. satisfies

Completeness Condition

For any A ∈ F ,

∆∗ ` A or ∆∗ ` ¬A



Proof Two of Completeness Theorem

Directly from the Completeness and Consistency
Conditions we get the following

Separation Condition

For any A ∈ F , exactly one of the following conditions is
satisfied:

(1) ∆∗ ` A , or (2) ∆∗ ` ¬A

In particular case we have that for every propositional
variable a ∈ VAR exactly one of the following conditions is
satisfied:

(1) ∆∗ ` a, or (2) ∆∗ ` ¬a

This justifies the correctness of the following definition



Proof Two of Completeness Theorem

Definition

We define the variable truth assignment

v : VAR −→ {T ,F}

as follows:

v(a) =

{
T if ∆∗ ` a
F if ∆∗ ` ¬a.

We show, as a separate Lemma below, that such defined
variable assignment v has the following property



Property of v Lemma

Lemma Property of v

Let v be the variable assignment defined above and v∗ its
extension to the set F of all formulas B ∈ F , the following is
true

v∗(B) =

{
T if ∆∗ ` B
F if ∆∗ ` ¬B



Proof 2 of Completeness Theorem

Given the Property of v Lemma (still to be proved)

we now prove that the v is in fact, a counter model for any
formula A, such that 0 A

Let A be such that 0 A

By the Property E we have that ¬A ∈ ∆∗

So obviously
∆∗ ` ¬A

Hence by the Property of v Lemma

v∗(A) = F

what proves that v is a counter-model for A and it
ends the proof of the Completeness Theorem



Proof of Property of v Lemma

Proof of the Property of v Lemma

The proof is conducted by the induction on the degree of the
formula A

Initial step A is a propositional variable so the Lemma
holds by definition of v

Inductive Step

If A is not a propositional variable, then A is of the form
¬C or (C ⇒ D), for certain formulas C ,D

By the inductive assumption the Lemma holds for the
formulas C and D



Proof of Property of v Lemma

Case A = ¬C

By the Separation Condition for ∆∗ we consider two
possibilities

1. ∆∗ ` A

2. ∆∗ ` ¬A

Consider case 1. i.e. we assume that ∆∗ ` A

It means that
∆∗ ` ¬C

Then from the fact that ∆∗ is consistent it must be that

∆∗ 0 C



Proof of Property of v Lemma

By the inductive assumption we have that v∗(C) = F and
accordingly v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T

Consider case 2. i.e. we assume that ∆∗ ` ¬A

Then from the fact that ∆∗ is consistent it must be that
∆∗ 0 A and

∆∗ 0 ¬C

If so, then ∆∗ ` C, as the set ∆∗ is complete

By the inductive assumption, v∗(C) = T , and accordingly

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬T = F

Thus A satisfies the Property of v Lemma



Proof of Property of v Lemma

Case A = (C ⇒ D)

As in the previous case, we assume that the Lemma holds for
the formulas C ,D and we consider by the Separation
Condition for ∆∗ two possibilities:

1. ∆∗ ` A and 2. ∆∗ ` ¬A

Case 1. Assume ∆∗ ` A

It means that ∆∗ ` (C ⇒ D)

If at the same time ∆∗ 0 C, then v∗(C) = F , and
accordingly

v∗(A) = v∗(C ⇒ D) =

v∗(C)⇒ v∗(D) = F ⇒ v∗(D) = T



Proof of Property of v Lemma

If at the same time ∆∗ ` C, then since ∆∗ ` (C ⇒ D), we
infer, by Modus Ponens, that

∆∗ ` D

If so, then v∗(C) = v∗(D) = T

and accordingly

v∗(A) = v∗(C ⇒ D) =

v∗(C)⇒ v∗(D) = T ⇒ T = T

Thus if ∆∗ ` A , then v∗(A) = T



Proof of Property of v Lemma

Case 2. Assume now, as before, that ∆∗ ` ¬A ,

Then from the fact that ∆∗ is consistent it must be that
∆∗ 0 A , i.e.,

∆∗ 0 (C ⇒ D)

It follows from this that ∆∗ 0 D

For if ∆∗ ` D, then, as (D ⇒ (C ⇒ D)) is provable
formula 1. in S, by monotonicity also

∆∗ ` (D ⇒ (C ⇒ D))

Applying Modus Ponens we obtain

∆∗ ` (C ⇒ D)

which is contrary to the assumption, so it must be ∆∗ 0 D



Proof of Property of v Lemma

Also we must have
∆∗ ` C

for otherwise, as ∆∗ is complete we would have ∆∗ ` ¬C

This this is impossible since by Lemma formula 9.

` (¬C ⇒ (C ⇒ D))

By monotonicity

∆∗ ` (¬C ⇒ (C ⇒ D))

Applying Modus Ponens we would get

∆∗ ` (C ⇒ D)

which is contrary to the assumption ∆∗ 0 (C ⇒ D)



Proof Two of Completeness Theorem

This ends the proof of the Property of v Lemma and

the Proof Two of the Completeness Theorem is also
completed
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PART 6: Some Other Axiomatizations and

Examples and Exercises



Some Other Axiomatizations

We present here some of the most known, and historically

important axiomatizations of classical propositional logic

It means the Hilbert proof systems that are proven to be

complete under classical semantics



Lukasiewicz

Lukasiewicz (1929)

The Lukasiewicz proof system (axiomatization) is

L = ( L{¬, ⇒}, F , A1,A2,A3, MP )

where

A1 ((¬A ⇒ A)⇒ A)

A2 (A ⇒ (¬A ⇒ B))

A3 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C))))

for any formulas A ,B ,C ∈ F



Hilbert and Ackermann

Hilbert and Ackermann (1928)

HA = ( L{¬,∪}, F , A1 − A4, MP )

where for any A ,B ,C ∈ F

A1 (¬(A ∪ A) ∪ A)

A2 (¬A ∪ (A ∪ B))

A3 (¬(A ∪ B) ∪ (B ∪ A))

A4 (¬(¬B ∪ C) ∪ (¬(A ∪ B) ∪ (A ∪ C)))

The Modus Ponens rule in the language L{¬,∪} has a form

MP
A ; (¬A ∪ B)

B



Hilbert and Ackermann

Observe that also the Deduction Theorem is now formulated
as follow.

Deduction Theorem for HA

For any subset Γ of the set of formulas F of HA and for
any formulas A ,B ∈ F ,

Γ, A `HA B if and only if Γ `HA (¬A ∪ B)

In particular,

A `HA B if and only if `HA (¬A ∪ B)



Hilbert

Hilbert (1928)

H = ( L{¬,∪,∩,⇒}, F , A1 − A15, MP )

where for any A ,B ,C ∈ F

A1 (A ⇒ A)

A2 (A ⇒ (B ⇒ A))

A3 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A4 ((A ⇒ (A ⇒ B))⇒ (A ⇒ B))

A5 ((A ⇒ (B ⇒ C))⇒ (B ⇒ (A ⇒ C)))

A6 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A7 ((A ∩ B)⇒ A)

A8 ((A ∩ B)⇒ B)



Hilbert

A9 ((A ⇒ B)⇒ ((A ⇒ C)⇒ (A ⇒ (B ∩ C)))

A10 (A ⇒ (A ∪ B))

A11 (B ⇒ (A ∪ B))

A12 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A13 ((A ⇒ B)⇒ ((A ⇒ ¬B)⇒ ¬A))

A14 (¬A ⇒ (A ⇒ B))

A1 - A14 are the axioms Hilbert proposed and were
accepted as axioms defining Intuitionistic logic

They were later proved to be complete when the intuitionistic
semantics was discovered

Hilbert obtained his classical axiomatization by adding as the
last axiom the excluded middle law rejected by intuitionists

A15 (A ∪ ¬A)



Kleene

Kleene (1952)

K = ( L{¬,∪,∩,⇒}, F , A1 − A10, MP )

where for any A ,B ,C ∈ F

A1 (A ⇒ (B ⇒ A))

A2 ((A ⇒ (B ⇒ C))⇒ (B ⇒ (A ⇒ C)))

A3 ((A ∩ B)⇒ A)

A4 ((A ∩ B)⇒ B)

A5 (A ⇒ (B ⇒ (A ∩ B)))



Kleene

A6 (A ⇒ (A ∪ B))

A7 (B ⇒ (A ∪ B))

A8 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A9 ((A ⇒ B)⇒ ((A ⇒ ¬B)⇒ ¬A))

A10 (¬¬A ⇒ A)

Kleene proved that when A10 is replaced by

A10’ (¬A ⇒ (A ⇒ B))

the resulting system is a complete axiomatization of
Intuitionistic Logic



Rasiowa-Sikorski

Rasiowa-Sikorski (1950)

RS = ( L{¬,∪,∩,⇒}, F , A1 − A12, MP )

where for any A ,B ,C ∈ F

A1 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A2 (A ⇒ (A ∪ B))

A3 (B ⇒ (A ∪ B))

A4 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))



Rasiowa-Sikorski

A5 ((A ∩ B)⇒ A)

A6 ((A ∩ B)⇒ B)

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩ B)))

A8 ((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C))

A9 (((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C))

A10 (A ∩ ¬A)⇒ B)

A11 ((A ⇒ (A ∩ ¬A))⇒ ¬A)

A12 (A ∪ ¬A)



Rasiowa-Sikorski

Rasiowa - Sikorski proved A1 - A11 to be a complete
axiomatization for the Intuitionistic Logic

They obtained the classical axiomatization by adding A12, the
excluded middle law rejected by intuitionists, as Hilbert did

Both classical and intuitionistic completeness proofs were
carried under respective Boolean and Pseudo-Boolean
algebras semantics what is reflected in the choice of axioms
A1 - A12



Shortest Axiomatizations

Here is the shortest axiomatization for the language

L{¬, ⇒}

It contains just one axiom

Meredith (1953)

M = ( L{¬, ⇒}, F , A1 MP )

where

A1 ((((((A ⇒ B)⇒ (¬C ⇒ ¬D))⇒ C)⇒ E))⇒ ((E ⇒
A)⇒ (D ⇒ A)))



Shortest Axiomatizations

Here is another axiomatization that uses only one axiom

Nicod (1917)

N = ( L{↑}, F , A1, (r) )

where

A1 (((A ↑ (B ↑ C)) ↑ ((D ↑ (D ↑ D)) ↑ ((E ↑ B) ↑ ((A ↑
E) ↑ (A ↑ E))))))

and

(r)
A ↑ (B ↑ C)

A

Reminder
We have proved in chapter 3 that

L{¬,∪,∩,⇒} ≡ L{↑}



Exercises

Here are few exercises designed to help with understanding
the notions of completeness, monotonicity of the
consequence operation, the role of the deduction theorem
and the importance of somc basic tautologies



Complete Hilbert System S

Let S be any Hilbert proof system

S = (L{∩,∪,⇒,¬}, F , LA , MP
A , (A ⇒ B)

B
)

with the set LA of logical axioms such that S is complete
under classical semantics

Let X ⊆ F be any subset of the set F of formulas of the
language

L{∩,∪,⇒,¬}

We define, as we did in chapter 4, a set Cn(X) of all
consequences of the set X as

Cn(X) = {A ∈ F : X `S A }



Exercises

Reminder

The proof system

S = (L{∩,∪,⇒,¬}, F , LA , MP
A , (A ⇒ B)

B
)

in all exercises is complete



Exercises

Exercise 1

1. Prove that for any subsets X, Y of the set F of formulas of
S the following monotonicity property holds

If X ⊆ Y , then Cn(X) ⊆ Cn(Y)

Solution

1. Let A ∈ F be any formula such that A ∈ Cn(X)

By the consequence definition, we have that X `S A and A
has a formal proof from the set X ∪ LA

But X ⊆ Y , hence this proof is also a proof from the set
Y ∪ LA , i.e . Y `S A and A ∈ Cn(Y)

This proves that Cn(X) ⊆ Cn(Y)



Exercises

Exercise 1

2. Do we need the completeness of S to prove that the
monotonicity property holds for S?

Solution

2. No, we do not need the completeness of S for the
monotonicity property to hold

We have used only the definition of a formal proof from the
hypothesis X and the definition of the consequence operation



Exercises

Exercise 2

1. Prove that for any set X ⊆ F , the set T ⊆ F of all
classical tautologies of the language L{∩,∪,⇒,¬} of the system
S is a subset of Cn(X); i.e. prove that

T ⊆ Cn(X)

2. Do we need the completeness of S to prove that the
property T ⊆ Cn(X) holds for S?



Exercises

Solution
1. The proof system S is complete, so by the
completeness theorem we have that

T = {∈ F : `S A }

By definition of the consequence,

{A ∈ F : `S A } = Cn(∅)

and hence Cn(∅) = T
But ∅ ⊆ X for any set X , so by monotonicity property

T ⊆ Cn(X)

2. Yes, the completeness of S in the main property used in
the proof of 1.
The other property is the monotonicity



Exercises

Exercise 3

Prove that for any formulas A ,B ∈ F , and for any set X ⊆ F ,

(A ∩ B) ∈ Cn(X) if and only if A ∈ Cn(X) and B ∈ Cn(X)

List all properties essential to the proof



Exercises

Solution
(1) Proof of the implication:

if (A ∩ B) ∈ Cn(X), then A ∈ Cn(X) and B ∈ Cn(X)

Assume (A ∩ B) ∈ Cn(X), i.e. X `S (A ∩ B)

From monotonicity property proved in Exercise 1,
completeness of S, and the fact that

|= ((A ∩ B)⇒ A) and |= ((A ∩ B)⇒ B)

we get that

X `S ((A ∩ B)⇒ A) and X `S ((A ∩ B)⇒ B)

From the assumption X `S(A ∩ B) and the above

X`S((A ∩ B)⇒ A)

we get by Modus Ponens

X `S A



Exercises

Similarly, from the assumption X `S(A ∩ B) and the
above property

X`S((A ∩ B)⇒ B)

we get by Modus Ponens

X `S B

This proves that A ∈ Cn(X) and B ∈ Cn(X) and ends the
proof of the implication (1)



Exercises

(2) Proof of the implication:

if A ∈ Cn(X) and B ∈ Cn(X), then (A ∩ B) ∈ Cn(X)

Assume now A ∈ Cn(X) and B ∈ Cn(X), i.e.

X `S A and X `S B

By the monotonicity property, completeness of S, and
tautology

(A ⇒ (B ⇒ (A ∩ B)))

we get that
X `S (A ⇒ (B ⇒ (A ∩ B)))



Exercises

By the assumption we have that

X `S A , X`S B

and the above

X `S (A ⇒ (B ⇒ (A ∩ B)))

we get by Modus Ponens

X `S (B ⇒ (A ∩ B))

Applying Modus Ponens again we obtain

X `S (A ∩ B)

This proves
(A ∩ B) ∈ Cn(X)

and ends the proof and the implication (2) and the proof of
Exercise 3



Exercises

Exercise 4

Prove that classical completeness of a Hilbert proof system
implies the Deduction Theorem, i.e prove that the following
theorem holds for the system S

Deduction Theorem

For any subset Γ of the set of formulas F of S and for any
formulas A ,B ∈ F ,

Γ, A `S B if and only if Γ `S (A ⇒ B)



Exercises

Solution
The formulas

A1 = (A ⇒ (B ⇒ A)) and

A2 = ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

are basic classical autologies
By the completeness of S we have that

`S (A ⇒ (B ⇒ A)) and

`S ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

The formulas A1,A2 are the axioms of the Hilbert system
H1

By the completeness of S, we have that both axioms of H1

are provable in S
These axioms were sufficient for the proof of the Deduction
Theorem for H1 and so the H1 proof can be repeated for the
system S



Exercises

Exercise 5
Prove that for any A ,B ∈ F

Cn({A ,B}) = Cn({(A ∩ B)})

Solution
(1) Proof of the inclusion

Cn({A ,B}) ⊆ Cn({(A ∩ B)})

Assume C ∈ Cn({A ,B}), i.e. we assume A , B `S C

By Exercise 4 the Deduction Theorem holds for S and we
apply it twice to get an equivalent form

`S (A ⇒ (B ⇒ C))

of the assumption



Exercises

We use completeness of S, the fact that the formula

(((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C)))

is a tautology and get that

`S (((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C)))

Applying Modus Ponens to the above and the assumption

`S (A ⇒ (B ⇒ C))

we get
`S ((A ∩ B)⇒ C)

This is equivalent by Deduction Theorem to

(A ∩ B) `S C

We have proved that

C ∈ Cn({(A ∩ B)})

and this ends the proof of the inclusion (1)



Exercises

(2) Proof of the inclusion

Cn({(A ∩ B)}) ⊆ Cn({A ,B})})

Assume that C ∈ Cn({(A ∩ B)}), i.e.

(A ∩ B)`S C

By Deduction Theorem

`S((A ∩ B)⇒ C)

We want to prove that C ∈ Cn({A ,B})

This is equivalent, by Deduction Theorem applied twice to
proving that

`S(A ⇒ (B ⇒ C))



Exercises

The proof is similar to the previous case

We use completeness of S, the fact that the formula

(((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C)))

is a tautology to get

`S (((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C)

Applying Modus Ponens to above and the the assumption

`S((A ∩ B)⇒ C)

we get
`S (A ⇒ (B ⇒ C))

what ends the proof


