## LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

#### **CHAPTER 5 SLIDES**

#### Slides Set 1

PART 1: Hilbert Proof Systems: Proof System H<sub>1</sub>

PART 2: Proof Deduction Theorem for  $H_1$ 

Slides Set 2

PART 3: Proof System  $H_2$ : Deduction Theorem, Exercises

and Examples

Slides Set 3

PART 4: Completeness Theorem Proof One : Constructive

Proof

#### Slides Set 4

PART 5: Completeness Theorem Proof Two: A Counter-Model Existence Method

#### Slides Set 5

PART 6: Some Other Axiomatizations: Examples and Exercises

#### Slides Set 1

PART 1: Hilbert Proof Systems: Proof System H<sub>1</sub>

**Hilbert** proof systems are based on a language with implication and **contain** Modus Ponens as a rule of inference

Modus Ponens is probably the **oldest** of all known rules of inference as it was already known to the **Stoics** (3 B.C.) It is also considered as the **most natural** to our intuitive thinking and the proof systems containing i Modus Ponens as the inference rule play a special role in logic.

**Hilbert systems** put major emphasis on logical axioms, keeping the **rules** of inference to minimum often admitting Modus Ponens as the **sole rule** of inference



There are many proof systems that describe classical propositional logic, i.e. that are complete with respect to the classical semantics

We present a Hilbert proof system for the classical propositional logic and discuss two ways of proving the Completeness Theorem for it

The **first proof** is based on the one included in **Elliott Mendelson's** book **Introduction to Mathematical Logic**It is is a **constructive** proof that shows how one can use the **assumption** that a formula **A** is a **tautology** in order to **construct** its **formal proof** 



The **second proof** is non-constructive

Its importance lies in a fact that the methods it uses can be applied to the proof of **completeness theorem** for classical predicate logic as we present it in (chapter 9)

It also **generalizes** to some non-classical logics

We prove completeness part of the **Completeness Theorem** by proving the converse implication to it

We show how one can **deduce** that a formula *A* **is not** a **tautology from** the fact that it **does not** have a **proof** 

It is hence called a **counter-model** construction proof

**Both proofs** relay on the **Deduction Theorem** and so this is the **theorem** we are now going to prove



## Hilbert Proof System *H*<sub>1</sub>

We consider now a **Hilbert** proof system  $H_1$  based on a language with implication as the **only** connective

The proof system  $H_1$  has only **two** logical axioms and has the Modus Ponens as a **sole rule** of inference

## Hilbert Proof System H<sub>1</sub>

#### Definition

**Hilbert system**  $H_1$  is defined as follows

$$H_1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, MP)$$

A1 (Law of simplification)

$$(A \Rightarrow (B \Rightarrow A))$$

A2 (Frege's Law)

$$((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$

MP is the Modus Ponens rule

$$MP \frac{A \; ; \; (A \Rightarrow B)}{B}$$

where A, B, C are any formulas from  $\mathcal{F}$ 



## Formal Proofs in H<sub>1</sub>

## The formal proof of

$$(A \Rightarrow A)$$

in  $H_1$  is a sequence

$$B_1$$
,  $B_2$ ,  $B_3$ ,  $B_4$ ,  $B_5$ 

#### as defined below

$$B_1$$
  $((A \Rightarrow ((A \Rightarrow A) \Rightarrow A)) \Rightarrow ((A \Rightarrow (A \Rightarrow A)) \Rightarrow (A \Rightarrow A)))$   
axiom A2 for  $A = A$ ,  $B = (A \Rightarrow A)$ , and  $C = A$   
 $B_2$   $(A \Rightarrow ((A \Rightarrow A) \Rightarrow A))$   
axiom A1 for  $A = A$ ,  $B = (A \Rightarrow A)$   
 $B_3$   $A \Rightarrow (A \Rightarrow A)) \Rightarrow (A \Rightarrow A)))$   
MP application to  $B_1$  and  $B_2$   
 $B_4$   $(A \Rightarrow (A \Rightarrow A))$ ,  
axiom A1 for  $A = A$ ,  $B = A$   
 $B_5$   $(A \Rightarrow A)$   
MP application to  $B_3$  and  $B_4$ 



## Formal Proofs in H<sub>1</sub>

We have hence proved the following

#### **Fact**

For any 
$$A \in \mathcal{F}$$
,  $\vdash_{H_1} (A \Rightarrow A)$ 

It is easy to see that the **proof** of  $(A \Rightarrow A)$  wasn't constructed automatically

The **main step** in its construction was the **choice** of a proper form (substitution) of logical axioms to **start with**, and to **continue** the proof with

This choice is far from obvious for un-experienced human and impossible for a machine, as the number of possible substitutions is infinite



### Formal Proofs in H<sub>1</sub>

In Chapter 4 we gave some examples of simple proof systems with inference rules such that it was possible to

"reverse" the usual way they were used

We could use them in a reverse manner in order to search for proofs.

Moreover and we were **able** to do so in an **effective** and **fully automatic** way

We called such proof systems **syntactically decidable** and we defined them **formally** as follows



## Syntactically Decidable Proof Systems

#### Definition

A proof system  $S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R})$  for which **there is** an **effective mechanical procedure** that finds (generates) a formal **proof** of any expression  $E \in \mathcal{E}$ , **if it exists**, is called a **syntactically semi-decidable** system

If additionally there is an effective method of deciding that if a proof of E is not found that it does not exist, the system S is called syntactically decidable

Otherwise S is syntactically undecidable



## Searching for Proofs in a Proof Systems

We will argue now, that the presence of Modus Ponens inference rule in **Hilbert systems** makes them syntactically undecidable

A **general procedure** for automated search for proofs in a proof system S can be stated is as follows.

Let B be an expression of the system S that is not an axiom If B has a **proof** in S, B must be the **conclusion** of one of the inference rules

Let's say it is a rule r

We find all its premisses, i.e. we evaluate  $r^{-1}(B)$ 

If all premisses are axioms, the proof is found

Otherwise we **repeat** the procedure for any non-axiom premiss



## Search for Proof by the Means of MP

**Search** for proofs in any **Hilbert System** S must involve, between other rules, if any, the Modus Ponens inference rule Lets analyze a **search** for proofs by the means of Modus Ponens rule MP

The MP rule says: **given** two formulas A and  $(A \Rightarrow B)$  we **conclude** a formula B

**Assume** now that we have a certain formula, we name it for convenience **B** 

We want to **find** a proof of B

If **B** is an **axiom**, we have the **proof**; the formula itself



## Search for Proof by the Means of MP

If *B* is not an axiom, it was obtained by the application of the Modus Ponens rule, to certain two formulas *A* and  $(A \Rightarrow B)$ 

But there is infinitely many of formulas A,  $(A \Rightarrow B)$ , as A is any formula. It means that in for any B,  $MP^{-1}(B)$  is countably infinite

Obviously, we have the following

#### Fact

Every **Hilbert System S** is not syntactically decidable In particular, the system  $H_1$  is not syntactically decidable



#### Semantic Links

#### Semantic Link 1

System  $H_1$  is **sound** under classical, L, H semantics and **not sound** under K semantics

We leave the **proof** of the following theorem (by induction with respect of the length of the formal proof) as an easy **exercise** 

Soundness Theorem for  $H_1$ For any  $A \in \mathcal{F}$ , if  $\vdash_{H_1} A$ , then  $\models A$ 



#### Semantic Links

#### Semantic Link 2

The system  $H_1$  is not complete under classical semantics It means that we have to show that not all classical tautologies have a proof in  $H_1$  We have proved in Chapter 3 that one needs  $\neg$  and one of the other connectives  $\cup$ ,  $\cap$ ,  $\Rightarrow$  to express all classical connectives, and hence all classical tautologies

For **example** we can't express negation in term of implication alone and so a **tautology**  $(\neg \neg A \Rightarrow A)$  is **not definable** in the language of  $H_1$ , hence

$$Y_{H_1} (\neg \neg A \Rightarrow A)$$



## **Proof from Hypothesis**

We have constructed a formal proof of

$$(A \Rightarrow A)$$

in  $H_1$  on a base of logical axioms, as an **example** of complexity of finding proofs in **Hilbert** systems

In order to make the construction of formal proofs easier by the use of **previously proved** formulas we use the notion of a formal proof from some **hypotheses** (and logical axioms) in any proof system

$$S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R})$$

as defined as follows in chapter 4



## **Proof from Hypothesis**

Given a proof system  $S = (\mathcal{L}, \mathcal{E}, LA, \mathcal{R})$ 

While proving expressions we often use some extra information available, besides the axioms of the proof system This extra information is called **hypothesis** in the proof Let  $\Gamma \subseteq \mathcal{E}$  be a set expressions called **hypothesis** 

### **Definition**

A proof of  $E \in \mathcal{E}$  from the set of hypothesis  $\Gamma$  in S is a **formal proof** in S, where the expressions from  $\Gamma$  are treated as additional hypothesis added to the set LA of the **logical axioms** of the system S

Notation:  $\Gamma \vdash_S E$ 

We read it : E has a proof in S from the set  $\Gamma$  (and the logical axioms LA)



#### Formal Definition

#### **Definition**

We say that  $E \in \mathcal{E}$  has a **formal proof** in S from the set  $\Gamma$  and the logical axioms LA and denote it as  $\Gamma \vdash_S E$ 

if and only if there is a sequence

$$A_1, \ldots, A_n$$

of expressions from  $\mathcal{E}$ , such that

$$A_1 \in LA \cup \Gamma$$
,  $A_n = E$ 

and for each  $1 < i \le n$ , either  $A_i \in LA \cup \Gamma$  or  $A_i$  is a **direct consequence** of some of the **preceding** expressions by virtue of one of the rules of inference of S



## **Special Cases**

Case 1: 
$$\Gamma \subseteq \mathcal{E}$$
 is a finite set and  $\Gamma = \{B_1, B_2, ..., B_n\}$ 

We write

$$B_1, B_2, ..., B_n \vdash_{\mathcal{S}} E$$

instead of 
$$\{B_1, B_2, ..., B_n\} \vdash_{\mathcal{S}} E$$

Case 2:  $\Gamma = \emptyset$ 

By the **definition** of a proof of E from  $\Gamma$ ,  $\emptyset \vdash_S E$  means that in the proof of E we use **only** the logical axioms LA of S We hence write

to denote that E has a proof from  $\Gamma = \emptyset$ 



## Proof from Hypothesis in $H_1$

#### Show that

$$(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_1} (A \Rightarrow C)$$

We construct a formal proof

$$B_1, B_2, ....B_7$$

$$B_1: (B \Rightarrow C), \quad B_2: (A \Rightarrow B),$$
  
hypothesis hypothesis

$$B_3: ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$$
 axiom A2

## Proof from Hypothesis in H<sub>1</sub>

$$B_4: ((B \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C))),$$
 axiom A1 for  $A = (B \Rightarrow C), B = A$ 

$$B_5: (A \Rightarrow (B \Rightarrow C)),$$
  
 $B_1$  and  $B_4$  and MP

$$B_6: ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)), \qquad B_7: (A \Rightarrow C)$$
MP

#### **Deduction Theorem**

In mathematical arguments, one often **proves** a statement *B* on the **assumption** of some other statement *A* and then **concludes** that we have **proved** the implication "if A, then B" This reasoning is justified a theorem, called a **Deduction Theorem** 

#### Reminder

We write 
$$\Gamma$$
,  $A \vdash B$  for  $\Gamma \cup \{A\} \vdash B$   
In general, we write  $\Gamma$ ,  $A_1$ ,  $A_2$ , ...,  $A_n \vdash B$   
for  $\Gamma \cup \{A_1, A_2, ..., A_n\} \vdash B$ 

## Deduction Theorem for $H_1$

**Deduction Theorem** for  $H_1$ 

For any  $A, B \in \mathcal{F}$  and  $\Gamma \subseteq \mathcal{F}$ 

$$\Gamma$$
,  $A \vdash_{H_1} B$  if and only if  $\Gamma \vdash_{H_1} (A \Rightarrow B)$ 

In particular

$$A \vdash_{H_1} B$$
 if and only if  $\vdash_{H_1} (A \Rightarrow B)$ 

The proof of the following **Lemma** provides a good example of multiple applications of the **Deduction Theorem** 

## Lemma

For any  $A, B, C \in \mathcal{F}$ ,

(a) 
$$(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_1} (A \Rightarrow C),$$

**(b)** 
$$(A \Rightarrow (B \Rightarrow C)) \vdash_{H_1} (B \Rightarrow (A \Rightarrow C))$$

Observe that by Deduction Theorem we can re-write (a) as

(a') 
$$(A \Rightarrow B), (B \Rightarrow C), A \vdash_{H_1} C$$

## Poof of (a')

We construct a formal proof

$$B_1, B_2, B_3, B_4, B_5$$

of 
$$(A \Rightarrow B), (B \Rightarrow C), A \vdash_{H_1} C$$
 as follows.

$$B_1: (A \Rightarrow B)$$

hypothesis

$$B_2: (B \Rightarrow C)$$

hypothesis

 $B_3: A$ 

hypothesis

 $B_4: B$ 

 $B_1, B_3$  and MP

 $B_5: C$ 

 $B_2$ ,  $B_4$  and MP



Thus we proved by **Deduction Theorem** that **(a)** holds, i.e.

$$(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_1} (A \Rightarrow C)$$

Proof of Lemma part (b)

By **Deduction Theorem** we have that

$$(A \Rightarrow (B \Rightarrow C)) \vdash_{H_1} (B \Rightarrow (A \Rightarrow C))$$

if and only if

$$(A \Rightarrow (B \Rightarrow C)), B \vdash_{H_1} (A \Rightarrow C)$$

#### **Formal Proofs**

## We construct a formal proof

 $B_2$ ,  $B_3$  and MP

$$B_1, B_2, B_3, B_4, B_5, B_6, B_7$$
 of  $(A \Rightarrow (B \Rightarrow C)), B \vdash_{H_1} (A \Rightarrow C)$  as follows.  $B_1: (A \Rightarrow (B \Rightarrow C))$  hypothesis  $B_2: B$  hypothesis  $B_3: ((B \Rightarrow (A \Rightarrow B))$   $A1 \text{ for } A = B, B = A$   $B_4: (A \Rightarrow B)$ 

$$B_5: ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$
  
axiom A2  
 $B_6: ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$   
 $B_1, B_5$  and MP  
 $B_7: (A \Rightarrow C)$ 

Thus we proved by **Deduction Theorem** that

$$(A \Rightarrow (B \Rightarrow C)) \vdash_{H_1} (B \Rightarrow (A \Rightarrow C))$$

## Simpler Proof

Here i a simpler proof of **Lemma** part **(b)**We apply the **Deduction Theorem** twice, i.e. we get

$$(A \Rightarrow (B \Rightarrow C)) \vdash_{H_1} (B \Rightarrow (A \Rightarrow C))$$
  
if and only if 
$$(A \Rightarrow (B \Rightarrow C)), B \vdash_{H_1} (A \Rightarrow C)$$
  
if and only if 
$$(A \Rightarrow (B \Rightarrow C)), B, A \vdash_{H_1} C$$

## Simpler Proof

```
We now construct a proof of (A \Rightarrow (B \Rightarrow C)), B, A \vdash_{H_1} C
as follows
B_1 \quad (A \Rightarrow (B \Rightarrow C))
hypothesis
B_2 B
hypothesis
B_3 A
hypothesis
B_4 \quad (B \Rightarrow C)
B_1, B_3 and MP
B_5 C
B_2, B_4 and MP
```

#### Slides Set 1

PART 2: **Proof** of **Deduction Theorem** for  $H_1$ 

## The Deduction Theorem for $H_1$

As we now **fix** the proof system to be  $H_1$ , we write  $A \vdash B$  instead of  $A \vdash_{H_1} B$ 

**Deduction Theorem** (Herbrand, 1930) for  $H_1$ For any formulas  $A, B \in \mathcal{F}$ ,

If 
$$A \vdash B$$
, then  $\vdash (A \Rightarrow B)$ 

**Deduction Theorem** (General case) for  $H_1$ For any formulas  $A, B \in \mathcal{F}$ ,  $\Gamma \subseteq \mathcal{F}$ 

$$\Gamma$$
,  $A \vdash B$  if and only if  $\Gamma \vdash (A \Rightarrow B)$ 



#### Proof of The Deduction Theorem

**Proof:** 

**Part 1** We first prove the "if" part:

If 
$$\Gamma$$
,  $A \vdash B$  then  $\Gamma \vdash (A \Rightarrow B)$ 

Assume that

i.e. that we have a formal proof

$$B_1, B_2, ..., B_n$$

of *B* from the set of formulas  $\Gamma \cup \{A\}$  We have to show that

$$\Gamma \vdash (A \Rightarrow B)$$

#### Proof of The Deduction Theorem

In order to prove that

 $\Gamma \vdash (A \Rightarrow B)$  follows from  $\Gamma$ ,  $A \vdash B$  we prove a **stronger statement**, namely that

$$\Gamma \vdash (A \Rightarrow B_i)$$

**for any**  $B_i$ ,  $1 \le i \le n$  in the formal proof  $B_1, B_2, ..., B_n$  of B also follows from  $\Gamma$ ,  $A \vdash B$ 

Hence in **particular case**, when i = n we will obtain that  $\Gamma \vdash (A \Rightarrow B)$  follows from  $\Gamma$ ,  $A \vdash B$  and that will end the proof of **Part 1** 



## Base Step

The proof of **Part 1** is conducted by **mathematical** induction on i, for  $1 \le i \le n$ 

**Step 1** i = 1 (base step)

**Observe** that when i = 1, it means that the formal proof  $B_1, B_2, ..., B_n$  contains only one element  $B_1$ 

By the **definition** of the formal proof from  $\Gamma \cup \{A\}$ , we have that

- (1)  $B_1$  is a logical axiom, or  $B_1 \in \Gamma$ , or
- (2)  $B_1 = A$

This means that  $B_1 \in \{A1, A2\} \cup \Gamma \cup \{A\}$ 

## Base Step

Now we have **two cases** to consider.

**Case1:** 
$$B_1$$
 ∈ { $A1, A2$ } ∪  $\Gamma$ 

**Observe** that  $(B_1 \Rightarrow (A \Rightarrow B_1))$  is the axiom  $A_1$ 

By assumption  $B_1 \in \{A1, A2\} \cup \Gamma$ 

We get the **required proof** of  $(A \Rightarrow B_1)$  from  $\Gamma$ 

by the following application of the Modus Ponens rule

$$(MP) \; \frac{B_1 \; ; \; (B_1 \Rightarrow (A \Rightarrow B_1))}{(A \Rightarrow B_1)}$$

# Base Step

Case 2:  $B_1 = A$ 

When 
$$B_1 = A$$
 then to prove  $\Gamma \vdash (A \Rightarrow B_1)$ 

This means we have to prove

$$\Gamma \vdash (A \Rightarrow A)$$

This holds by **monotonicity** of the consequence and the fact that we have shown that

$$\vdash (A \Rightarrow A)$$

The above cases **conclude the proof** for i = 1 of

$$\Gamma \vdash (A \Rightarrow B_i)$$



# Inductive Step

#### **Assume** that

$$\Gamma \vdash (A \Rightarrow B_k)$$

for all k < i (strong induction)

We will **show** that using this fact we can conclude that also

$$\Gamma \vdash (A \Rightarrow B_i)$$

Consider a formula  $B_i$  in the formal proof

$$B_1, B_2, ..., B_n$$

By **definition** of the formal proof we have to show the following tow cases

**Case 1**:  $B_i \in \{A1, A2\} \cup \Gamma \cup \{A\}$  and

**Case 2:**  $B_i$  follows by MP from certain  $B_j$ ,  $B_m$  such that

j < m < i

Consider now the **Case 1**:  $B_i \in \{A1, A2\} \cup \Gamma \cup \{A\}$ 

The proof of  $(A \Rightarrow B_i)$ 

from  $\Gamma$  in this case is **obtained** from the proof of the **Step** i = 1 by replacement  $B_1$  by  $B_i$ 

and is omitted here as a straightforward repetition



#### Case 2:

 $B_i$  is a **conclusion** of (MP)

If  $B_i$  is a conclusion of (MP), then we must have two formulas  $B_i$ ,  $B_m$  in the formal proof

$$B_1, B_2, ..., B_n$$
 such that  $j < i$ ,  $m < i$ ,  $j \ne m$  and 
$$(MP) \frac{B_j ; B_m}{B_i}$$

By the **inductive assumption** the formulas  $B_j$ ,  $B_m$  are such that  $\Gamma \vdash (A \Rightarrow B_j)$  and  $\Gamma \vdash (A \Rightarrow B_m)$ 

Moreover, by the definition of (MP) rule, the formula  $B_m$  has to have a form  $(B_j \Rightarrow B_i)$ 

This means that

$$B_m = (B_j \Rightarrow B_i)$$

The inductive assumption can be re-written as follows

$$\Gamma \vdash (A \Rightarrow (B_j \Rightarrow B_i))$$

for i < i



#### Observe now that the formula

$$((A \Rightarrow (B_j \Rightarrow B_i)) \Rightarrow ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i)))$$

is a **substitution of the axiom A2** and hence **has a proof** in our system

By the **monotonicity** of the consequence, it also has a proof from the set  $\Gamma$ , i.e.

$$\Gamma \vdash ((A \Rightarrow (B_i \Rightarrow B_i)) \Rightarrow ((A \Rightarrow B_i) \Rightarrow (A \Rightarrow B_i)))$$



#### We know that

$$\Gamma \vdash ((A \Rightarrow (B_j \Rightarrow B_i)) \Rightarrow ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i)))$$

Applying the rule MP i.e. performing the following

$$\frac{(A \Rightarrow (B_j \Rightarrow B_i)) ; ((A \Rightarrow (B_j \Rightarrow B_i)) \Rightarrow ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i)))}{((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i))}$$

we get that also

$$\Gamma \vdash ((A \Rightarrow B_i) \Rightarrow (A \Rightarrow B_i))$$



Applying again the rule MP i.e. performing the following

$$\frac{(A \Rightarrow B_j) \; ; \; ((A \Rightarrow B_j) \Rightarrow (A \Rightarrow B_i))}{(A \Rightarrow B_i)})$$

we get that

$$\Gamma \vdash (A \Rightarrow B_i)$$

what ends the proof of the inductive step

#### Proof of the Deduction Theorem

By the mathematical induction principle, we have **proved** that

$$\Gamma \vdash (A \Rightarrow B_i)$$
, for all  $1 \le i \le n$ 

In particular it is **true** for i = n, i.e. for  $B_n = B$  and we proved that

$$\Gamma \vdash (A \Rightarrow B)$$

This ends the proof of the **first part** of the **Deduction Theorem**:

If 
$$\Gamma, A \vdash B$$
, then  $\Gamma \vdash (A \Rightarrow B)$ 



#### Proof of the Deduction Theorem

The **proof** of the second part, i.e. of the <u>inverse</u> implication:

If 
$$\Gamma \vdash (A \Rightarrow B)$$
, then  $\Gamma$ ,  $A \vdash B$ 

is **straightforward** and goes as follows.

**Assume** that 
$$\Gamma \vdash (A \Rightarrow B)$$

By the monotonicity of the consequence we have also that

$$\Gamma, A \vdash (A \Rightarrow B)$$

Obviously 
$$\Gamma, A \vdash A$$

Applying Modus Ponens to the above, we get the proof of B from  $\{\Gamma, A\}$ 

We have hence proved that  $\Gamma$ ,  $A \vdash B$ 

This ends the proof



#### Proof of the Deduction Theorem

**Deduction Theorem** (General case ) for  $H_1$ For any formulas  $A, B \in \mathcal{F}$  and any  $\Gamma \subseteq \mathcal{F}$ 

$$\Gamma$$
,  $A \vdash B$  if and only if  $\Gamma \vdash (A \Rightarrow B)$ 

The particular case we get also the particular case

**Deduction Theorem** (Herbrand, 1930) for  $H_1$ For any formulas  $A, B \in \mathcal{F}$ ,

If 
$$A \vdash B$$
, then  $\vdash (A \Rightarrow B)$ 

is obtained from the above by assuming that the set  $\Gamma$  is empty



# Chapter 5 Hilbert Proof Systems Completeness of Classical Propositional Logic

#### Slides Set 2

PART 3: Proof System  $H_2$ : Deduction Theorem, Exercises and Examples

## Proof System H<sub>2</sub>

The proof system  $H_1$  is **sound** and strong enough to prove the Deduction Theorem, but, as we proved, is **not complete** 

We extend now the language and the set of logical axioms of  $H_1$  to form a new **Hilbert** system  $H_2$  that is **complete** with respect to classical semantics

The proof of Completeness Theorem for  $H_2$  is be presented in the next section (Slides Set 3)



## Hilbert System H<sub>2</sub> Definition

#### Definition

$$H_2 = (\mathcal{L}_{\{\Rightarrow,\neg\}}, \mathcal{F}, \{A1, A2, A3\} (MP))$$

A1 (Law of simplification)

$$(A \Rightarrow (B \Rightarrow A))$$

A2 (Frege's Law)

$$((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$

A3 
$$((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)))$$

MP (Rule of inference)

$$(MP) \; \frac{A \; ; \; (A \Rightarrow B)}{B}$$

where A, B, C are any formulas of the propositional language  $\mathcal{L}_{\{\Rightarrow,\neg\}}$ 



## Deduction Theorem for System $H_2$

#### **Observation 1**

The proof system  $H_2$  is obtained by adding axiom  $A_3$  to the system  $H_1$ 

#### **Observation 2**

The language of  $H_2$  is obtained by adding the connective  $\neg$  to the language of  $H_1$ 

#### **Observation 3**

The use of axioms A1, A2 in the proof of **Deduction**Theorem for the system  $H_1$  is independent of the connective added to the language of  $H_1$ 

#### **Observation 4**

Hence the proof of the **Deduction Theorem** for the system  $H_1$  can be repeated **as it is** for the system  $H_2$ 



# Deduction Theorem for System $H_2$

**Observations 1-4** prove that he Deduction Theorem holds for system  $H_2$ 

**Deduction Theorem** for H<sub>2</sub>

For any  $\Gamma \subseteq \mathcal{F}$  and  $A, B \in \mathcal{F}$ 

$$\Gamma$$
,  $A \vdash_{H_2} B$  if and only if  $\Gamma \vdash_{H_2} (A \Rightarrow B)$ 

In particular

$$A \vdash_{H_2} B$$
 if and only if  $\vdash_{H_2} (A \Rightarrow B)$ 



# Soundness and CompletenessTheorems

We get by easy verification that  $H_2$  is a **sound** under classical semantics and hence we have the following

Soundness Theorem  $H_2$ For every formula  $A \in \mathcal{F}$ 

if  $\vdash_{H_2} A$  then  $\models A$ 

We prove in the next section (**Slides Set 3**), that  $H_2$  is also **complete** under classical semantics, i.e. we prove **Completeness Theorem** for  $H_2$ 

For every formula  $A \in \mathcal{F}$ ,

 $\vdash_{H_2} A$  if and only if  $\models A$ 



## CompletenessTheorems

The proof of completeness theorem (for a given semantics) is always a main point in creation of any new logic

There are many techniques to prove it, depending on the proof system, and on the semantics we define for it

We **present** in the next next section (Slides Set 2) two proofs of the **Completeness Theorem** for the system  $H_2$ 

These proofs use very different techniques, hence the **reason** of presenting both of them

Proof System H<sub>2</sub>: Exercises and Examples

## Examples and Exercises

We present now some examples of **formal proofs** in  $H_2$ There are **two reasons** for presenting them **First reason**] is that all formulas we provide the **formal proofs** for play a crucial role in the proof of **Completeness Theorem** for  $H_2$ 

The **second reason** is that they provide a "training ground" for a reader to **learn** how to develop **formal** proofs

For this **reason** we write **some** formal proofs in a **full detail** and we leave **some** for the reader to **complete** in a way explained in the following **example** 

## Important Lemma

We write  $\vdash$  instead of  $\vdash_{H_2}$  for the sake of simplicity **Reminder** 

In the construction of the formal proofs we often use the **Deduction Theorem** and the following **Lemma 1** that was proved in the previous section

#### Lemma 1

(a) 
$$(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_2} (A \Rightarrow C)$$

**(b)** 
$$(A \Rightarrow (B \Rightarrow C)) \vdash_{H_2} ((B \Rightarrow (A \Rightarrow C)))$$

## Example 1

## Example 1

Here are consecutive steps

$$B_1, ..., B_5, B_6$$

of the proof in  $H_2$  of  $(\neg \neg B \Rightarrow B)$ 

$$B_1: ((\neg B \Rightarrow \neg \neg B) \Rightarrow ((\neg B \Rightarrow \neg B) \Rightarrow B))$$

$$B_2: ((\neg B \Rightarrow \neg B) \Rightarrow ((\neg B \Rightarrow \neg \neg B) \Rightarrow B))$$

$$B_3: (\neg B \Rightarrow \neg B)$$

$$B_4: ((\neg B \Rightarrow \neg \neg B) \Rightarrow B)$$

$$B_5: (\neg \neg B \Rightarrow (\neg B \Rightarrow \neg \neg B))$$

$$B_6: (\neg \neg B \Rightarrow B)$$

### Exercise 1

#### **Exercise 1**

Complete the proof presented in Example 1 by providing comments how each step of the proof was obtained

#### Remark

The **solution** presented on the next slide shows how to write details of solutions

**Solutions** of other **problems** presented later are less detailed

#### Exercise 1 Solution

#### Solution

The comments that complete the proof are as follows.

$$B_1: ((\neg B \Rightarrow \neg \neg B) \Rightarrow ((\neg B \Rightarrow \neg B) \Rightarrow B))$$
  
Axiom A3 for  $A = \neg B$ ,  $B = B$   
 $B_2: ((\neg B \Rightarrow \neg B) \Rightarrow ((\neg B \Rightarrow \neg \neg B) \Rightarrow B))$   
 $B_1$  and **Lemma 1 (b)** for  
 $A = (\neg B \Rightarrow \neg \neg B)$ ,  $B = (\neg B \Rightarrow \neg B)$ ,  $C = B$ ,  
i.e. we have  
 $((\neg B \Rightarrow \neg \neg B) \Rightarrow ((\neg B \Rightarrow \neg B) \Rightarrow B)) \vdash ((\neg B \Rightarrow \neg B) \Rightarrow B))$ 

#### **Exercise 1 Solution**

$$B_3: (\neg B \Rightarrow \neg B)$$
  
We proved for  $H_1$  and hence for  $H_2$  that  $\vdash (A \Rightarrow A)$  and we substitute  $A = \neg B$   
 $B_4: ((\neg B \Rightarrow \neg \neg B) \Rightarrow B)$   
 $B_2, B_3$  and MP  
 $B_5: (\neg \neg B \Rightarrow (\neg B \Rightarrow \neg \neg B))$   
Axiom A1 for  $A = \neg \neg B, B = \neg B$   
 $B_6: (\neg \neg B \Rightarrow B)$   
 $B_4, B_5$  and **Lemma 1 (a)** for  $A = \neg \neg B, B = (\neg B \Rightarrow \neg \neg B), C = B$   
i.e. we have  $(\neg \neg B \Rightarrow (\neg B \Rightarrow \neg \neg B)), ((\neg B \Rightarrow \neg \neg B) \Rightarrow B) \vdash (\neg \neg B \Rightarrow B)$ 

#### General remark

Observe that in steps

$$B_2, B_3, B_5, B_6$$

of the proof we **called on** previously **proved facts** and used them as a part of the **proof** 

We can always **obtain** a formal **proof** that uses **only axioms** of the system by **inserting** previously constructed **formal proofs** of **these** facts into the places occupying by the respective **steps**  $B_2$ ,  $B_3$ ,  $B_5$ ,  $B_6$  where these **facts** were used

#### Proofs from Axioms

## Example

Consider the step

$$B_3: (\neg B \Rightarrow \neg B)$$

The formula  $(\neg B \Rightarrow \neg B)$  is a previously proved fact

We **replace** the formula  $(\neg B \Rightarrow \neg B)$  (in step step  $B_3$  by its **formal proof** that uses uses **only** axioms

We obtain this proof from the the previously constructed proof of  $(A \Rightarrow A)$  by replacing A by  $\neg B$ 

The last step of the **inserted proof** becomes now "old" step  $B_3$  and we re-numerate all other steps accordingly



Here are consecutive first THREE steps of the proof of  $(\neg \neg B \Rightarrow B)$ 

$$B_1: ((\neg B \Rightarrow \neg \neg B) \Rightarrow ((\neg B \Rightarrow \neg B) \Rightarrow B))$$

$$B_2: ((\neg B \Rightarrow \neg B) \Rightarrow ((\neg B \Rightarrow \neg \neg B) \Rightarrow B))$$

$$B_3: (\neg B \Rightarrow \neg B)$$

We insert now the proof of  $(\neg B \Rightarrow \neg B)$  after step  $B_2$  and erase the  $B_3$ 

The last step of the inserted proof becomes the erased B<sub>3</sub>

# A part of new transformed proof is

$$\begin{array}{lll} B_1: & ((\neg B \Rightarrow \neg \neg B) \Rightarrow ((\neg B \Rightarrow \neg B) \Rightarrow B)) & (\text{Old } B_1 \ ) \\ B_2: & ((\neg B \Rightarrow \neg B) \Rightarrow ((\neg B \Rightarrow \neg \neg B) \Rightarrow B)) & (\text{Old } B_2 \ ) \\ \text{We insert here the proof from axioms only of Old } B_3 \\ B_3: & ((\neg B \Rightarrow ((\neg B \Rightarrow \neg B) \Rightarrow \neg B)) \Rightarrow ((\neg B \Rightarrow (\neg B \Rightarrow \neg B)) \Rightarrow (\neg B \Rightarrow \neg B)) \Rightarrow (\neg B \Rightarrow \neg B)), & (\text{New } B_3 \ ) \end{array}$$

$$B_4: (\neg B \Rightarrow ((\neg B \Rightarrow \neg B) \Rightarrow \neg B))$$

$$B_5: ((\neg B \Rightarrow (\neg B \Rightarrow \neg B)) \Rightarrow (\neg B \Rightarrow \neg B)))$$

$$B_6$$
:  $(\neg B \Rightarrow (\neg B \Rightarrow \neg B))$ 

$$B_7$$
:  $(\neg B \Rightarrow \neg B)$  (Old  $B_3$ )

We repeat our procedure by replacing the step  $B_2$  by its formal proof as defined in the proof of the Lemma 1 (b)

We continue the process for all other steps which involved application of the **Lemma 1** until we get a full **formal proof** from the axioms of  $H_2$  only

Usually we don't do it and we don't need to do it, but it is important to remember that it always can be done

## Example 2

## **Example 2**

Here are consecutive steps

$$B_1, B_2, \dots, B_5$$
  
in a proof of  $(B \Rightarrow \neg \neg B)$   
 $B_1 \quad ((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))$   
 $B_2 \quad (\neg \neg \neg B \Rightarrow \neg B)$   
 $B_3 \quad ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)$   
 $B_4 \quad (B \Rightarrow (\neg \neg \neg B \Rightarrow B))$   
 $B_5 \quad (B \Rightarrow \neg \neg B)$ 

#### **Exercise 2**

**Complete** the proof presented in **Example 2** by providing detailed comments how each step of the proof was obtained.

#### Solution

The comments that complete the proof are as follows.

$$B_1 \quad ((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))$$

Axiom A3 for 
$$A = B$$
,  $B = \neg \neg B$ 

$$B_2 \quad (\neg \neg \neg B \Rightarrow \neg B)$$

**Example 1** for 
$$B = \neg B$$

$$B_3$$
  $((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)$   
 $B_1, B_2$  and MP  
i.e. we have that 
$$\frac{(\neg \neg \neg B \Rightarrow \neg B) \Rightarrow ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)}{((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)}$$
 $B_4$   $(B \Rightarrow (\neg \neg \neg B \Rightarrow B))$   
Axiom A1 for  $A = B$ ,  $B = \neg \neg \neg B$   
 $B_5$   $(B \Rightarrow \neg \neg B)$   
 $B_3, B_4$  and Lemma 1 (a) for  $A = B$ ,  $B = (\neg \neg \neg B \Rightarrow B)$ ,  $C = \neg \neg B$ , i.e. we have that

 $(B \Rightarrow (\neg \neg \neg B \Rightarrow B)), ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B) + (B \Rightarrow \neg \neg B)$ 

# Example 3

Here are consecutive steps

$$B_1, B_2, ..., B_{12}$$
 in a proof of  $(\neg A \Rightarrow (A \Rightarrow B))$   
 $B_1 \neg A$   
 $B_2 A$   
 $B_3 (A \Rightarrow (\neg B \Rightarrow A))$   
 $B_4 (\neg A \Rightarrow (\neg B \Rightarrow \neg A))$   
 $B_5 (\neg B \Rightarrow A)$   
 $B_6 (\neg B \Rightarrow \neg A)$   
 $B_7 ((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))$ 

$$\begin{array}{ll} B_8 & ((\neg B \Rightarrow A) \Rightarrow B) \\ B_9 & B \\ B_{10} & \neg A, A \vdash B \\ B_{11} & \neg A \vdash (A \Rightarrow B) \\ B_{12} & (\neg A \Rightarrow (A \Rightarrow B)) \end{array}$$

#### Exercise 3

- **1.** Complete the proof from the **Example 3** by providing comments how each step of the proof was obtained.
- 2. Prove that

$$\neg A, A \vdash B$$

# Example 4

Here are consecutive steps 
$$B_1, ..., B_7$$
  
in a proof of  $((\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B))$   
 $B_1 \quad (\neg B \Rightarrow \neg A)$   
 $B_2 \quad ((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))$   
 $B_3 \quad (A \Rightarrow (\neg B \Rightarrow A))$   
 $B_4 \quad ((\neg B \Rightarrow A) \Rightarrow B)$   
 $B_5 \quad (A \Rightarrow B)$   
 $B_6 \quad (\neg B \Rightarrow \neg A) \vdash (A \Rightarrow B)$   
 $B_7 \quad ((\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B))$ 

#### **Exercise 4**

Complete the proof from **Example 4** by providing comments how each step of the proof was obtained

# Example 5

Here are consecutive steps 
$$B_1, ..., B_9$$
  
in a proof of  $((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$   
 $B_1 \quad (A \Rightarrow B)$   
 $B_2 \quad (\neg \neg A \Rightarrow A)$   
 $B_3 \quad (\neg \neg A \Rightarrow B)$   
 $B_4 \quad (B \Rightarrow \neg \neg B)$   
 $B_5 \quad (\neg \neg A \Rightarrow \neg \neg B)$   
 $B_6 \quad ((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow (\neg B \Rightarrow \neg A))$   
 $B_7 \quad (\neg B \Rightarrow \neg A)$   
 $B_8 \quad (A \Rightarrow B) \vdash (\neg B \Rightarrow \neg A)$   
 $B_9 \quad ((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$ 

#### **Exercise 5**

Complete the proof of **Example 5** by providing comments how each step of the proof was obtained.

### Solution

B<sub>1</sub> 
$$(A \Rightarrow B)$$
  
Hypothesis  
B<sub>2</sub>  $(\neg \neg A \Rightarrow A)$   
**Example 1** for  $B = A$   
B<sub>3</sub>  $(\neg \neg A \Rightarrow B)$   
Lemma 1 (a) for  $A = \neg \neg A$ ,  $B = A$ ,  $C = B$   
B<sub>4</sub>  $(B \Rightarrow \neg \neg B)$   
**Example 2**

$$B_5$$
  $(\neg \neg A \Rightarrow \neg \neg B)$   
Lemma 1 (a) for  $A = \neg \neg A$ ,  $B = B$ ,  $C = \neg \neg B$   
 $B_6$   $((\neg \neg A \Rightarrow \neg \neg B) \Rightarrow (\neg B \Rightarrow \neg A))$   
**Example 4** for  $B = \neg A$ ,  $A = \neg B$   
 $B_7$   $(\neg B \Rightarrow \neg A)$   
 $B_5$ ,  $B_6$  and MP  
 $B_8$   $(A \Rightarrow B) \vdash (\neg B \Rightarrow \neg A)$   
 $B_1 - B_7$   
 $B_9$   $((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$   
**Deduction Theorem**

# Example 6

Prove that

$$\vdash (A \Rightarrow (\neg B \Rightarrow (\neg (A \Rightarrow B))))$$

#### Solution

Here are consecutive steps (with comments) of building the formal proof

$$B_1 \quad A, (A \Rightarrow B) \vdash B$$

This is MP

$$B_2$$
  $A \vdash ((A \Rightarrow B) \Rightarrow B)$   
**Deduction Theorem**

$$B_3 \vdash (A \Rightarrow ((A \Rightarrow B) \Rightarrow B))$$
**Deduction Theorem**

$$B_4 \vdash (((A \Rightarrow B) \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg (A \Rightarrow B)))$$
**Example 5** for  $A = (A \Rightarrow B)$ ,  $B = B$ 

$$B_5 \vdash (A \Rightarrow (\neg B \Rightarrow (\neg (A \Rightarrow B))))$$

$$B_3, B_4 \text{ and Lemma 2 (a) for}$$

$$A = A \quad B = ((A \Rightarrow B) \Rightarrow B), C = (\neg B \Rightarrow (\neg (A \Rightarrow B)))$$

**Observe** that the proof presented is not the only proof



# Example 7

Here are consecutive steps 
$$B_1, ..., B_{12}$$
  
in a proof of  $((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$   
 $B_1 \quad (A \Rightarrow B)$   
 $B_2 \quad (\neg A \Rightarrow B)$   
 $B_3 \quad ((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$   
 $B_4 \quad (\neg B \Rightarrow \neg A)$   
 $B_5 \quad ((\neg A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg \neg A))$   
 $B_6 \quad (\neg B \Rightarrow \neg \neg A)$   
 $B_7 \quad ((\neg B \Rightarrow \neg \neg A) \Rightarrow ((\neg B \Rightarrow \neg A) \Rightarrow B)))$ 

$$\begin{array}{ll} B_{8} & ((\neg B \Rightarrow \neg A) \Rightarrow B) \\ B_{9} & B \\ B_{10} & (A \Rightarrow B), (\neg A \Rightarrow B) \vdash B \\ B_{11} & (A \Rightarrow B) \vdash ((\neg A \Rightarrow B) \Rightarrow B) \\ B_{12} & ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B)) \end{array}$$

#### Exercise 7

Complete the proof in **Example 7** by providing comments how each step of the proof was obtained

### Exercise 7

### Solution

B<sub>1</sub> 
$$(A \Rightarrow B)$$
  
Hypothesis  
B<sub>2</sub>  $(\neg A \Rightarrow B)$   
Hypothesis  
B<sub>3</sub>  $((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$   
**Example 5**  
B<sub>4</sub>  $(\neg B \Rightarrow \neg A)$   
B<sub>1</sub>, B<sub>3</sub> and MP  
B<sub>5</sub>  $((\neg A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg \neg A))$   
**Example 5** for  $A = \neg A$ ,  $B = B$   
B<sub>6</sub>  $(\neg B \Rightarrow \neg \neg A)$   
B<sub>2</sub>, B<sub>5</sub> and MP

$$B_7$$
  $((\neg B \Rightarrow \neg \neg A) \Rightarrow ((\neg B \Rightarrow \neg A) \Rightarrow B)))$   
Axiom A3 for  $B = B$ ,  $A = \neg A$   
 $B_8$   $((\neg B \Rightarrow \neg A) \Rightarrow B)$   
 $B_6$ ,  $B_7$  and MP  
 $B_9$   $B$   
 $B_4$ ,  $B_8$  and MP  
 $B_{10}$   $(A \Rightarrow B)$ ,  $(\neg A \Rightarrow B) \vdash B$   
 $B_{1-B9}$   
 $B_{11}$   $(A \Rightarrow B) \vdash ((\neg A \Rightarrow B) \Rightarrow B)$   
Deduction Theorem  
 $B_{12}$   $((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$   
Deduction Theorem

# Example 8

Here are consecutive steps

$$B_1, ..., B_3$$

in a proof of

$$((\neg A \Rightarrow A) \Rightarrow A)$$

$$B_1 \quad ((\neg A \Rightarrow \neg A) \Rightarrow ((\neg A \Rightarrow A) \Rightarrow A)))$$

$$B_2 \quad (\neg A \Rightarrow \neg A)$$

$$B_3 \quad ((\neg A \Rightarrow A) \Rightarrow A))$$

#### **Exercise 8**

Complete the proof of **Example 8** by providing comments how each step of the proof was obtained

#### Solution

$$B_1 \quad ((\neg A \Rightarrow \neg A) \Rightarrow ((\neg A \Rightarrow A) \Rightarrow A)))$$

Axiom A3 for B = A

$$B_1 \quad (\neg A \Rightarrow \neg A)$$

Already proved  $(A \Rightarrow A)$  for  $A = \neg A$ 

$$B_1 \quad ((\neg A \Rightarrow A) \Rightarrow A))$$

 $B_1, B_2$  and MP

#### **LEMMA**

We **summarize** all the formal proofs in  $H_2$  provided in our **Examples** and **Exercises** in a form of a following lemma **Lemma** 

The following formulas are provable in  $H_2$ 

- 1.  $(A \Rightarrow A)$
- **2.**  $(\neg \neg B \Rightarrow B)$
- **3.**  $(B \Rightarrow \neg \neg B)$
- **4.**  $(\neg A \Rightarrow (A \Rightarrow B))$
- **5.**  $((\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B))$
- **6.**  $((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$
- 7.  $(A \Rightarrow (\neg B \Rightarrow (\neg (A \Rightarrow B)))$
- **8.**  $((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$
- **9.**  $((\neg A \Rightarrow A) \Rightarrow A)$

# Completeness Theorem for $H_2$

Formulas 1, 3, 4, and 7-9 from the set of provable formulas from the **Lemma** are all formulas needed together with the logical axioms of  $H_2$  to execute the two proofs of the **Completeness Theorem** for  $H_2$ 

We present these proofs in the Slides Set 3

The two proofs represent two different methods of proving the Completeness Theorem



# Chapter 5 Hilbert Proof Systems Completeness of Classical Propositional Logic

#### Slides Set 3

PART 4: Completeness Theorem Proof One : Constructive Proof

The **Proof One** of the **Completeness Theorem** for  $H_2$  presented here is similar in its structure to the proof of the **Deduction Theorem** 

The **Proof One** is due to Kalmar, 1935 and is a detailed version of the one published in Elliott Mendelson's book Introduction to Mathematical Logic, 1987

The **Proof One** is, as **Deduction Theorem** was, constructive It means it **defines** a method how one can **use** the assumption that a formula *A* is a **tautology** in order to **construct** its formal proof



The **Proof One** relies heavily on the **Deduction Theorem** and is very elegant and simple but its methods are **applicable only** to the classical propositional logic

The **Proof One** is specific to a propositional language

$$\mathcal{L}_{\{\neg,\Rightarrow\}}$$

and to the proof system  $H_2$ 

Nevertheless, the  $H_2$  based **Proof One** can be **adopted** and **extended** to other classical propositional languages containing implication and negation

For example we can **adopt** the **Proof One** to languages

$$\mathcal{L}_{\{\neg,\ \cup,\ \Rightarrow\}},\quad \mathcal{L}_{\{\neg,\ \cap,\ \cup,\Rightarrow\}},\quad \mathcal{L}_{\{\neg,\ \cap,\ \cup,\Rightarrow,\Leftrightarrow\}}$$

and appropriate proof systems based for them

We do so by **adding** new special logical axioms to the logical axioms of the proof system  $H_2$ 

Such obtained proof systems are called **extensions** of the system  $H_2$ 



One can think about the system  $H_2$  with its axiomatization given by set

$${A1, A2, A3}$$

of logical axioms, and its language

$$\mathcal{L}_{\{\neg,\Rightarrow\}}$$

as in a sense, a "minimal" Hilbert System for classical propositional logic

The **Proof One** can not be extended to the classical predicate logic, **neither** to the variety of non-classical logics



# Proof System H<sub>2</sub>

**Reminder:**  $H_2$  is the following proof system:

$$H_2 = \left( \ \pounds_{\{\Rightarrow,\neg\}}, \ \ \mathcal{F}, \quad \{A1,A2,A3\}, \ \ MP \ \right)$$

The axioms A1 - A3 are defined as follows.

A1 
$$(A \Rightarrow (B \Rightarrow A))$$
,

A2 
$$((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$
,

A3 
$$((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)))$$

$$(MP) \; \frac{A \; ; \; (A \Rightarrow B)}{B}$$

# Proof System H<sub>2</sub>

**Obviously**, the selected axioms A1, A2, A3 are **tautologies**, and the MP rule leads from tautologies to tautologies.

Hence our proof system  $H_2$  is **sound** and the following theorem holds

#### **Soundness Theorem**

For every formula  $A \in \mathcal{F}$ , If  $\vdash_{H_2} A$ , then  $\models A$ 

# System H<sub>2</sub> Lemma

# We have proved and presented in **Slides Set 2** the following **Lemma**

The following formulas a are provable in  $H_2$ 

- 1.  $(A \Rightarrow A)$
- $2. \quad (\neg \neg B \Rightarrow B)$
- 3.  $(B \Rightarrow \neg \neg B)$
- **4.**  $(\neg A \Rightarrow (A \Rightarrow B))$
- $5. \quad ((\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B))$
- **6.**  $((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$
- 7.  $(A \Rightarrow (\neg B \Rightarrow (\neg (A \Rightarrow B)))$
- **8.**  $((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$
- 9.  $((\neg A \Rightarrow A) \Rightarrow A)$

#### **Proof One**

The Proof One of Completeness Theorem presented here is very elegant and simple, but is applicable only to the classical propositional logic

This proof **is**, as was the proof of Deduction Theorem, a fully constructive

The technique it uses, because of its specifics can't be used even in a case of classical predicate logic, not to mention variaty of non-classical logics

# Completeness Theorem

The **Proof One** is similar in its structure to the proof of the **Deduction Theorem** and is due to Kalmar, 1935

It is a constructive proof and relies heavily on the **Deduction**Theorem

It is possible to prove the **Completeness Theorem** independently of the Deduction Theorem and we will discus such a proofs in later chapters

#### Main Lemma

#### **Some Notations**

We write  $\vdash A$  instead of  $\vdash_S A$  as the system S is fixed. Let A be a formula and  $b_1, b_2, ..., b_n$  be all propositional variables that occur in A, we write it as  $A = A(b_1, b_2, ..., b_n)$ 

#### **Lemma Definition**

Let v be a truth assignment  $v: VAR \longrightarrow \{T, F\}$ 

We define, for  $A, b_1, b_2, ..., b_n$  and truth assignment v corresponding formulas A',  $B_1, B_2, ..., B_n$  as follows:

$$A' = \begin{cases} A & \text{if} \quad v^*(A) = T \\ \neg A & \text{if} \quad v^*(A) = F \end{cases}$$

$$B_i = \begin{cases} b_i & \text{if } v(b_i) = T \\ \neg b_i & \text{if } v(b_i) = F \end{cases}$$

for 
$$i = 1, 2, ..., n$$



# Example

Let 
$$A$$
 be a formula  $(a \Rightarrow \neg b)$   
Let  $v$  be such that  $v(a) = T$ ,  $v(b) = F$   
In this case we have that  $b_1 = a$ ,  $b_2 = b$ , and  $v^*(A) = v^*(a \Rightarrow \neg b) = v(a) \Rightarrow \neg v(b) = T \Rightarrow \neg F = T$   
The corresponding  $A', B_1, B_2$  are:  
 $A' = A$  as  $v^*(A) = T$   
 $B_1 = a$  as  $v(a) = T$   
 $B_2 = \neg b$  as  $v(b) = F$ 

# Example 2

Let 
$$A$$
 be a formula  $((\neg a \Rightarrow \neg b) \Rightarrow c)$   
and let  $v$  be such that  $v(a) = T$ ,  $v(b) = F$ ,  $v(c) = F$   
Evaluate  $A'$ ,  $B_1$ , ... $B_n$  as defined by the **definition 1**  
In this case  $n = 3$  and  $b_1 = a$ ,  $b_2 = b$ ,  $b_3 = c$   
and we evaluate  $v^*(A) = v^*((\neg a \Rightarrow \neg b) \Rightarrow c) = ((\neg v(a) \Rightarrow \neg v(b)) \Rightarrow v(c)) = ((\neg T \Rightarrow \neg F) \Rightarrow F) = (T \Rightarrow F) = F$   
The corresponding  $A'$ ,  $B_1$ ,  $B_2$ ,  $B_2$  are:  
 $A' = \neg((\neg a \Rightarrow \neg b) \Rightarrow c)$  as  $v^*(A) = F$   
 $B_1 = a$  as  $v(a) = T$ ,  $B_2 = \neg b$  as  $v(b) = F$ , and  $B_3 = \neg c$  as  $v(c) = F$ 

#### Main Lemma

The Main Lemma stated below describes a method of transforming a semantic notion of a tautology into a syntactic notion of provability

It **defines**, for any formula  $\boldsymbol{A}$  and a truth assignment  $\boldsymbol{v}$  a corresponding **deducibility relation** 

#### Main Lemma

For any formula  $A = A(b_1, b_2, ..., b_n)$  and any truth assignment v

If A',  $B_1$ ,  $B_2$ , ...,  $B_n$  are corresponding formulas defined by **Lemma Definition**, then

$$B_1, B_2, ..., B_n + A'$$



# **Example**

Let A be a formula  $(a \Rightarrow \neg b)$ Let v be such that v(a) = T, v(b) = FWe have that A' = A,  $B_1 = a$ ,  $B_2 = \neg b$ Main Lemma asserts that

$$a, \neg b + (a \Rightarrow \neg b)$$

# Example

Let A be a formula  $((\neg a \Rightarrow \neg b) \Rightarrow c)$  and let v be such that v(a) = T, v(b) = F, v(c) = F

Main Lemma asserts that

$$a, \neg b, \neg c + \neg ((\neg a \Rightarrow \neg b) \Rightarrow c)$$



#### Proof of the Main Lemma

The proof is by induction on the degree of the formula A

Base Case n=0

In this case A is atomic and so consists of a single propositional variable, say a

If  $v^*(A) = T$  then we have by **Lemma Definition** 

 $A' = A = a, B_1 = a$ 

We obtain, by **definition of provability** from a set  $\Gamma$  of hypothesis for  $\Gamma = \{a\}$  that

a + a

#### Proof of the Main Lemma

If 
$$v^*(A) = F$$
 we have by **Lemma Definition** that

$$A' = \neg A = \neg a$$
 and  $B_1 = \neg a$ 

We obtain, by **definition of provability** from a set  $\Gamma$  of hypothesis for  $\Gamma = \{\neg a\}$  that

$$\neg a \vdash \neg a$$

This **proves** that **Main Lemma** holds for n=0

#### Proof of the Main Lemma

# **Inductive Step**

**Assume** that the **Main Lemma** holds for any formula with j < n connectives

**Need to prove**: the **Main Lemma** holds for **A** with *n* connectives

There are several sub-cases to deal with

Case: A is  $\neg A_1$ 

By the **inductive assumption** we have the formulas

$$A_{1}^{'}, B_{1}, B_{2}, ..., B_{n}$$

corresponding to the  $A_1$  and the propositional variables  $b_1, b_2, ..., b_n$  in  $A_1$ , such that

$$B_1, B_2, ..., B_n + A_1'$$



**Observe** that the formulas A and  $\neg A_1$  have the same propositional variables

So the corresponding formulas

$$B_1, B_2, ..., B_n$$

are the same for both of them

We are going to show that the **inductive assumption** allows us to prove that

$$B_1, B_2, ..., B_n \vdash A'$$

There are two cases to consider.



**Case:** 
$$v^*(A_1) = T$$

If  $v^*(A_1) = T$  then by **Lemma Definition**  $A_1^{'} = A_1$  and by the inductive assumption

$$B_1, B_2, ..., B_n + A_1$$

In this case: 
$$v^*(A) = v^*(\neg A_1) = \neg v^*(T) = F$$

So we have that

$$A' = \neg A = \neg \neg A_1$$

By **Lemma** formula **3.** we have that that

$$\vdash (A_1 \Rightarrow \neg \neg A_1)$$

we obtain by the monotonicity that also

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow \neg \neg A_1)$$

By inductive assumption

$$B_1, B_2, ..., B_n + A_1$$

and by MP we have

$$B_1, B_2, ..., B_n \vdash \neg \neg A_1$$

and as  $A' = \neg A = \neg \neg A_1$  we get  $B_1, B_2, ..., B_n \vdash \neg A$  and so we proved that

$$B_1, B_2, ..., B_n + A'$$



Case: 
$$v^*(A_1) = F$$
  
If  $v^*(A_1) = F$  then  $A_1' = \neg A_1$  and  $v^*(A) = T$  so  $A' = A$ 

Therefore by the inductive assumption we have that

$$B_1,B_2,...,B_n \; \vdash \; \neg A_1$$

as  $A' = \neg A_1$  we get

$$B_1, B_2, ..., B_n + A'$$

Case: A is  $(A_1 \Rightarrow A_2)$ 

If A is  $(A_1 \Rightarrow A_2)$  then  $A_1$  and  $A_2$  have less than n connectives

 $A = A(b_1, ..., b_n)$  so there are some **subsequences**  $c_1, ..., c_k$  and  $d_1, ..., d_m$  for  $k, m \le n$  of the sequence  $b_1, ..., b_n$  such that

$$A_1 = A_1(c_1, ..., c_k)$$
 and  $A_2 = A(d_1, ...d_m)$ 



 $A_1$  and  $A_2$  have less than n connectives and so by the **inductive assumption** we have appropriate formulas  $C_1, ..., C_k$  and  $D_1, ...D_m$  such that

$$C_1, C_2, \ldots, C_k + A_1'$$
 and  $D_1, D_2, \ldots, D_m + A_2'$ 

and  $C_1, C_2, ..., C_k$ ,  $D_1, D_2, ..., D_m$  are **subsequences** of formulas  $B_1, B_2, ..., B_n$  corresponding to the propositional variables in A

By monotonicity we have the also

$$B_1, B_2, ..., B_n + A_1'$$
 and  $B_1, B_2, ..., B_n + A_2'$ 

Now we have the following sub-case to consider



Case: 
$$v^*(A_1) = v^*(A_2) = T$$
  
If  $v^*(A_1) = T$  then  $A_1' = A_1$  and  
if  $v^*(A_2) = T$  then  $A_2' = A_2$   
We also have  $v^*(A_1 \Rightarrow A_2) = T$  and so  $A' = (A_1 \Rightarrow A_2)$   
By the above and the **inductive assumption**

$$B_1, B_2, ..., B_n + A_2$$

and By Axiom 1 and by monotonicity we have

$$B_1, B_2, ..., B_n + (A_2 \Rightarrow (A_1 \Rightarrow A_2))$$

By above and MP we have  $B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2)$  that is

$$B_1, B_2, ..., B_n + A'$$



Case: 
$$v^*(A_1) = T$$
,  $v^*(A_2) = F$   
If  $v^*(A_1) = T$  then  $A_1' = A_1$  and  
if  $v^*(A_2) = F$  then  $A_2' = \neg A_2$   
Also we have in this case  $v^*(A_1 \Rightarrow A_2) = F$  and so  $A' = \neg (A_1 \Rightarrow A_2)$ 

By the  ${\bf above},$  the  ${\bf inductive}$  assumption and  ${\bf monotonicity}$ 

$$B_1, B_2, ..., B_n \vdash \neg A_2$$

By Lemma 7. and by monotonicity we have

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow (\neg A_2 \Rightarrow \neg (A_1 \Rightarrow A_2)))$$

By above and MP **twice** we have  $B_1, B_2, ..., B_n \vdash \neg (A_1 \Rightarrow A_2)$  that is

$$B_1, B_2, ..., B_n + A'$$

Case:  $v^*(A_1) = F$ 

**Observe** that if  $v^*(A_1) = F$  then  $A_1'$  is  $\neg A_1$  and, whatever value v gives  $A_2$ , we have

$$v^*(A_1 \Rightarrow A_2) = T$$

So A' is  $(A_1 \Rightarrow A_2)$ 

Therefore

$$B_1, B_2, \ldots, B_n \vdash \neg A_1$$

From Lemma formula 4. and by monotonicity we have

$$B_1, B_2, ..., B_n + (\neg A_1 \Rightarrow (A_1 \Rightarrow A_2))$$



By Modus Ponens we get that

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2)$$

that is

$$B_1, B_2, ..., B_n + A'$$

We have covered **all cases** and, by **mathematical induction** on the degree of the formula A we got

$$B_1, B_2, ..., B_n + A'$$

This ends the proof of the Main Lemma

**Proof One of Completeness Theorem** 

## **Proof of Completeness Theorem**

Now we use the Main Lemma to prove the following

## **Completeness Theorem** (Completeness Part)

For any formula  $A \in \mathcal{F}$ 

if 
$$\models A$$
 then  $\vdash A$ 

#### **Proof**

Assume that  $\models A$ Let  $b_1, b_2, ..., b_n$  be all propositional variables that occur in the formula A, i.e.

$$A = A(b_1, b_2, ..., b_n)$$

By the **Main Lemma** we know that, for any truth assignment v, the corresponding formulas A',  $B_1$ ,  $B_2$ , ...,  $B_n$  can be found such that

$$B_1, B_2, ..., B_n + A'$$



#### **Proof Completeness Theorem**

**Note that** in this case A' = A for any v since  $\models A$  We have two cases.

1. If v is such that  $v(b_n) = T$ , then  $B_n = b_n$  and

$$B_1, B_2, ..., b_n + A$$

**2.** If v is such that  $v(b_n) = F$ , then  $B_n = \neg b_n$  and by the **Main Lemma** 

$$B_1, B_2, ..., \neg b_n \vdash A$$

So, by the **Deduction Theorem** we have

$$B_1, B_2, ..., B_{n-1} \vdash (b_n \Rightarrow A)$$

and

$$B_1, B_2, ..., B_{n-1} \vdash (\neg b_n \Rightarrow A)$$



## **Proof of Completeness Theorem**

By Lemma formula 8.

$$\vdash ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$$

for  $A = b_n$ , B = A

By monotonicity we have that

$$B_1, B_2, ..., B_{n-1} \vdash ((b_n \Rightarrow A) \Rightarrow ((\neg b_n \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice we get that

$$B_1, B_2, ..., B_{n-1} \vdash A$$

Similarly,  $v^*(B_{n-1})$  may be T or F Applying the **Main Lemma**, the **Deduction Theorem**, **monotonicity**, **Lemma** formula **8**. and **Modus Ponens** twice we can eliminate  $B_{n-1}$  just as we have eliminated  $B_n$ After n steps, we finally obtain proof of A in  $H_2$ , i.e. we proved that

#### Constructiveness of the Proof

Observe that the proof of the Completeness Theorem is constructive

**Moreover**, we have used in it only **Main Lemma** and **Deduction Theorem** which both have **constructive** proofs

We can hence reconstruct proofs in each case when we apply these theorems back to the original axioms of  $H_2$ 



#### Constructiveness of the Proof

The same applies to the proofs in  $H_2$  of all formulas 1. - 9. of the **Lemma** 

It means that for any A, such that

 $\models A$ 

the set  $V_A$  of all v restricted to A provides a method of a construction of the formal proof of A in  $H_2$ 

#### Example

The proof of **Completeness Theorem** defines a **method** of efficiently combining truth assignments  $v \in V_A$  restricted to A while **constructing** the proof of A

Let's consider a **tautology** A, where the formula A is

$$A(a,b,c) = ((\neg a \Rightarrow b) \Rightarrow (\neg (\neg a \Rightarrow b) \Rightarrow c)$$

We **present** on the next slides all steps of the **Proof One** as applied to A



Given

$$A(a,b,c) = ((\neg a \Rightarrow b) \Rightarrow (\neg (\neg a \Rightarrow b) \Rightarrow c)$$

By the Main Lemma and the assumption that

$$\models A(a,b,c)$$

any  $v \in V_A$  defines formulas  $B_a$ ,  $B_b$ ,  $B_c$  such that

$$B_a, B_b, B_c + A$$

**The proof** is based on a method of using all  $v \in V_A$  (there are 8 of them) to **define** a process of elimination of all hypothesis  $B_a$ ,  $B_b$ ,  $B_c$  to **construct** the proof of A, i.e. to prove that

$$\vdash A$$

**Step 1**: elimination of  $B_c$ 

**Observe** that by definition,  $B_c$  is c or  $\neg c$  depending on the **choice** of  $v \in V_A$ 

We **choose** two truth assignments  $v_1 \neq v_2 \in V_A$  such that

$$v_1 | \{a, b\} = v_2 | \{a, b\} \text{ and } v_1(c) = T, v_2(c) = F$$

Case 1:  $v_1(c) = T$ 

By by definition  $B_c = c$ 

By our choice, the assumption that  $\models A$  and the **Main** 

Lemma applied to  $v_1$ 

$$B_a, B_b, c \vdash A$$

By **Deduction Theorem** we have that

$$B_a, B_b \vdash (c \Rightarrow A)$$



Case 2: 
$$v_2(c) = F$$

By definition  $B_c = \neg c$ 

By our **choice**, assumption that  $\models A$ , and the **Main Lemma** applied to  $v_2$ 

$$B_a, B_b, \neg c \vdash A$$

By the **Deduction Theorem** we have that

$$B_a, B_b \vdash (\neg c \Rightarrow A)$$



By **Lemma** formula **8.** for A = c, B = A we have that

$$\vdash ((c \Rightarrow A) \Rightarrow ((\neg c \Rightarrow A) \Rightarrow A))$$

By monotonicity we have that

$$B_a, B_b \vdash ((c \Rightarrow A) \Rightarrow ((\neg c \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties on the previous slide we get that

$$B_a, B_b \vdash A$$

We have **eliminated**  $B_c$ 



**Step 2:** elimination of  $B_b$  from  $B_a, B_b \vdash A$ 

We repeat the Step 1

As before we have **2 cases** to consider:  $B_b = b$  or  $B_b = \neg b$  We **choose** two truth assignments  $w_1 \neq w_2 \in V_A$  such that

$$w_1 | \{a\} = w_2 | \{a\} = v_1 | \{a\} = v_2 | \{a\} \text{ and } w_1(b) = T, w_2(b) = F$$

**Case 1:**  $w_1(b) = T$  and by definition  $B_b = b$ By our choice, assumption that  $\models A$  and the **Main Lemma** applied to  $w_1$ 

$$B_a, b \vdash A$$

By **Deduction Theorem** we have that

$$B_a \vdash (b \Rightarrow A)$$



**Case 2:**  $w_2(b) = F$  and by definition  $B_b = \neg b$ By choice, assumption that  $\models A$  and the **Main Lemma** applied to  $w_2$ 

$$B_a, \neg b \vdash A$$

By the **Deduction Theorem** we have that

$$B_a \vdash (\neg b \Rightarrow A)$$

By **Lemma** formula **8.** for A = b, B = A we have that

$$\vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$$

By monotonicity

$$B_a \vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties from the previous slide we get that

$$B_a \vdash A$$

We have **eliminated**  $B_b$ 



**Step 3:** elimination] of  $B_a$  from  $B_a \vdash A$ 

We repeat the Step 2

As before we have **2 cases** to consider:  $B_a = a$  or  $B_a = \neg a$ We choose two truth assignments  $g_1 \neq g_2 \in V_A$  such that

$$g_1(a) = T$$
 and  $g_2(a) = F$ 

**Case 1:**  $g_1(a) = T$ , and by definition  $B_a = a$ By the choice, assumption that  $\models A$ , and the **Main Lemma** applied to  $g_1$ 

$$a \vdash A$$

By **Deduction Theorem** we have that

$$\vdash (a \Rightarrow A)$$



Case 2:  $g_2(a) = F$  and by definition  $B_a = \neg a$ 

By the choice, assumption that  $\models A$ , and the **Main Lemma** applied to  $g_2$ 

$$\neg a \vdash A$$

By the **Deduction Theorem** we have that

$$\vdash (\neg a \Rightarrow A)$$

By **Lemma** formula **8.** for A = a, B = A we have that

$$\vdash ((a \Rightarrow A) \Rightarrow ((\neg a \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties from previous slides we get that

**⊢ A** 

We have **eliminated**  $B_a$ ,  $B_b$ ,  $B_c$  and constructed the **proof** of A in S



#### **Exercises**

#### **Exercise 1**

The **Lemma** listed formulas 1. - 9. that we said they were needed for **both** proofs of the **Completeness Theorem**.

**List** all the **formulas** from t**Lemma** that are are **needed** for the **Proof One** alone

#### **Exercises**

#### Exercise 2

The system  $H_2$  was defined and the **Proof One** was carried out for the language  $\mathcal{L}_{\{\Rightarrow,\neg\}}$ 

**Extend** the system  $H_2$  and the **Proof One** to the language  $\mathcal{L}_{\{\Rightarrow,\cup,\neg\}}$  by **adding** all new cases concerning the new connective  $\cup$ 

**List** all new formulas needed to be **added** as new Axioms to  $H_2$  to be able to follow the methods of the original **Proof One** 

#### **Exercise 3**

Repeat the **Exercise 2** for he language

$$\mathcal{L}_{\{\Rightarrow,\ \cup,\ \cap\ \neg\}}$$



# Chapter 5 Hilbert Proof Systems Completeness of Classical Propositional Logic

#### Slides Set 4

#### PART 6: Completeness Theorem Proof Two:

A Counter- Model Existence Method

## Completeness Theorem Proof Two

Our goal now is to prove the following **Completeness Theorem** (Completeness Part) For any formula  $A \in \mathcal{F}$  of  $H_2$ 

if 
$$\models A$$
 then  $\vdash A$ 

We do so by **proving** its logically equivalent **opposite** implication:

If 
$$\not\vdash A$$
, then  $\not\models A$ 

Hence the **Proof Two** consists of using the information that a formula *A* is not provable to show the **existence** of a counter-model for *A* 



## Completeness Theorem Proof Two

The **Proof Two** is much more complicated then the **Proof One** 

The **main point** of the proof is a general, non-constructive method for proving **existence** of a counter-model for any non-provable formula *A* 

The **generality** of the method makes it possible to **adopt** it for other cases of predicate and some non-classical logics

This is why we call the **Proof Two** a counter-model existence method



## **Proof Two Steps**

The construction of a counter-model for any non-provable formula A presented in this proof is abstract, not constructive, as it was in the **Proof One** 

It can be generalized to the case of predicate logic, and many of non-classical logics; propositional and predicate.

This is the reason we present it here

## **Proof Two Steps**

We remind that  $\not\models A$  means that there is a truth assignment  $v: VAR \longrightarrow \{T, F\}$ , such that (as we are in classical semantics)  $v^*(A) = F$ 

We assume that A does not have a proof i.e.  $\not\vdash A$  we use this information in order to define a general method of constructing v, such that  $v^*(A) = F$ 

This is done in the following steps.

## **Proof Two Steps**

## Step 1

Definition of a special set of formulas  $\Delta^*$ 

We use the information  $\not\vdash A$  to define a set of formulas  $\triangle^*$  such that  $\neg A \in \triangle^*$ 

## Step 2

Definition of the counter - model

We define the variable truth assignment  $v: VAR \longrightarrow \{T, F\}$  as follows:

$$v(a) = \begin{cases} T & \text{if } \Delta^* + a \\ F & \text{if } \Delta^* + \neg a \end{cases}$$

#### Proof 2 Steps

#### Step 3

We prove that v is a **counter-model** for A
We first prove a following more general property of v

## **Property**

The set  $\Delta^*$  and  $\mathbf{v}$  defined in the Steps 1 and 2 are such that for every formula  $\mathbf{B} \in \mathcal{F}$ 

$$v^*(B) = \begin{cases} T & \text{if } \Delta^* + B \\ F & \text{if } \Delta^* + \neg B \end{cases}$$

We then use the **Step 3** to prove that  $v^*(A) = F$ 

#### Main Notions

The definition, construction and the properties of the set  $\Delta^*$  and hence the **Step 1**, are the most essential for the Proof Two

The other steps have mainly technical character

The **main notions** involved in the proof are: consistent set, complete set and a consistent complete extension of a set of formulas

We are going **prove** some essential facts about them.



#### Consistent and Inconsistent Sets

There exist two definitions of consistency; semantical and syntactical

Semantical definition uses the notion of a model and says:

A set is **consistent** if it has a **model** 

Syntactical definition uses the notion of provability and says:

A set is consistent if one can't prove a contradiction from it



#### Consistent and Inconsistent Sets

In our proof of the **Completeness Theorem** we use the following formal syntactical definition of consistency of a set of formulas

#### **Definition** of a consistent set

We say that a set  $\Delta \subseteq \mathcal{F}$  of formulas is **consistent** if and only if

there is no a formula  $A \in \mathcal{F}$  such that

 $\Delta \vdash A$  and  $\Delta \vdash \neg A$ 



#### Consistent and Inconsistent Sets

#### **Definition** of an inconsistent set

A set  $\Delta \subseteq \mathcal{F}$  is **inconsistent** if and only if **there is** a formula  $A \in \mathcal{F}$  such that

$$\Delta \vdash A$$
 and  $\Delta \vdash \neg A$ 

The notion of consistency, as defined above, is characterized by the following **Consistency Lemma** 

### Consistency Condition Lemma

# **Lemma** Consistency Condition

For every set  $\Delta \subseteq \mathcal{F}$  of formulas, the following conditions are equivalent

- (i) △ is consistent
- (ii) there is a formula  $A \in \mathcal{F}$  such that  $\Delta \not\vdash A$

### **Proof of Consistency Lemma**

#### **Proof**

To establish the equivalence of (i) and (ii) we prove the corresponding opposite implications

We prove the following two cases

Case 1 not (ii) implies not (i)

Case 2 not (i) implies not (ii)

### **Proof of Consistency Lemma**

#### Case 1

Assume that not (ii)

It means that for all formulas  $A \in \mathcal{F}$  we have that

$$\Delta \vdash A$$

In particular it is true for a certain A = B and for a certain  $A = \neg B$  i.e.

$$\Delta \vdash B$$
 and  $\Delta \vdash \neg B$ 

and hence it proves that  $\triangle$  is **inconsistent** i.e. **not (i)** holds



### **Proof of Consistency Lemma**

#### Case 2

Condition Lemma

Assume that **not (i)**, i.e that  $\Delta$  is **inconsistent**Then there is a formula A such that  $\Delta \vdash A$  and  $\Delta \vdash \neg A$ Let B be any formula
We proved (**Lemma** formula **6.**) that  $\vdash (\neg A \Rightarrow (A \Rightarrow B))$ By monotonicity

$$\Delta \vdash (\neg A \Rightarrow (A \Rightarrow B))$$

Applying Modus Ponens twice to  $\neg A$  first, and to A next we get that  $\triangle \vdash B$  for any formula BThus not (ii) and it ends the proof of the Consistency

4□ > 4個 > 4 = > 4 = > = 900

## **Inconsistency Condition Lemma**

Inconsistent sets are hence characterized by the following fact

**Lemma** Inconsistency Condition

For every set  $\Delta \subseteq \mathcal{F}$  of formulas, the following conditions are equivalent:

- (i)  $\triangle$  is inconsistent,
- (i) for any formula  $A \in \mathcal{F} \triangle \vdash A$

## Finite Consequence Lemma

We remind here property of the finiteness of the **consequence** operation.

# **Lemma** Finite Consequence

For every set  $\Delta$  of formulas and for every formula  $A \in \mathcal{F}$  $\Delta \vdash A$  if and only if there is a **finite** set  $\Delta_0 \subseteq \Delta$  such that  $\Delta_0 \vdash A$ 

#### **Proof**

If  $\Delta_0 \vdash A$  for a certain  $\Delta_0 \subseteq \Delta$ , hence by the monotonicity of the consequence, also  $\Delta \vdash A$ 



## Finite Consequence Lemma

Assume now that  $\triangle \vdash A$  and let

$$A_1, A_2, ..., A_n$$

be a formal proof of A from  $\triangle$ Let

$$\Delta_0 = \{A_1, A_2, ..., A_n\} \cap \Delta$$

Obviously,  $\Delta_0$  is finite and  $A_1, A_2, ..., A_n$  is a formal proof of A from  $\Delta_0$ 

### Finite Inconsistency Theorem

The following theorem is a simple corollary of just proved Finite Consequence Lemma

# **Theorem** Finite Inconsistency

- (1.) If a set  $\triangle$  is inconsistent, then it has a finite inconsistent subset  $\triangle_0$
- (2.) If every finite subset of a set  $\triangle$  is **consistent** then the set  $\triangle$  is also **consistent**

# Finite Inconsistency Theorem

#### **Proof**

If  $\triangle$  is **inconsistent**, then for some formula A,

$$\triangle \vdash A$$
 and  $\triangle \vdash \neg A$ 

By the Finite Consequence Lemma , there are finite subsets  $\Delta_1$  and  $\Delta_2$  of  $\Delta$  such that

$$\Delta_1 \vdash A$$
 and  $\Delta_2 \vdash \neg A$ 

The union  $\Delta_1 \cup \Delta_2$  is a finite subset of  $\Delta$  and by monotonicity

$$\Delta_1 \cup \Delta_2 \vdash A$$
 and  $\Delta_1 \cup \Delta_2 \vdash \neg A$ 

Hence we proved that  $\Delta_1 \cup \Delta_2$  is a finite inconsistent subset of  $\Delta$ 

The second implication **(2.)** is the opposite to the one just proved and hence also holds



## Consistency Lemma

The following **Lemma** links the notion of non-provability and consistency

It will be used as an important step in our **Proof Two** of the **Completeness Theorem** 

#### Lemma

For any formula  $A \in \mathcal{F}$ ,

if  $\not\vdash A$  then the set  $\{\neg A\}$  is **consistent** 

### Consistency Lemma

**Proof** We prove the opposite implication If  $\{\neg A\}$  is **inconsistent**, then  $\vdash A$  Assume that  $\{\neg A\}$  is **inconsistent** By the Inconsistency Condition Lemma we have that  $\{\neg A\} \vdash B$  for **any formula** B, and hence in particular

$$\{\neg A\} \vdash A$$

By **Deduction Theorem** we get

$$\vdash (\neg A \Rightarrow A)$$

We proved ( Lemma formula 9.) that

$$\vdash ((\neg A \Rightarrow A) \Rightarrow A)$$

By Modus Ponens we get

**⊢** *A* 

This ends the proof



## Complete and Incomplete Sets

Another important notion, is that of a **complete set** of formulas.

Complete sets, as defined here are sometimes called **maximal**, but we use the first name for them.

They are defined as follows.

**Definition** Complete set

A set  $\triangle$  of formulas is called **complete** if for every formula  $A \in \mathcal{F}$ 

$$\Delta \vdash A$$
 or  $\Delta \vdash \neg A$ 

**Godel** used this notion of complete sets in his **Incompleteness of Arithmetic Theorem** 

The complete sets are characterized by the following fact.



### Complete and Incomplete Sets

### **Complete Set Condition Lemma**

For every set  $\Delta \subseteq \mathcal{F}$  of formulas, the following conditions are equivalent

- (i) The set  $\triangle$  is complete
- (ii) For every formula  $A \in \mathcal{F}$ ,
- if  $\triangle \not\vdash A$  then then the set  $\triangle \cup \{A\}$  is **inconsistent**

#### **Proof**

We consider two cases

Case 1 We show that (i) implies (ii) and

Case 2 we show that (ii) implies (i)

Proof of Case 1

Assume (i) and not(ii) i.e.

assume that  $\Delta$  is **complete** and there is a formula  $A \in \mathcal{F}$  such that  $\Delta \not\vdash A$  and the set  $\Delta \cup \{A\}$  is **consistent** 

We have to show that we get a **contradiction** 

But if  $\triangle \not\vdash A$ , then from the assumption that  $\triangle$  is **complete** we get that

$$\Delta \vdash \neg A$$

By the monotonicity of the consequence we have that

$$\Delta \cup \{A\} \vdash \neg A$$



We proved (**Lemma** formula **4.**) 
$$\vdash$$
 ( $A \Rightarrow A$ )  
By monotonicity  $\Delta \vdash$  ( $A \Rightarrow A$ ) and by **Deduction Theorem** 
$$\Delta \cup \{A\} \vdash A$$

We hence proved that that there is a formula  $A \in \mathcal{F}$  such that

$$\Delta \cup \{A\}$$
 and  $\Delta \cup \{A\} \vdash \neg A$ 

i.e. that the set  $\Delta \cup \{A\}$  is inconsistent Contradiction



#### Proof of Case 2

Assume (ii), i.e. that for every formula  $A \in \mathcal{F}$ 

if  $\triangle \not\vdash A$  then the set  $\triangle \cup \{A\}$  is **inconsistent** Let A be any formula.

We want to show (i), i.e. to show that the following condition

**C**: 
$$\Delta \vdash A$$
 or  $\Delta \vdash \neg A$ 

is satisfied.

Observe that if

$$\Delta \vdash \neg A$$

then the condition C is obviously satisfied



If, on the other hand,

$$\Delta \not\vdash \neg A$$

then we are going to show now that it must be, under the assumption of (ii), that  $\triangle \vdash A$  i.e. that (i) holds Assume that

$$\Delta \not\vdash \neg A$$

then by (ii) the set  $\Delta \cup \{\neg A\}$  is inconsistent



The Inconsistency Condition Lemma says

For every set  $\Delta \subseteq \mathcal{F}$  of formulas, the following conditions are equivalent:

- (i)  $\triangle$  is inconsistent,
- (i) for any formula  $A \in \mathcal{F}$ ,  $\Delta \vdash A$

We just proved that the set  $\Delta \cup \{\neg A\}$  is **inconsistent** So by the above Lemma we get

$$\Delta \cup \{\neg A\} \vdash A$$



By the **Deduction Theorem**  $\Delta \cup \{\neg A\} \vdash A$  implies that

$$\Delta \vdash (\neg A \Rightarrow A)$$

Observe that by Lemma formula 4.

$$\vdash ((\neg A \Rightarrow A) \Rightarrow A)$$

By monotonicity

$$\Delta \vdash ((\neg A \Rightarrow A) \Rightarrow A)$$

Detaching, by MP the formula  $(\neg A \Rightarrow A)$  we obtain that

$$\Delta \vdash A$$

This **ends** the proof that (i) holds.



## Incomplete Sets

**Definition** Incomplete Set

A set  $\triangle$  of formulas is called **incomplete** if it is **not complete** i.e. when the following condition holds

**There exists** a formula  $A \in \mathcal{F}$  such that

 $\triangle \nvdash A$  and  $\triangle \nvdash \neg A$ 

We get as a direct consequence of the Complete Set Condition Lemma the following characterization of incomplete sets

**Lemma** Incomplete Set Condition

For every set  $\Delta \subseteq \mathcal{F}$  of formulas, the following conditions are equivalent:

- (i) △ is incomplete,
- (ii) there is formula  $A \in \mathcal{F}$  such that  $\Delta \not\vdash A$  and the set  $\Delta \cup \{A\}$  is **consistent**.

# Main Lemma: Complete Consistent Extension

Now we are going to prove a **Main Lemma** that is **essential** to the construction of the special set  $\Delta^*$  mentioned in the **Step 1** of the proof of the **Completeness Theorem** and hence to the **proof of the theorem** itself Let's first introduce one more notion

### Complete Consistent Extension

**Definition** Extension  $\Delta^*$  of the set  $\Delta$ 

A set  $\Delta^*$  of formulas is called an **extension** of a set  $\Delta$  of formulas if the following **condition holds** 

$$\{A \in \mathcal{F} : \Delta \vdash A\} \subseteq \{A \in \mathcal{F} : \Delta^* \vdash A\}$$

i.e.

$$Cn(\Delta) \subseteq Cn(\Delta^*)$$

In this case **we say** also that  $\triangle$  **extends** to the set of formulas  $\triangle$ \*



# Main Lemma

#### Main Lemma

# Main Lemma Complete Consistent Extension

Every consistent set  $\Delta$  of formulas can be extended to a complete consistent set  $\Delta^*$  of formulas i. e

For every **consistent** set  $\triangle$  there is a set  $\triangle^*$  that is **complete** and **consistent** and is an **extension** of  $\triangle$  i.e.

$$Cn(\Delta) \subseteq Cn(\Delta^*)$$

#### Proof of the Main Lemma

#### **Proof**

Assume that the lemma does not hold, i.e. that there is a consistent set  $\Delta$ , such that all its consistent extensions are not complete

In particular, as  $\Delta$  is an consistent extension of itself, we have that  $\Delta$  is **not complete** 

The proof consists of a **construction** of a particular set  $\Delta^*$  and **proving** that it forms a **complete** consistent extension of  $\Delta$ 

This is **contrary** to the assumption that all its consistent extensions are **not complete** 



### Construction of $\Delta^*$

As we know, the set  $\mathcal{F}$  of all formulas is enumerable; they can hence be put in an infinite sequence

$$F A_1, A_2, \ldots, A_n, \ldots$$

such that every formula of  $\ensuremath{\mathcal{F}}$  occurs in that sequence exactly once

We define, by mathematical induction, an infinite sequence

**D** 
$$\{\Delta_n\}_{n\in\mathbb{N}}$$

of consistent subsets of formulas together with a sequence

$$\mathbf{B} \qquad \{B_n\}_{n\in\mathbb{N}}$$

of formulas as follows



### **Initial Step**

In this step we define the sets

$$\Delta_1, \Delta_2$$
 and the formula  $B_1$ 

and prove that

$$\Delta_1$$
 and  $\Delta_2$ 

are **consistent**, **incomplete** extensions of  $\triangle$ 

We take as the first set in  $\mathbf{D}$  the set  $\Delta$ , i.e. we define

$$\Delta_1 = \Delta$$

By assumption the set  $\Delta$ , and hence also  $\Delta_1$  is **not complete**.

From the Incomplete Set Condition Lemma we get that there is a formula  $B \in \mathcal{F}$  such that

$$\Delta_1 \not\vdash B$$
 and  $\Delta_1 \cup \{B\}$  is consistent

Let  $B_1$  be the **first formula** with this property in the sequence **F** of all formulas

We define

$$\Delta_2 = \Delta_1 \cup \{B_1\}$$



**Observe** that the set  $\Delta_2$  is consistent and

$$\Delta_1 = \Delta \subseteq \Delta_2$$

By monotonicity  $\Delta_2$  is a **consistent extension** of  $\Delta$ Hence, as we assumed that all consistent extensions of  $\Delta$  are **not complete**, we get that  $\Delta_2$  cannot be complete, i.e.

△2 is incomplete

# **Inductive Step**

Suppose that we have defined a sequence

$$\Delta_1, \Delta_2, \ldots, \Delta_n$$

of **incomplete**, **consistent extensions** of  $\Delta$  and a sequence

$$B_1, B_2, \ldots, B_{n-1}$$

of formulas, for  $n \ge 2$ 

Since  $\Delta_n$  is **incomplete**, it follows from the Incomplete Set Condition Lemma that there is a formula  $B \in \mathcal{F}$  such that

 $\Delta_n \not\vdash B$  and  $\Delta_n \cup \{B\}$  is consistent



## Construction of $\Delta^*$

Let  $B_n$  be the first formula with this property in the sequence F of all formulas.

We define

$$\Delta_{n+1} = \Delta_n \cup \{B_n\}$$

By the definition

$$\Delta \subseteq \Delta_n \subseteq \Delta_{n+1}$$

and the set  $\Delta_{n+1}$  is a **consistent** extension of  $\Delta$ Hence by our assumption that all all consistent extensions of  $\Delta$  are **incomplete** we get that

$$\Delta_{n+1}$$

is an **incomplete** consistent extension of  $\Delta$ 



## Construction of $\Delta^*$

By the principle of mathematical induction we have defined an infinite sequence

**D** 
$$\Delta = \Delta_1 \subseteq \Delta_2 \subseteq ..., \subseteq \Delta_n \subseteq \Delta_{n+1} \subseteq ....$$

such that for all  $n \in \mathbb{N}$ ,  $\Delta_n$  is **consistent**, and each  $\Delta_n$  an **incomplete consistent extension** of  $\Delta$ Moreover, we have also defined a sequence

**B** 
$$B_1, B_2, ..., B_n, ...$$

of formulas, such that for all  $n \in \mathbb{N}$ ,

$$\Delta_n \not\vdash B_n$$
 and  $\Delta_n \cup \{B_n\}$  is consistent   
Observe that  $B_n \in \Delta_{n+1}$  for all  $n \ge 1$ 



## Definition of $\Delta^*$

Now we are ready to define  $\Delta^*$ 

**Definition** of  $\Delta^*$ 

$$\Delta^* = \bigcup_{n \in N} \Delta_n$$

To complete the proof our theorem we have now to prove that  $\Delta^*$  is a **complete consistent extension** of  $\Delta$ 

## Δ\* Consistent

**Obviously** directly from the definition  $\Delta \subseteq \Delta^*$  and hence we have the following

**Fact 1**  $\Delta^*$  is an **extension** of  $\Delta$ By Monotonicity of Consequence  $Cn(\Delta) \subseteq Cn(\Delta^*)$ , hence extension

As the next step we prove

Fact 2 The set  $\Delta^*$  is consistent



#### Δ\* Consistent

**Proof** that  $\Delta^*$  is **consistent** Assume that  $\Delta^*$  is **inconsistent** 

By the Finite Inconsistency Theorem there is a finite subset  $\Delta_0$  of  $\Delta^*$  that is **inconsistent**, i.e.

$$\Delta_0 \subseteq \bigcup\nolimits_{n \in N} \Delta_n, \quad \Delta_0 = \{\textit{\textbf{C}}_1,...,\textit{\textbf{C}}_n\}, \quad \Delta_0 \quad \text{is inconsistent}$$

## Proof of Δ\* Consistent

We have 
$$\Delta_0 = \{C_1, \ldots, C_n\}$$

By the definition of  $\Delta^*$  for each formula  $C_i \in \Delta_0$ 

$$C_i \in \Delta_{k_i}$$

for certain  $\Delta_{k_i}$  in the sequence

**D** 
$$\Delta = \Delta_1 \subseteq \Delta_2 \subseteq ..., \subseteq \Delta_n \subseteq \Delta_{n+1} \subseteq ....$$

Hence 
$$\Delta_0 \subseteq \Delta_m$$
 for  $m = max\{k_1, k_2, ... k_n\}$ 

#### Proof of Δ\* Consistent

But we proved that all sets of the sequence **D** are **consistent** 

This contradicts the fact that  $\Delta_m$  is consistent as it contains an **inconsistent** subset  $\Delta_0$ 

This contradiction ends the proof that  $\Delta^*$  is consistent

# Proof of $\Delta^*$ Complete

Fact 3 The set  $\Delta^*$  is complete

**Proof** Assume that  $\Delta^*$  is **not complete**.

By the Incomplete Set Condition, there is a formula  $B \in \mathcal{F}$  such that

 $\Delta^* \not\vdash B$ , and the set  $\Delta^* \cup \{B\}$  is **consistent** By definition of the sequence **D** and the sequence **B** of formulas we have that for every  $n \in N$ 

 $\Delta_n \not\vdash B_n$  and the set  $\Delta_n \cup \{B_n\}$  is **consistent** 

**Moreover**  $B_n \in \Delta_{n+1}$  for all  $n \ge 1$ 



## Proof of $\Delta^*$ Complete

Since the formula B is one of the formulas of the sequence B so we get that  $B = B_j$  for certain jBy definition,  $B_j \in \Delta_{j+1}$  and it proves that

$$B \in \Delta^* = \bigcup_{n \in N} \Delta_n$$

But this means that  $\Delta^* \vdash B$ 

This is a contradiction with the assumption  $\triangle^* \not\vdash B$  and it ends the proof of the Fact 3

#### Main Lemma

Facts 1- 3 prove that that  $\Delta^*$  is a complete consistent extension of  $\Delta$ 

We hence completed the proof of the Main Lemma

#### Main Lemma

Every consistent set  $\Delta$  of formulas can be extended to a complete consistent set  $\Delta^*$  of formulas

We proved already that  $H_2$  is **sound**, so we have to prove only the Completeness part of the Completeness Theorem:

For any formula 
$$A \in \mathcal{F}$$
,

If 
$$\models A$$
, then  $\vdash A$ 

We prove it by **proving** its logically equivalent opposite implication form, i.e we prove now the following

## **Completeness Theorem**

For any formula  $A \in \mathcal{F}$ ,

If 
$$\not\vdash A$$
, then  $\not\models A$ 



#### **Proof**

Assume that *A* does not have a proof, we want to define a counter-model for *A* 

But if  $\not\vdash A$ , then by the Inconsistency Lemma the set  $\{\neg A\}$  is **consistent** 

By the **Main Lemma** there is a complete, consistent extension of the set  $\{\neg A\}$ 

This means that there is a set  $\Delta^*$  such that  $\{\neg A\} \subseteq \Delta^*$ , i.e.

**E**  $\neg A \in \Delta^*$  and  $\Delta^*$  is **complete** and **consistent** 



Since  $\Delta^*$  is a **consistent, complete** set, it satisfies the following form of

# **Consistency Condition**

For any  $A \in \mathcal{F}$ ,

$$\Delta^* \not\vdash A$$
 or  $\Delta^* \not\vdash \neg A$ 

 $\Delta^*$  is also **complete** i.e. satisfies

## **Completeness Condition**

For any  $A \in \mathcal{F}$ ,

$$\Delta^* \vdash A \text{ or } \Delta^* \vdash \neg A$$



Directly from the **Completeness** and **Consistency** Conditions we get the following

# **Separation Condition**

For any  $A \in \mathcal{F}$ , **exactly one** of the following conditions is satisfied:

(1) 
$$\Delta^* \vdash A$$
, or (2)  $\Delta^* \vdash \neg A$ 

In particular case we have that for every propositional variable  $a \in VAR$  exactly one of the following conditions is satisfied:

(1) 
$$\Delta^* \vdash a$$
, or (2)  $\Delta^* \vdash \neg a$ 

This justifies the correctness of the following definition



#### **Definition**

We define the variable truth assignment

$$v: VAR \longrightarrow \{T, F\}$$

as follows:

$$v(a) = \left\{ \begin{array}{ll} T & \text{if } \Delta^* + a \\ F & \text{if } \Delta^* + \neg a. \end{array} \right.$$

We show, as a separate Lemma below, that such defined variable assignment v has the following property

# Property of v Lemma

# Lemma Property of v

Let v be the variable assignment defined above and  $v^*$  its extension to the set  $\mathcal{F}$  of all formulas  $B \in \mathcal{F}$ , the following is true

$$v^*(B) = \begin{cases} T & \text{if } \Delta^* + B \\ F & \text{if } \Delta^* + \neg B \end{cases}$$

Given the Property of v Lemma (still to be proved) we now **prove** that the v is in fact, a **counter model** for any formula A, such that  $\not\vdash A$  Let A be such that  $\not\vdash A$  By the Property E we have that  $\neg A \in \Delta^*$  So obviously  $\Delta^* \vdash \neg A$ 

Hence by the Property of v Lemma

$$v^*(A) = F$$

what **proves** that v is a **counter-model** for A and it **ends the proof** of the **Completeness Theorem** 



# **Proof** of the Property of *v* Lemma

The proof is conducted by the induction on the degree of the formula A

**Initial step** A is a propositional variable so the **Lemma** holds by definition of v

# **Inductive Step**

If A is not a propositional variable, then A is of the form  $\neg C$  or  $(C \Rightarrow D)$ , for certain formulas C, D

By the inductive assumption the **Lemma** holds for the formulas C and D

Case 
$$A = \neg C$$

By the **Separation Condition** for  $\Delta^*$  we consider two possibilities

- 1.  $\Delta^* \vdash A$
- 2.  $\Delta^* \vdash \neg A$

Consider case **1.** i.e. we assume that  $\Delta^* \vdash A$  It means that

$$\Delta^* \vdash \neg C$$

Then from the fact that  $\Delta^*$  is **consistent** it must be that

$$\Delta^* \not\vdash C$$

By the inductive assumption we have that  $v^*(C) = F$  and accordingly  $v^*(A) = v^*(\neg C) = \neg v^*(C) = \neg F = T$ 

**Consider** case **2.** i.e. we assume that  $\Delta^* \vdash \neg A$ 

Then from the fact that  $\triangle^*$  is **consistent** it must be that  $\triangle^* \not\vdash A$  and

$$\Delta^* \not\vdash \neg C$$

If so, then  $\Delta^* \vdash C$ , as the set  $\Delta^*$  is **complete** By the **inductive assumption**,  $v^*(C) = T$ , and accordingly

$$v^*(A) = v^*(\neg C) = \neg v^*(C) = \neg T = F$$

Thus A satisfies the Property of v Lemma



Case 
$$A = (C \Rightarrow D)$$

As in the previous case, we assume that the Lemma holds for the formulas C, D and we consider by the **Separation** Condition for  $\Delta^*$  two possibilities:

1. 
$$\Delta^* \vdash A$$
 and 2.  $\Delta^* \vdash \neg A$ 

Case 1. Assume 
$$\Delta^* \vdash A$$

It means that 
$$\Delta^* \vdash (C \Rightarrow D)$$

If at the same time  $\Delta^* \not\vdash C$ , then  $v^*(C) = F$ , and accordingly

$$v^*(A) = v^*(C \Rightarrow D) =$$
 $v^*(C) \Rightarrow v^*(D) = F \Rightarrow v^*(D) = T$ 

If at the same time  $\Delta^* \vdash C$ , then since  $\Delta^* \vdash (C \Rightarrow D)$ , we infer, by Modus Ponens, that

$$\Delta^* \vdash D$$

If so, then  $v^*(C) = v^*(D) = T$  and accordingly

$$v^*(A) = v^*(C \Rightarrow D) =$$

$$v^*(C) \Rightarrow v^*(D) = T \Rightarrow T = T$$

Thus if  $\Delta^* \vdash A$ , then  $v^*(A) = T$ 

**Case 2.** Assume now, as before, that  $\Delta^* \vdash \neg A$ , Then from the fact that  $\Delta^*$  is **consistent** it must be that  $\Delta^* \not\vdash A$ , i.e.,

$$\Delta^* \not\vdash (C \Rightarrow D)$$

It follows from this that  $\Delta^* \not\vdash D$ For if  $\Delta^* \vdash D$ , then, as  $(D \Rightarrow (C \Rightarrow D))$  is provable formula **1.** in *S*, by monotonicity also

$$\Delta^* \vdash (D \Rightarrow (C \Rightarrow D))$$

Applying Modus Ponens we obtain

$$\Delta^* \vdash (C \Rightarrow D)$$

which is contrary to the assumption, so it must be  $\Delta^* \not\vdash D$ 



Also we must have

$$\Delta^* + C$$

for otherwise, as  $\Delta^*$  is **complete** we would have  $\Delta^* \vdash \neg C$ This this is **impossible** since by **Lemma** formula **9**.

$$\vdash (\neg C \Rightarrow (C \Rightarrow D))$$

## By monotonicity

$$\Delta^* \vdash (\neg C \Rightarrow (C \Rightarrow D))$$

Applying Modus Ponens we would get

$$\Delta^* \vdash (C \Rightarrow D)$$

which is **contrary** to the assumption  $\Delta^* \not\vdash (C \Rightarrow D)$ 



This **ends** the proof of the **Property of** *v* **Lemma** and the **Proof Two** of the **Completeness Theorem** is also **completed** 

# Chapter 5 Hilbert Proof Systems Completeness of Classical Propositional Logic

## Slides Set 5

PART 6: Some Other Axiomatizations and

Examples and Exercises

## Some Other Axiomatizations

We present here some of the most **known**, and **historically** important **axiomatizations** of classical propositional logic

It means the **Hilbert** proof systems that are proven to be **complete** under classical semantics

#### Lukasiewicz

## Lukasiewicz (1929)

The Lukasiewicz proof system (axiomatization) is

$$L = (\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, A1, A2, A3, MP)$$

where

A1 
$$((\neg A \Rightarrow A) \Rightarrow A)$$

A2 
$$(A \Rightarrow (\neg A \Rightarrow B))$$

A3 
$$((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))))$$

for any formulas  $A, B, C \in \mathcal{F}$ 

#### Hilbert and Ackermann

# Hilbert and Ackermann (1928)

$$HA = (\mathcal{L}_{\{\neg,\cup\}}, \mathcal{F}, A1 - A4, MP)$$

where for any  $A, B, C \in \mathcal{F}$ 

A1 
$$(\neg(A \cup A) \cup A)$$

A2 
$$(\neg A \cup (A \cup B))$$

A3 
$$(\neg(A \cup B) \cup (B \cup A))$$

A4 
$$(\neg(\neg B \cup C) \cup (\neg(A \cup B) \cup (A \cup C)))$$

The Modus Ponens rule in the language  $\mathcal{L}_{\{\neg,\cup\}}$  has a form

$$MP \frac{A \; ; \; (\neg A \cup B)}{B}$$

#### Hilbert and Ackermann

Observe that also the **Deduction Theorem** is now formulated as follow.

## **Deduction Theorem for HA**

For any subset  $\Gamma$  of the set of formulas  $\mathcal{F}$  of HA and for any formulas  $A, B \in \mathcal{F}$ ,

$$\Gamma$$
,  $A \vdash_{HA} B$  if and only if  $\Gamma \vdash_{HA} (\neg A \cup B)$ 

In particular,

$$A \vdash_{HA} B$$
 if and only if  $\vdash_{HA} (\neg A \cup B)$ 



#### Hilbert

# Hilbert (1928)

$$H = (\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}, \ \mathcal{F}, \ A1 - A15, \ MP)$$
 where for any  $A, B, C \in \mathcal{F}$   
A1  $(A \Rightarrow A)$   
A2  $(A \Rightarrow (B \Rightarrow A))$   
A3  $((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C)))$   
A4  $((A \Rightarrow (A \Rightarrow B)) \Rightarrow (A \Rightarrow B))$   
A5  $((A \Rightarrow (B \Rightarrow C)) \Rightarrow (B \Rightarrow (A \Rightarrow C)))$   
A6  $((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C)))$   
A7  $((A \cap B) \Rightarrow A)$   
A8  $((A \cap B) \Rightarrow B)$ 

#### Hilbert

A9 
$$((A \Rightarrow B) \Rightarrow ((A \Rightarrow C) \Rightarrow (A \Rightarrow (B \cap C)))$$
  
A10  $(A \Rightarrow (A \cup B))$   
A11  $(B \Rightarrow (A \cup B))$   
A12  $((A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow ((A \cup B) \Rightarrow C)))$   
A13  $((A \Rightarrow B) \Rightarrow ((A \Rightarrow \neg B) \Rightarrow \neg A))$   
A14  $(\neg A \Rightarrow (A \Rightarrow B))$ 

A1 - A14 are the axioms **Hilbert** proposed and were accepted as axioms defining Intuitionistic logic

They were later **proved** to be **complete** when the **intuitionistic semantics** was discovered

**Hilbert** obtained his classical axiomatization by adding as the last axiom the **excluded middle** law rejected by intuitionists

A15 
$$(A \cup \neg A)$$



#### Kleene

# Kleene (1952)

$$K = (\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}, \ \mathcal{F}, \ A1 - A10, \ MP)$$
 where for any  $A, B, C \in \mathcal{F}$   
A1  $(A \Rightarrow (B \Rightarrow A))$   
A2  $((A \Rightarrow (B \Rightarrow C)) \Rightarrow (B \Rightarrow (A \Rightarrow C)))$   
A3  $((A \cap B) \Rightarrow A)$   
A4  $((A \cap B) \Rightarrow B)$   
A5  $(A \Rightarrow (B \Rightarrow (A \cap B)))$ 

#### Kleene

A6 
$$(A \Rightarrow (A \cup B))$$
  
A7  $(B \Rightarrow (A \cup B))$   
A8  $((A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow ((A \cup B) \Rightarrow C)))$   
A9  $((A \Rightarrow B) \Rightarrow ((A \Rightarrow \neg B) \Rightarrow \neg A))$   
A10  $(\neg \neg A \Rightarrow A)$ 

Kleene proved that when A10 is replaced by

A10' 
$$(\neg A \Rightarrow (A \Rightarrow B))$$

the **resulting** system is a **complete** axiomatization of **Intuitionistic Logic** 



## Rasiowa-Sikorski

# Rasiowa-Sikorski (1950)

$$RS = (\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}, \mathcal{F}, A1 - A12, MP)$$

where for any  $A, B, C \in \mathcal{F}$ 

A1 
$$((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C)))$$

A2 
$$(A \Rightarrow (A \cup B))$$

A3 
$$(B \Rightarrow (A \cup B))$$

A4 
$$((A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow ((A \cup B) \Rightarrow C)))$$

## Rasiowa-Sikorski

A5 
$$((A \cap B) \Rightarrow A)$$
  
A6  $((A \cap B) \Rightarrow B)$   
A7  $((C \Rightarrow A) \Rightarrow ((C \Rightarrow B) \Rightarrow (C \Rightarrow (A \cap B)))$   
A8  $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \cap B) \Rightarrow C))$   
A9  $(((A \cap B) \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C))$   
A10  $(A \cap \neg A) \Rightarrow B)$   
A11  $((A \Rightarrow (A \cap \neg A)) \Rightarrow \neg A)$   
A12  $(A \cup \neg A)$ 

#### Rasiowa-Sikorski

Rasiowa - Sikorski proved A1 - A11 to be a complete axiomatization for the Intuitionistic Logic

They obtained the classical axiomatization by adding A12, the excluded middle law rejected by intuitionists, as Hilbert did

Both classical and intuitionistic completeness proofs were carried under respective Boolean and Pseudo-Boolean algebras semantics what is reflected in the choice of axioms A1 - A12

## **Shortest Axiomatizations**

Here is the shortest axiomatization for the language

$$\mathcal{L}_{\{\neg,\ \Rightarrow\}}$$

It contains just one axiom

Meredith (1953)

$$M = (\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, A1 MP)$$

where

A1 
$$(((((((A \Rightarrow B) \Rightarrow (\neg C \Rightarrow \neg D)) \Rightarrow C) \Rightarrow E)) \Rightarrow ((E \Rightarrow A) \Rightarrow (D \Rightarrow A)))$$

# **Shortest Axiomatizations**

Here is another axiomatization that uses only one axiom **Nicod** (1917)

$$N = (\mathcal{L}_{\{\uparrow\}}, \mathcal{F}, A1, (r))$$

where

A1 
$$(((A \uparrow (B \uparrow C)) \uparrow ((D \uparrow (D \uparrow D)) \uparrow ((E \uparrow B) \uparrow ((A \uparrow E) \uparrow (A \uparrow E))))))$$
  
and

$$(r) \frac{A \uparrow (B \uparrow C)}{A}$$

#### Reminder

We have proved in chapter 3 that

$$\mathcal{L}_{\{\neg,\cup,\cap,\Rightarrow\}} \equiv \mathcal{L}_{\{\uparrow\}}$$



Here are few exercises designed to help with understanding the notions of completeness, monotonicity of the consequence operation, the role of the deduction theorem and the importance of some basic tautologies

# Complete Hilbert System S

Let S be any Hilbert proof system

$$S = (\mathcal{L}_{\{\cap,\cup,\Rightarrow,\neg\}}, \mathcal{F}, LA, MP \frac{A, (A \Rightarrow B)}{B})$$

with the set *LA* of logical axioms such that *S* is **complete** under classical semantics

Let  $X \subseteq \mathcal{F}$  be any subset of the set  $\mathcal{F}$  of formulas of the language

$$\mathcal{L}_{\{\cap,\cup,\Rightarrow,\neg\}}$$

We **define**, as we did in chapter 4, a set Cn(X) of all **consequences** of the set X as

$$Cn(X) = \{A \in \mathcal{F} : X \vdash_{S} A\}$$



#### Reminder

The proof system

$$S = (\mathcal{L}_{\{\cap,\cup,\Rightarrow,\neg\}}, \mathcal{F}, LA, MP \frac{A, (A \Rightarrow B)}{B})$$

in all exercises is complete

#### Exercise 1

1. Prove that for any subsets X, Y of the set  $\mathcal{F}$  of formulas of S the following **monotonicity property** holds

If 
$$X \subseteq Y$$
, then  $Cn(X) \subseteq Cn(Y)$ 

#### Solution

**1.** Let  $A \in \mathcal{F}$  be any formula such that  $A \in Cn(X)$ 

By the consequence definition, we have that  $X \vdash_S A$  and A has a formal proof from the set  $X \cup LA$ 

But  $X \subseteq Y$ , hence this proof is also a proof from the set  $Y \cup LA$ , i.e.  $Y \vdash_S A$  and  $A \in Cn(Y)$ 

This proves that  $Cn(X) \subseteq Cn(Y)$ 



#### **Exercise 1**

**2.** Do we need the **completeness** of *S* to prove that the **monotonicity** property holds for *S*?

## Solution

**2.** No, we do not need the **completeness** of **S** for the **monotonicity** property to hold

We have used only the **definition** of a formal proof from the hypothesis X and the definition of the consequence operation



#### **Exercise 2**

**1.** Prove that for any set  $X \subseteq \mathcal{F}$ , the set  $\mathbf{T} \subseteq \mathcal{F}$  of all classical **tautologies** of the language  $\mathcal{L}_{\{\cap,\cup,\Rightarrow,\neg\}}$  of the system S is a **subset** of Cn(X); i.e. prove that

$$\mathbf{T} \subseteq Cn(X)$$

**2.** Do we need the **completeness** of *S* to prove that the property  $T \subseteq Cn(X)$  holds for *S*?

# Solution

1. The proof system S is **complete**, so by the **completeness theorem** we have that

$$\mathbf{T} = \{ \in \mathcal{F} : \vdash_{\mathcal{S}} A \}$$

By definition of the consequence,

$$\{A \in \mathcal{F} : \vdash_{S} A\} = Cn(\emptyset)$$

and hence  $Cn(\emptyset) = T$ 

But  $\emptyset \subseteq X$  for any set X, so by **monotonicity** property

$$\mathbf{T} \subseteq Cn(X)$$

2. Yes, the **completeness** of S in the main property used in the proof of 1.

The other property is the monotonicity



# **Exercise 3**

Prove that for any formulas  $A, B \in \mathcal{F}$ , and for any set  $X \subseteq \mathcal{F}$ ,

 $(A \cap B) \in Cn(X)$  if and only if  $A \in Cn(X)$  and  $B \in Cn(X)$ 

List all properties essential to the proof

## Solution

(1) Proof of the implication:

if 
$$(A \cap B) \in Cn(X)$$
, then  $A \in Cn(X)$  and  $B \in Cn(X)$ 

Assume  $(A \cap B) \in Cn(X)$ , i.e.  $X \vdash_S (A \cap B)$ From monotonicity property proved in **Exercise 1**, **completeness** of S, and the fact that

$$\models ((A \cap B) \Rightarrow A)$$
 and  $\models ((A \cap B) \Rightarrow B)$ 

we get that

$$X \vdash_{S} ((A \cap B) \Rightarrow A)$$
 and  $X \vdash_{S} ((A \cap B) \Rightarrow B)$ 

From the **assumption**  $X \vdash_S (A \cap B)$  and the above

$$X \vdash_S ((A \cap B) \Rightarrow A)$$

we get by Modus Ponens

$$X \vdash_{S} A$$



**Similarly**, from the **assumption**  $X \vdash_S (A \cap B)$  and the above property

$$X \vdash_{S} ((A \cap B) \Rightarrow B)$$

we get by Modus Ponens

$$X \vdash_{S} B$$

This proves that  $A \in Cn(X)$  and  $B \in Cn(X)$  and ends the **proof** of the implication (1)



(2) Proof of the implication:

if 
$$A \in Cn(X)$$
 and  $B \in Cn(X)$ , then  $(A \cap B) \in Cn(X)$ 

Assume now  $A \in Cn(X)$  and  $B \in Cn(X)$ , i.e.

$$X \vdash_S A$$
 and  $X \vdash_S B$ 

By the **monotonicity** property, **completeness** of *S*, and **tautology** 

$$(A \Rightarrow (B \Rightarrow (A \cap B)))$$

we get that

$$X \vdash_{S} (A \Rightarrow (B \Rightarrow (A \cap B)))$$



# By the **assumption** we have that

$$X \vdash_S A$$
,  $X \vdash_S B$ 

and the above

$$X \vdash_{S} (A \Rightarrow (B \Rightarrow (A \cap B)))$$

we get by Modus Ponens

$$X \vdash_{S} (B \Rightarrow (A \cap B))$$

Applying Modus Ponens again we obtain

$$X \vdash_{S} (A \cap B)$$

This proves

$$(A \cap B) \in Cn(X)$$

and **ends** the **proof** and the implication (2) and the **proof** of **Exercise 3** 



#### **Exercise 4**

Prove that classical completeness of a **Hilbert** proof system **implies** the **Deduction Theorem**, i.e prove that the following theorem holds for the system S

# **Deduction Theorem**

For any subset  $\Gamma$  of the set of formulas  $\mathcal{F}$  of S and for any formulas  $A, B \in \mathcal{F}$ ,

$$\Gamma$$
,  $A \vdash_S B$  if and only if  $\Gamma \vdash_S (A \Rightarrow B)$ 



#### Solution

The formulas

$$A1 = (A \Rightarrow (B \Rightarrow A))$$
 and  $A2 = ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$ 

are basic classical autologies

By the **completeness** of **S** we have that

$$\vdash_{S} (A \Rightarrow (B \Rightarrow A))$$
 and

$$\vdash_S ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$

The formulas A1, A2 are the **axioms** of the Hilbert system  $H_1$ 

By the **completeness** of S, we have that both axioms of  $H_1$  are **provable** in S

These axioms were sufficient for the proof of the Deduction Theorem for  $H_1$  and so the  $H_1$  proof can be repeated for the system S

## **Exercise 5**

Prove that for any  $A, B \in \mathcal{F}$ 

$$Cn(\{A,B\}) = Cn(\{(A \cap B)\})$$

## Solution

(1) Proof of the inclusion

$$Cn(\{A,B\}) \subseteq Cn(\{(A \cap B)\})$$

**Assume**  $C \in Cn(\{A, B\})$ , i.e. we assume  $A, B \vdash_S C$ 

By Exercise 4 the Deduction Theorem holds for S and we apply it twice to get an equivalent form

$$\vdash_{S} (A \Rightarrow (B \Rightarrow C))$$

of the assumption



We use **completeness** of **S**, the fact that the formula

$$(((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \cap B) \Rightarrow C)))$$

is a tautology and get that

$$\vdash_{S} (((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \cap B) \Rightarrow C)))$$

Applying Modus Ponens to the above and the assumption

$$\vdash_{S} (A \Rightarrow (B \Rightarrow C))$$

we get

$$\vdash_{S} ((A \cap B) \Rightarrow C)$$

This is equivalent by **Deduction Theorem** to

$$(A \cap B) \vdash_S C$$

We have proved that

$$C \in Cn(\{(A \cap B)\})$$

and this **ends** the proof of the inclusion (1)



# (2) Proof of the inclusion

$$Cn(\{(A \cap B)\}) \subseteq Cn(\{A, B\})\}$$

**Assume** that  $C \in Cn(\{(A \cap B)\})$ , i.e.

$$(A \cap B) \vdash_{S} C$$

# By **Deduction Theorem**

$$\vdash_{S}((A \cap B) \Rightarrow C)$$

We want to prove that  $C \in Cn(\{A, B\})$ 

This is equivalent, by **Deduction Theorem** applied **twice** to proving that

$$\vdash_{S}(A \Rightarrow (B \Rightarrow C))$$



The proof is similar to the previous case
We use **completeness** of *S*, the fact that the formula

$$(((A \cap B) \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C)))$$

is a tautology to get

$$\vdash_{S} (((A \cap B) \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C))$$

Applying Modus Ponens to above and the the assumption

$$\vdash_{S}((A \cap B) \Rightarrow C)$$

we get

$$\vdash_{S} (A \Rightarrow (B \Rightarrow C))$$

what ends the proof

