LOGICS FOR COMPUTER SCIENCE: Classical and Non-Classical Springer 2019

Anita Wasilewska

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Chapter 10 Predicate Automated Proof Systems Completeness of Classical Predicate Logic

CHAPTER 10 SLIDES

Chapter 10 Predicate Automated Proof Systems Completeness of Classical Predicate Logic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Slides Set 1 PART 1: QRS Proof System PART 2: Proof of QRS Completeness

Slides Set 2

PART 3: Skolemization and Clauses

Chapter 10 Predicate Automated Proof Systems Completeness of Classical Predicate Logic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Slides Set 1 PART 1: QRS Proof System

We define and discuss here Rasiowa and Sikorski Gentzen style proof system **QRS** for classical predicate logic

The propositional version of it, the **RS** proof system, was studied in detail in chapter 6

These both proof systems **RS** and **QRS** admit a constructive proof of completeness theorem

We adopt Rasiowa, Sikorski (1961) technique of construction a counter model determined by a decomposition tree to prove **QRS** completeness theorem

The proof, presented here is a generalization of the completeness proofs of **RS** and other Gentzen style propositional systems presented in details in chapter 6

We refer the reader to the chapter 6 as it provides a good introduction to the subject

(日)(1)

The other Gentzen type predicate proof system, including the original Gentzen proof systems LK, LI for classical and intuitionistic predicate logics are obtained from their propositional versions discussed in detail in chapter 6 by adding the Quantifiers Rules to them

It can be done in a similar way as a generalization of the propositional **RS** to the the predicate **QRS** system as presented here

We leave these generalizations as an exercise for the reader

(日)(1)

We also leave as an exercise the **predicate language** version of **Gentzen proof** of the **cut elimination** theorem, Hauptzatz (1935)

The Hauptzatz proof for the **predicate** classical **LK** and intuitionistic **LI** systems is easily obtained from the propositional proof included in chapter 6

There are of course other types of **automated proof** systems based on different methods of deduction

(ロ)、(同)、(E)、(E)、(E)、(O)((C)

There is a **Natural Deduction** mentioned by Gentzen in his Hauptzatz paper in 1935

It was later and fully developed by Dag Prawitz 1965) It is now called Prawitz, or Gentzen-Prawitz Natural Deduction

There is a **Semantic Tableaux** deduction method invented by Evert Beth (1955)

It was consequently simplified and further developed by Raymond Smullyan (1968)

It is now often called Smullyan Semantic Tableaux

Finally, there also is a **Resolution**

The **resolution method** can be traced back to Davis and Putnam (1960) Their work is still known as Davis-Putnam **method**

The difficulties of Davis-Putnam method were eliminated by John Alan Robinson (1965)

He consequently **developed** it into what we call now Robinson **Resolution**, or just the **Resolution**

The **resolution** proof system for propositional or predicate logic operates on a set of clauses as a basic expressions and uses a resolution rule as the only rule of inference

We define and prove **correctness** of effective procedures of **converting** any formula *A* into a corresponding set of **clauses** in both propositional and predicate cases

QRS Proof System

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The components of the QRS proof system are as follows Language \mathcal{L}

 $\mathcal{L} = \mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$

for **P**, **F**, **C** countably infinite sets of predicate, functional, and constant symbols, respectively

Expressions 8

Let \mathcal{F} denote a set of formulas of \mathcal{L} . We adopt as the set of expressions the set of all finite sequences of formulas, i.e.

$$\mathcal{E} = \mathcal{F}^*$$

We will denote the expressions of QRS by

$$\Gamma, \Delta, \Sigma, \ldots$$

with indices if necessary

Rules of Inference of QRS

The system **QRS** consists of two axiom schemas and eleven rules of inference The rules of inference form **two groups First group** is similar to the propositional case and contains propositional connectives rules:

 $(\cup), \ (\neg \cup), \ (\cap), \ (\neg \cap), \ (\Rightarrow), \ (\neg \Rightarrow), \ (\neg \neg)$

Second group deals with the quantifiers and consists of four rules:

 $(\forall), (\exists), (\neg\forall), (\neg\exists)$

Logical Axioms of RS

We adopt as **logical axioms** LA of **QRS** any sequence of formulas which contains a formula and its negation, i.e any sequence

$$\Gamma_1, \mathbf{A}, \Gamma_2, \neg \mathbf{A}, \Gamma_3$$

 $\Gamma_1, \neg A, \Gamma_2, A, \Gamma_3$

where $A \in \mathcal{F}$ is any formula

Proof System QRS

Formally we define the system QRS as follows

 $\mathsf{QRS} = (\mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}(\mathsf{P}, \mathsf{F}, \mathsf{C}), \ \mathcal{F}^*, \ \mathsf{LA}, \ \mathcal{R})$

where the set ${\mathcal R}\,$ of inference rules contains the following rules

 $(\cup),\ (\neg \cup),\ (\cap),\ (\neg \cap),\ (\Rightarrow),\ (\neg \Rightarrow),\ (\neg \neg),\ (\forall),\ (\exists),\ (\neg \forall),\ (\neg \exists)$

and LA is the set of all logical axioms

Literals in **QRS**

Definition

Any atomic formula, or a negation of atomic formula is called a **literal**

We form, as in the propositional case, a special subset

$LT\subseteq \mathcal{F}$

of formulas, called a set of all literals defined now as follows

 $LT = \{A \in \mathcal{F} : A \in A\mathcal{F}\} \cup \{\neg A \in \mathcal{F} : A \in A\mathcal{F}\}$

The elements of the set $\{A \in \mathcal{F} : A \in A\mathcal{F}\}$ are called **positive literals**

The elements of the set $\{\neg A \in \mathcal{F} : A \in A\mathcal{F}\}$ are called **negative literals**

Sequences of Literals

We denote by

 $\Gamma', \Delta', \Sigma' \dots$

finite sequences (empty included) formed out of literals i.e

 $\Gamma^{'}, \Delta^{'}, \Sigma^{'} \in LT^{*}$

We will denote by

Γ, Δ, Σ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

the elements of \mathcal{F}^*

Connectives Inference Rules of QRS

Group 1 Disjunction rules

$$\cup) \frac{\Gamma', A, B, \Delta}{\Gamma', (A \cup B), \Delta} \qquad (\neg \cup) \frac{\Gamma', \neg A, \Delta ; \Gamma', \neg B, \Delta}{\Gamma', \neg (A \cup B), \Delta}$$

Conjunction rules

$$(\cap) \ \frac{\Gamma', \ A, \ \Delta \ ; \ \ \Gamma', \ B, \ \Delta}{\Gamma', \ (A \cap B), \ \Delta} \qquad (\neg \cap) \ \frac{\Gamma', \ \neg A, \ \neg B, \ \Delta}{\Gamma', \ \neg (A \cap B), \ \Delta}$$

where $\Gamma' \in LT^*$, $\Delta \in \mathcal{F}^*$, $A, B \in \mathcal{F}$

Connectives Inference Rules of QRS

Group 1 Implication rules

$$(\Rightarrow) \ \frac{\Gamma', \ \neg A, B, \ \Delta}{\Gamma', \ (A \Rightarrow B), \ \Delta} \qquad (\neg \Rightarrow) \ \frac{\Gamma', \ A, \ \Delta \ : \ \Gamma', \ \neg B, \ \Delta}{\Gamma', \ \neg (A \Rightarrow B), \ \Delta}$$

Negation rule

$$(\neg \neg) \frac{\Gamma', A, \Delta}{\Gamma', \neg \neg A, \Delta}$$

where $\Gamma' \in LT^*$, $\Delta \in \mathcal{F}^*$, $A, B \in \mathcal{F}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

Quantifiers Inference Rules of QRS

Group 2: Universal Quantifier rules

 $\begin{array}{ll} (\forall) & \frac{\Gamma', \ \mathcal{A}(y), \ \Delta}{\Gamma', \ \forall x \mathcal{A}(x), \ \Delta} & (\neg \forall) & \frac{\Gamma', \ \exists x \neg \mathcal{A}(x), \ \Delta}{\Gamma', \ \neg \forall x \mathcal{A}(x), \ \Delta} \\ \\ \text{where } \Gamma' \in \mathcal{L}T^*, \ \ \Delta \in \mathcal{F}^*, \ \ \mathcal{A}, B \in \mathcal{F} \end{array}$

The variable *y* in rule (\forall) is a free individual variable which **does not** appear in any formula in the conclusion, i.e. in any formula in the sequence $\Gamma', \forall xA(x), \Delta$

The variable y in the rule (\forall) is called the eigenvariable

All occurrences] of y in A(y) of the rule (\forall) are fully indicated

Quantifiers Inference Rules of QRS

Group 2: Existential Quantifier rules

(B)
$$\frac{\Gamma', A(t), \Delta, \exists x A(x)}{\Gamma', \exists x A(x), \Delta}$$
 (B) $\frac{\Gamma', \forall x \neg A(x), \Delta}{\Gamma', \neg \exists x A(x), \Delta}$

where $t \in T$ is an arbitrary term, $\Gamma' \in LT^*$, $\Delta \in \mathcal{F}^*$, $A, B \in \mathcal{F}$

Note that A(t), A(y) denotes a formula obtained from A(x) by writing the term t or y, respectively, in place of all occurrences of x in A

Proofs and Proof Trees

By a **formal proof** of a sequence Γ in the proof system **QRS** we understand any sequence

$\Gamma_1, \Gamma_2, \dots, \Gamma_n$

of sequences of formulas (elements of \mathcal{F}^*), such that

1. $\Gamma_1 \in LA$, $\Gamma_n = \Gamma$, and

2. for all i $(1 \le i \le n)$, $\Gamma_i \in LA$, or Γ_i is a conclusion of one of the inference rules of **QRS** with all its premisses placed in the sequence Γ_1 , Γ_2 , ..., Γ_{i-1}

Proofs and Proof Trees

We write, as usual,

⊦_{QRS} Γ

to denote that the sequence **F** has a formal proof in **QRS**

As the proofs in **QRS** are sequences (definition of the formal proof) of sequences of formulas (definition of expressions \mathcal{E}) we will not use ";" to separate the steps of the proof, and write the **formal proof** as

 $\Gamma_1; \Gamma_2; \dots \Gamma_n$

・ロト・日本・日本・日本・日本・日本

Proofs and Proof Trees

We write, however, the formal proofs in **QRS** as we did the propositional case (chapter 6),

in a form of **trees** rather then in a form of sequences

We adopt hence the following definition

Proof Tree

By a proof tree, or QRS - tree proof of $\boldsymbol{\Gamma}$ we understand a tree

- T_{Γ} of sequences satisfying the following conditions:
- **1.** The topmost sequence, i.e the **root** of T_{Γ} is Γ ,
- 2. all leafs are axioms,
- **3.** the **nodes** are sequences such that each sequence on the tree follows from the ones immediately preceding it by one of the rules

of inference rules

Proof Trees

We picture, and write the proof trees with the **root** on the top, and **leafs** on the very bottom

In particular cases, as in the propositional case, we write the proof trees indicating additionally the **name** of the inference rule used at each step of the proof

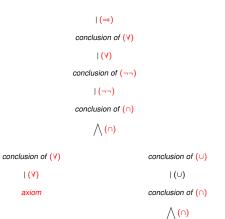
For **example**, when in a proof of a formula *A* we use subsequently the rules

$(\cap), \ (\cup), \ (\forall), \ (\cap), \ (\neg\neg), \ (\forall), \ (\Rightarrow)$

we represent the proof of A as the following tree

Proof Trees

\mathbf{T}_{A}



axiom axiom

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

DecompositionTrees

The main advantage of the Gentzen type proof systems lies in the way we are able to **search** for proofs in them

Moreover, such proof search happens to be **deterministic** and **automatic** We conduct **proof search** by treating inference rules as decomposition rules (see chapter 6) and by building **decomposition trees**

A general principle of building decomposition trees is the following.

(日)(1)<

Decomposition Tree T_{Γ} For each $\Gamma \in \mathcal{F}^*$, a decomposition tree T_{Γ} is a tree build as follows

Step 1. The sequence Γ is the **root** of T_{Γ}

For any node Δ of the tree we follow the steps bellow

Step 2. If \triangle is **indecomposable** or an **axiom**, then \triangle becomes a **leaf** of the tree

▲□▶▲□▶▲□▶▲□▶ □ のQ@

DecompositionTrees

Step 3. If \triangle is **decomposable**, then we traverse \triangle from **left** to **right** to **identify** the first **decomposable** formula *B* and **identify** inference rule treated as **decomposition** rule that is determined uniquely by *B*

We put its premiss as a **node below**, or its left and right premisses as the left and right **nodes below**, respectively

Step 4. We repeat steps 2. and 3. until we obtain only leaves or an infinite branch

In particular case when when Γ has only one element, namely a formula $A \in \mathcal{F}$, we call it a decomposition tree of A and denote by T_A

Given a formula $A \in \mathcal{F}$, we define its **decomposition tree** T_A as follows

Observe that the inference rules of **QRS** can be divided in two groups: propositional connectives rules

 $(\cup),(\neg \cup),(\cap),(\neg \cap),(\Rightarrow),(\neg \Rightarrow)$

and quantifiers rules

(V), (E), (\forall), (V), (V)

We define the **decomposition tree** in the case of the propositional rules and the quantifiers rules $(\neg \forall)$, $(\neg \exists)$ in the same way as for the propositional language (chapter 6)

The case of the rules (\forall) and (\exists) is more complicated, as the rules contain the **specific conditions** under which they are **applicable**

To define the way of **decomposing** the sequences of the form

 $\Gamma', \forall x A(x), \Delta$ or $\Gamma', \exists x A(x), \Delta$,

i.e. to deal with the rules quantifiers rules (\forall) and (\exists) we assume that all terms form a one-to one sequence

ST *t*₁, *t*₂,, *t*_n,

Observe, that by the definition, all free variables are **terms**, hence all free variables **appear** in the sequence **ST**

Let Γ be a sequence on the tree in which the first indecomposable formula has the quantifier \forall as its main connective. It means that Γ is of the form

 $\Gamma', \forall_x A(x), \Delta$

We write a sequence

 $\Gamma', A(y), \Delta$

below Γ on the tree as its **child**, where the variable *y* fulfills the following condition

Condition 1 : the variable *y* is the **first** free variable in the sequence ST of terms such that *y* **does not** appear in any formula in Γ' , $\forall xA(x), \Delta$

Observe, that the condition the **Condition 1** corresponds to the restriction put on the **application** of the rule (\forall)

Let now the first **indecomposable** formula in Γ has the quantifier \exists as its **main** connective. It means that Γ is of the form

 Γ' , $\exists x A(x)$, Δ

We write a sequence

 $\Gamma', A(t), \Delta, \exists x A(x)$

as its child, where the term t fulfills the following condition

Condition 2: the term t is the first term in the sequence ST of all terms such that the formula A(t) **does not** appear in any sequence on the tree which is **placed above**

 $\Gamma', A(t), \Delta, \exists x A(x)$

・ロト・日ト・ヨト・ヨト ヨー のへで

Observe that the sequence **ST** of all terms is one- to - one and by the **Condition 1** and **Condition 2** we always chose the **first** appropriate term (variable) from the sequence **ST**

Hence the decomposition tree definition guarantees that the **decomposition** process is also unique in the case of the quantifier rules (\forall) and (\exists)

・ロト・日本・モト・モト・ ヨー のへぐ

From all above, and we **conclude** the following

Uniqueness Theorem

For any formula $A \in \mathcal{F}$,

(i) the decomposition tree T_A is unique

(ii) Moreover, the following conditions hold

1. If the decomposition tree T_A is **finite** and all its **leaves** are axioms, then

⊢_{QRS} A

2. If T_A is finite and contains a non-axiom leaf, or T_A is infinite, then

⊬_{QRS} A

In all the examples below, the formulas A(x), B(x) represent any formulas

But as there is **no indication** about their particular components, they are treated as **indecomposable** formulas

For example, the decomposition tree of the formula A representing the **de Morgan Law**

 $(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))$

is constructed as follows

T_{A} $(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))$ $| (\Rightarrow)$ $\neg \neg \forall x A(x), \exists x \neg A(x)$ $| (\neg \neg)$ $\forall x A(x), \exists x \neg A(x)$ $| (\forall)$ $A(x_{1}), \exists x \neg A(x)$

where x_1 is a first free variable in the sequence ST such that x_1 does not appear in

 $\forall x A(x), \exists x \neg A(x)$

$|(\exists)$ $A(x_1), \neg A(x_1), \exists x \neg A(x)$

where x_1 is the first term (variables are terms) in the sequence ST such that $\neg A(x_1)$ does not appear on a tree above $A(x_1), \neg A(x_1), \exists x \neg A(x)$

Axiom

The above tree T_A ended with one leaf being axiom, so it represents a **proof** in **QRS** of the **de Morgan Law**

 $(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))$

and . we have proved that

 $\vdash (\neg \forall x A(x) \Rightarrow \exists x \neg A(x))$

The decomposition tree T_A for a formula

 $(\forall x A(x) \Rightarrow \exists x A(x))$

is constructed as follows

$$(\forall xA(x) \Rightarrow \exists xA(x))$$
$$|(\Rightarrow)$$
$$\neg \forall xA(x), \exists xA(x)$$
$$|(\neg \forall)$$
$$\exists x \neg A(x), \exists xA(x)$$
$$|(\exists)$$
$$\neg A(t_1), \exists xA(x), \exists x \neg A(x)$$

where t_1 is the first term in the sequence ST, such that $\neg A(t_1)$ does not appear on the tree above $\neg A(t_1), \exists x A(x), \exists x \neg A(x)$

$|(\exists)$ $\neg A(t_1), A(t_1), \exists x \neg A(x), \exists x A(x)$

where t_1 is the first term in the sequence ST, such that $A(t_1)$ does not appear on the tree above $\neg A(t_1), A(t_1), \exists x \neg A(x), \exists x A(x)$

Axiom

The above tree also ended with the only leaf being the axiom, hence we have **proved** that

 $\vdash (\forall x A(x) \Rightarrow \exists x A(x))$

We know that the the inverse implication

 $(\exists x A(x) \Rightarrow \forall x A(x))$

is not a predicate tautology

Let's now look at its decomposition tree T_A

 $\exists x A(x)$ | (\exists) $A(t_1), \exists x A(x)$

where t_1 is the first term in the sequence ST, such that $A(t_1)$ does not appear on the tree above $A(t_1)$, $\exists x A(x)$

$|(\exists)$ $A(t_1), A(t_2), \exists x A(x)$

where t_2 is the first term in the sequence ST, such that $A(t_2)$ does not appear on the tree above $A(t_1), A(t_2), \exists x A(x)$, i.e. $t_2 \neq t_1$ $| (\exists)$ $A(t_1), A(t_2), A(t_3), \exists x A(x)$

where t_3 is the first term in the sequence ST, such that $A(t_3)$ does not appear on the tree above $A(t_1), A(t_2), A(t_3), \exists x A(x), i.e. t_3 \neq t_2 \neq t_1$

| (B)

We continue the decomposition

$|(\exists)$ A(t₁), A(t₂), A(t₃), A(t₄), $\exists x A(x)$

where t_4 is the first term in the sequence ST, such that $A(t_4)$ does not appear on the tree above $A(t_1), A(t_2), A(t_3), A(t_4), \exists x A(x), i.e. t_4 \neq t_3 \neq t_2 \neq t_1$

infinite branch

Obviously, the above decomposition tree is **infinite**, what proves that

 $\forall \exists x A(x)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We construct now a **proof** in **QRS** of the quantifiers **distributivity law**

 $(\exists x (A(x) \cap B(x)) \Rightarrow (\exists x A(x) \cap \exists x B(x)))$

and show that the proof in QRS of the inverse implication

 $((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$

does not exist, i.e. that

 $\mathscr{F} ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$

The decomposition tree T_A of the first formula is the following

 T_{A} $(\exists x(A(x) \cap B(x)) \Rightarrow (\exists xA(x) \cap \exists xB(x)))$ $|(\Rightarrow)$ $\neg \exists x(A(x) \cap B(x)), (\exists xA(x) \cap \exists xB(x))$ $|(\neg \exists)$ $\forall x \neg (A(x) \cap B(x)), (\exists xA(x) \cap \exists xB(x))$ $|(\forall)$ $\neg (A(x_{1}) \cap B(x_{1})), (\exists xA(x) \cap \exists xB(x))$

where x_1 is a first free variable in the sequence ST such that x_1 does not appear in $\forall x \neg (A(x) \cap B(x)), (\exists xA(x) \cap \exists xB(x))$

 $|(\neg \cap)$ $\neg A(x_1), \neg B(x_1), (\exists x A(x) \cap \exists x B(x))$ $\bigwedge (\cap)$

(∩)

$$\neg A(x_1), \neg B(x_1), \exists x A(x) \qquad \neg A(x_1), \neg B(x_1), \exists x B(x) \\ | (\exists) \qquad | (\exists) \\ \neg A(x_1), \neg B(x_1), A(t_1), \exists x A(x) \qquad \neg A(x_1), \neg B(x_1), B(t_1), \exists x B(x) \\ \text{where } t_1 \text{ is the first term in the sequence} \\ \text{ST, such that } A(t_1) \text{ does not appear on the} \\ \text{tree above } \neg A(x_1), \neg B(x_1), A(t_1), \exists x A(x) \\ | (\exists) \qquad & | (\exists) \\ \neg A(x_1), \neg B(x_1), \dots B(x_1), \exists x B(x) \\ \dots & axiom \\ \neg A(x_1), \neg B(x_1), \dots A(x_1), \exists x A(x) \\ \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

axiom

Observe, that it is possible to choose eventually a term $t_i = x_1$, as the formula $A(x_1)$ **does not** appear on the tree above the node

$\neg A(x_1), \neg B(x_1), ...A(x_1), \exists x A(x)$

By the definition of the sequence ST, the variable x_1 is placed somewhere in it, i.e. $x_1 = t_i$, for certain $i \ge 1$

It means that after i applications of the step (\exists) in the decomposition tree, we will get an axiom leaf

$$\neg A(x_1), \neg B(x_1), ...A(x_1), \exists x A(x)$$

All leaves of the above tree T_A are axioms, what means that we proved

 $\vdash_{QRS} (\exists x (A(x) \cap B(x)) \Rightarrow (\exists x A(x) \cap \exists x B(x))).$

We construct now, as the last example, a decomposition tree T_A of the formula

 $((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$

T⊿ $((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$ $|(\Rightarrow)$ $\neg (\exists x A(x) \cap \exists x B(x)) \exists x (A(x) \cap B(x))$ $|(\neg \cap)$ $\neg \exists x A(x), \neg \exists x B(x), \exists x (A(x) \cap B(x))$ |(-3)| $\forall x \neg A(x), \neg \exists x B(x), \exists x (A(x) \cap B(x))$ |(A)| $\neg A(x_1), \neg \exists x B(x), \exists x (A(x) \cap B(x))$ |(-3)| $\neg A(x_1), \forall x \neg B(x), \exists x(A(x) \cap B(x))$ |(A)|

 $| (\forall)$ $\neg A(x_1), \neg B(x_2), \exists x (A(x) \cap B(x))$

By the reasoning similar to the reasonings in the previous examples we get that $x_1 \neq x_2$

|(E)|

$$\neg A(x_1), \neg B(x_2), (A(t_1) \cap B(t_1)), \exists x (A(x) \cap B(x))$$

where t_1 is the first term in the sequence ST such that $(A(t_1) \cap B(t_1))$ does not appear on the tree above $\neg A(x_1), \neg B(x_2), (A(t_1) \cap B(t_1)), \exists x(A(x) \cap B(x))$ Observe, that it is possible that $t_1 = x_1$, as $(A(x_1) \cap B(x_1))$ does not appear on the tree above. By the definition of the sequence ST of terms, x_1 is placed somewhere in it, i.e. $x_1 = t_i$, for certain $i \ge 1$. For simplicity, we assume that $t_1 = x_1$ and get the sequence:

$$\neg A(x_1), \neg B(x_2), (A(x_1) \cap B(x_1)), \exists x (A(x) \cap B(x))$$
$$\land (\cap)$$

(∩)

 $egreen A(x_1),
egreen B(x_2),$ $A(x_1), \exists x (A(x) \cap B(x))$

Axiom

 $\neg A(x_{1}), \neg B(x_{2}),$ $B(x_{1}), \exists x(A(x) \cap B(x))$ $| (\exists)$ $\neg A(x_{1}), \neg B(x_{2}), B(x_{1}),$ $(A(x_{2}) \cap B(x_{2})), \exists x(A(x) \cap B(x))$ see COMMENT

(∩)

COMMENT: where $x_2 = t_2 (x_1 \neq x_2)$ is the first term in the sequence ST, such that $(A(x_2) \cap B(x_2))$ does not appear on the tree above $\neg A(x_1), \neg B(x_2), (B(x_1), (A(x_2) \cap B(x_2)), \exists x(A(x) \cap B(x)))$. We assume that $t_2 = x_2$ for the reason of simplicity.

 $\wedge (\cap)$

 $\neg A(x_1),$ $\neg A(x_1),$ $\neg B(x_2),$ $\neg B(x_2),$ $B(x_1), A(x_2),$ $B(x_1), B(x_2),$ $\exists x(A(x) \cap B(x)) \qquad \exists x(A(x) \cap B(x))$ (E) Axiom ... |(E)| infinite branch

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The above decomposition tree T_A contains an **infinite branch** what means that

 $\mathcal{F}_{QRS} ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$

Chapter 10 Predicate Automated Proof Systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Slides Set 1 PART 2: Proof of QRS Completeness

QRS Completeness

Our main goal now is to prove the **Completeness Theorem** for the predicate proof system **QRS**

The **proof** of the **Completeness Theorem** presented here is due to Rasiowa and Sikorski (1961), as is the proof system **QRS**

We adopted Rasiowa - Sikorski proof of **QRS** completeness to propositional case in chapter 6

(ロ)、(型)、(E)、(E)、(E)、(Q)(()

QRS Completeness

Proofs of the **Completeness Theorem** in the propositional case and in the predicate case, are **both** constructive

Both are based on a direct construction of a **counter model** for any unprovable formula

The construction of the **counter model** for the **unprovable** formula A uses in both cases the **decomposition** tree T_A

Rasiowa-Sikorski type of constructive proofs by defining a counter models determined by the decomposition trees relay heavily of the notion of strong soundness

Given a first order language \mathcal{L}

$$\mathcal{L} = \mathcal{L}_{\{\cap, \cup, \Rightarrow, \neg\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$$

with the set VAR of variables and the set \mathcal{F} of formulas

We **define**, after chapter 8 a notion of a **model** and a **counter- model** of a formula $A \in \mathcal{F}$

We establish the **semantics** for **QRS** by extending it to the set \mathcal{F}^* of all finite sequences of formulas of \mathcal{L}

Model

A structure $\mathcal{M} = [M, I]$ is called a **model** of $A \in \mathcal{F}$ if and only if

 $(\mathcal{M}, \mathbf{v}) \models \mathbf{A}$

for all assignments $v : VAR \longrightarrow M$

We denote it by

$\mathcal{M}\models \textit{A}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

M is called the **universe** of the model, *I* the **interpretation**

Counter - Model

A structure $\mathcal{M} = [M, I]$ is called a **counter-model** of $A \in \mathcal{F}$ if and only if **there is** a variable assignment

 $v: VAR \longrightarrow M$, such that

 $(\mathcal{M}, \mathbf{v}) \not\models \mathbf{A}$

We denote it by

 $\mathcal{M} \not\models \mathcal{A}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Tautology

A formula $A \in \mathcal{F}$ is called a **predicate tautology** and is denoted by

|**= A**

if and only if **all** structures $\mathcal{M} = [M, I]$ are **models** of A, i.e.

 \models A if and only if $\mathcal{M} \models A$

for all structures $\mathcal{M} = [M, I]$ for \mathcal{L}

For any sequence $\Gamma \in \mathcal{F}^*$, by δ_{Γ} we understand any **disjunction** of all formulas of Γ

A structure $\mathcal{M} = [M, I]$ is called a **model** of a sequence $\Gamma \in \mathcal{F}^*$ and denoted by

 $\mathcal{M} \models \Gamma$

if and only if $\mathcal{M} \models \delta_{\Gamma}$

The sequence $\Gamma \in \mathcal{F}^*$ is a **predicate tautology** if and only if the formula δ_{Γ} is a predicate tautology, i.e.

 $\models \Gamma$ if and only if $\models \delta_{\Gamma}$

Strong Soundnesss

Our **goal** now is to prove the Completeness Theorem for **QRS**

The correctness of the Rasiowa-Sikorski constructive proof depends on the strong soundness of the rules of inference of QRS

We define it (in general case) as follows

Strong Soundnesss

Strongly Sound Rules

Given a predicate language proof system

 $S = (\mathcal{L}, \mathcal{E}, \mathcal{L}A, \mathcal{R})$

An inference rule $r \in \mathcal{R}$ of the form

$$(r) \quad \frac{P_1 \ ; \ P_2 \ ; \ \dots \ ; \ P_m}{C}$$

is **strongly sound** if the following condition holds for any structure $\mathcal{M} = [M, I]$ for \mathcal{L}

 $\mathcal{M} \models \{P_1, P_2, .P_m\}$ if and only if $\mathcal{M} \models C$

A predicate language proof system $S = (\mathcal{L}, \mathcal{E}, \mathcal{L}A, \mathcal{R})$ is strongly sound if and only if all logical axioms LA are tautologies and all its rules of inference $r \in \mathcal{R}$ are strongly sound

Strong Soundness Theorem

The proof system QRS is strongly sound

Proof

We have already proved in chapter 6 strong soundness of the propositional rules. The quantifiers rules are strongly sound by straightforward verification and is left as an exercise

Soundnesss Theorem

The strong soundness property is stronger then soundness property, hence also the following holds

QRS Soundness Theorem

For any $\Gamma \in \mathcal{F}^*$,

if $\vdash_{QRS} \Gamma$, then $\models \Gamma$

In particular, for any formula $A \in \mathcal{F}$,

if $\vdash_{QRS} A$, then $\models A$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Completeness Theorem

```
For any \Gamma \in \mathcal{F}^*,
```

```
\vdash_{QRS} \Gamma if and only if \models \Gamma
```

```
In particular, for any formula A \in \mathcal{F},
```

```
\vdash_{QRS} A if and only if \models A
```

Proof We prove the completeness part. We need to prove the formula *A* case only because the case of a sequence Γ can be reduced to the formula case of δ_{Γ} . I.e. we prove the implication:

if $\models A$, then $\vdash_{QRS} A$

We do it, as in the propositional case, by proving the opposite implication

if $\nvdash_{QRS} A$ then $\not\models A$

This means that we want prove that for any formula *A*, **unprovability** of *A* in **QRS** allows us to define its **counter- model**

The counter- model is determined, as in the propositional case, by the decomposition tree T_A We have proved the following

Tree Theorem

Each formula *A*, generates its unique decomposition tree T_A and *A* has a proof if and only if this tree is finite and all its **leaves** are axioms

The **Tree Theorem** says says that we have two cases to consider:

(C1) the tree T_A is finite and contains a leaf which is not axiom, or

(C2) the tree T_A is infinite

We will show how to construct a counter- model for A in both cases:

a counter- model determined by a non-axiom leaf of the decomposition tree T_A ,

or a counter- model determined by an infinite branch of T_A

Proof in case (C1)

The tree T_A is **finite** and contains a non-axiom leaf Before describing a general method of constructing the counter-model determined by the decomposition tree T_A we describe it, as an example, for a case of a general formula

 $(\exists x A(x) \Rightarrow \forall x A(x)),$

and its particular case

 $(\exists x(P(x) \cap R(x,y)) \Rightarrow \forall x(P(x) \cap R(x,y))),$

where *P*, *R* are one and two argument predicate symbols, respectively

First we build its decomposition tree: T₄ $(\exists x(P(x) \cap R(x, y)) \Rightarrow \forall x(P(x) \cap R(x, y)))$ $|(\Rightarrow)$ $\neg \exists x (P(x) \cap R(x, y)), \forall x (P(x) \cap R(x, y))$ (-E) $\forall x \neg (P(x) \cap R(x, y)), \forall x (P(x) \cap R(x, y))$ |(A)| $\neg (P(x_1) \cap R(x_1, y)), \forall x (P(x) \cap R(x, y))$

where x_1 is a first free variable in the sequence of term ST such that x_1 does not appear in $\forall x \neg (P(x) \cap R(x, y)), \forall x (P(x) \cap R(x, y))$

> $|(\neg \cap)$ $\neg P(x_1), \neg R(x_1, y), \forall x(P(x) \cap R(x, y))$ $|(\forall)$

|(A)|

$$\neg P(x_1), \neg R(x_1, y), (P(x_2) \cap R(x_2, y))$$

where x_2 is a first free variable in the sequence of term ST such that x_2 does not appear in $\neg P(x_1), \neg R(x_1, y), \forall x(P(x) \cap R(x, y))$, the sequence ST is one-to- one, hence $x_1 \neq x_2$

(∩)

 $\neg P(x_1), \neg R(x_1, y), P(x_2)$

 $x_1 \neq x_2$, Non-axiom

 $\neg P(x_1), \neg R(x_1, y), R(x_2, y)$

 $x_1 \neq x_2$, Non-axiom

▲□▶▲□▶▲□▶▲□▶ □ のQ@

There are two non-axiom leaves

In order to define a counter-model determined by the tree T_A we need to chose only one of them

Let's choose the leaf

 $L_A = \neg P(x_1), \neg R(x_1, y), P(x_2)$

We use the **non-axiom leaf** L_A to define a structure $\mathcal{M} = [M, I]$ and an assignment v, such that

 $(\mathcal{M}, \mathbf{v}) \not\models \mathbf{A}$

Such defined \mathcal{M} is called a **counter - model** determined by the tree T_A

We take a the **universe** of \mathcal{M} the set **T** of all terms of the language \mathcal{L} , i.e. we put $M = \mathbf{T}$.

We define the interpretation I as follows.

For any **predicate** symbol $Q \in \mathbf{P}, \#Q = n$ we put that $Q_l(t_1, \ldots, t_n)$ is **true** (holds) for terms t_1, \ldots, t_n if and entry if

if and only if

the negation $\neg Q_l(t_1, ..., t_n)$ of the formula $Q(t_1, ..., t_n)$ **appears** on the leaf L_A

and $Q_l(t_1, \ldots, t_n)$ is **false** (does not hold) for terms t_1, \ldots, t_n , otherwise

For any **functional** symbol $f \in \mathbf{F}$, #f = n we put

$$f_l(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

It is easy to see that in particular case of our non-axiom leaf

 $L_A = \neg P(x_1), \ \neg R(x_1, y), \ P(x_2)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $P_{l}(x_{1})$ is true (holds) for x_{1} , and not true for x_{2}

 $R_l(x_1, y)$ is true (holds) for x_1 and for any $y \in VAR$

We define the assignment $v : VAR \longrightarrow T$ as **identity**, i.e., we put v(x) = x for any $x \in VAR$ Obviously, for such defined structure [M, I] and the assignment v we have that

 $([\mathbf{T}, I], v) \models P(x_1), ([\mathbf{T}, I], v) \models R(x_1, y), ([\mathbf{T}, I], v) \not\models P(x_2)$

We hence obtain that

$$([\mathbf{T}, I], v) \not\models \neg P(x_1), \neg R(x_1, y), P(x_2)$$

This proves that such defined structure [T, I] is a **counter model** for a non-axiom leaf L_A and by the **Strong Soundness** we proved that

 $\not\models (\exists x (P(x) \cap R(x, y)) \Rightarrow \forall x (P(x) \cap R(x, y)))$

C1: General Method

Let A be any formula such that

*Y*_{QRS} *A*

Let T_A be a decomposition tree of ABy the fact that r_{QRS} and C1, the tree T_A is finite and has a non axiom leaf

$L_A \subseteq LT^*$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

By definition, the leaf L_A contains only atomic formulas and negations of atomic formulas

We use the **non-axiom leaf** L_A to define a structure $\mathcal{M} = [M, I]$, an assignment $v : VAR \longrightarrow M$, such that

 $(\mathcal{M}, \mathbf{v}) \not\models \mathbf{A}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Such defined structure \mathcal{M} is called a **counter - model** determined by the tree T_A

Structure *M* Definition

Given a formula A and a **non-axiom** leaf L_A We define a structure

 $\mathcal{M} = [M, I]$

and an assignment $v: VAR \longrightarrow M$ as follows

1. We take a the universe of \mathcal{M} the set **T** of all **terms** of the language \mathcal{L} , i.e. we put

$$M = \mathbf{T}$$

2. For any predicate symbol $Q \in \mathbf{P}, \#Q = n$,

 $Q_l \subseteq \mathbf{T}^n$

is such that $Q_1(t_1, \ldots, t_n)$ holds (is true) for terms t_1, \ldots, t_n

if and only if

the **negation** $\neg Q(t_1, ..., t_n)$ of the formula $Q(t_1, ..., t_n)$ appears on the leaf L_A and

 $Q_l(t_1, \ldots, t_n)$ does not hold (is false) for terms t_1, \ldots, t_n otherwise

3. For any constant $c \in C$, we put $c_l = c$ For any variable *x*, we put $x_l = x$ For any functional symbol $f \in \mathbf{F}$, #f = n

 $f_l: \mathbf{T}^n \longrightarrow \mathbf{T}$

is identity function, i.e. we put

 $f_l(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$

for all $t_1, \ldots, t_n \in \mathbf{T}$

4. We define the assignment $v : VAR \longrightarrow T$ as identity, i.e. we put for all $x \in VAR$

v(x) = x

Obviously, for such defined structure [T, I] and the assignment v we have that

 $([\mathbf{T}, I], v) \not\models P$ if formula P appears in L_A ,

 $([\mathbf{T}, I], v) \models P$ if formula $\neg P$ appears in L_A

This proves that the structure $\mathcal{M} = [\mathbf{T}, \mathbf{I}]$ and assignment \mathbf{v} are such that

 $([\mathbf{T}, I], v) \nvDash L_A$

By the Strong Soundness Theorem we have that

$(([\mathbf{T}, l], v) \not\models A$

This proves $\mathcal{M} \not\models A$ and we proved that

⊭ A

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This ends the proof of the case C1

Proof of case C2: T_A is infinite

The case of the **infinite tree** is similar to the **C1** case, even if a little bit more complicated

Observe that the rule (\exists) is the **only** rule of inference (decomposition) which can "produces" an infinite branch

We first show how to construct the **counter-model** in the case of the simplest application of this rule, i.e. in the case of the atomic formula

$\exists x P(x)$

for P one argument relational symbol. All other cases are. similar to this one

C2: Particular Case n

The **infinite** branch \mathcal{B}_A in the following

 \mathcal{B}_{A}

 $\exists x P(x)$ $\mid (\exists)$ $P(t_1), \exists x P(x)$

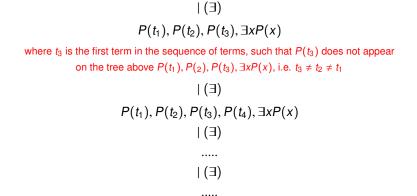
where t_1 is the first term in the sequence of terms, such that $P(t_1)$ does not appear on the tree above $P(t_1)$, $\exists x P(x)$

$| (\exists)$ $P(t_1), P(t_2), \exists x P(x)$

where t_2 is the first term in the sequence of terms, such that $P(t_2)$ does not appear on the tree above $P(t_1), P(t_2), \exists x P(x), i.e. t_2 \neq t_1$

| (∃)

C2: Particular Case



The infinite branch \mathcal{B}_A , written from the top, in oder of appearance of formulas is

 $\mathcal{B}_{A} = \{ \exists x P(x), P(t_{1}), A(t_{2}), P(t_{2}), P(t_{4}), \dots \}$

where t_1, t_2, \dots is a one - to one sequence of **all terms**

C2: Particular Case n

The infinite branch

 $\mathcal{B}_A = \{ \exists x P(x), P(t_1), A(t_2), P(t_2), P(t_4), \dots \}$

contains with the formula $\exists x P(x)$ all its instances P(t), for all terms $t \in \mathbf{T}$

We define the structure $\mathcal{M} = [M, I]$ and the assignment v as we did previously, i.e.

we take as the universe *M* the set **T** of all terms, and define P_1 as follows:

 $P_l(t)$ holds if $\neg P(t) \in \mathcal{B}_A$, and

 $P_l(t)$ does not hold if $P(t) \in \mathcal{B}_A$

C2: Particular Case

For any constant $c \in \mathbf{C}$, we put $c_l = c$, for any variable x, we put $x_l = x$

For any functional symbol $f \in \mathbf{F}$, #f = n

 $f_l: \mathbf{T}^n \longrightarrow \mathbf{T}$

is identity function, i.e. we put

 $f_l(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for all $t_1, \ldots, t_n \in \mathbf{T}$

C2: Particular Case

We define the assignment $v : VAR \longrightarrow T$ as identity, i.e. we put for all $x \in VAR$

v(x) = x

It is easy to see that for any formula $P(t) \in \mathcal{B}$,

 $([T, I], v) \not\models P(t)$

But the $P(t) \in \mathcal{B}$ are **all instances** of the formula $\exists x P(x)$, hence

 $([T, I], v) \not\models \exists x P(x)$

and we proved

 $\not\models \exists x P(x)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Let A be any formula such that

*Y*_{QRS} A

Let \mathcal{T}_A be an **infinite** decomposition tree of the formula A

Let \mathcal{B}_A be the **infinite branch** of \mathbf{T}_A , written from the top, in order of appearance of sequences $\Gamma \in \mathcal{F}^*$ on it, where $\Gamma_0 = A$, i.e.

 $\mathcal{B}_{A} = \{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{i}, \Gamma_{i+1}, \ldots\}$

Given the infinite branch

$$\mathcal{B}_{A} = \{\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{i}, \Gamma_{i+1}, \ldots\}$$

We define a set

 $L\mathcal{F}\subseteq \mathcal{F}$

of all **indecomposable** formulas appearing in at least one sequence Γ_i , $i \leq j$, i.e. we put

 $L\mathcal{F} = \{B \in LT : \text{ there is } \Gamma_i \in \mathcal{B}_A, \text{ such that } B \text{ iappiears } \Gamma_i\}$

Note, that the following holds

(1) If $i \le i'$ and an **indecomposable** formula appears in Γ_i , then it also appears in $\Gamma_{i'}$

(2) Since **none** of Γ_i is an axiom, for every atomic formula $P \in A\mathcal{F}$, at **most one** of the formulas P and $\neg P$ is in $L\mathcal{F}$

Counter Model Definition

Let **T** be the set of all terms. We define the structure $\mathcal{M} = [\mathbf{T}, \mathbf{I}]$, the interpretation I of constants and functional symbols, and the assignment \mathbf{v} in the set **T**, as in previous cases

We define the interpretation 1 of predicates $Q \in \mathbf{P}$ as follows For any predicate symbol $Q \in \mathbf{P}, \#Q = n$, we put

(1) $Q_l(t_1,...,t_n)$ does not hold (is false) for terms $t_1,...,t_n$ if and only if

 $Q_l(t_1,\ldots,t_n) \in L\mathcal{F}$

(2) $Q_l(t_1, \ldots, t_n)$ does holds (is true) for terms t_1, \ldots, t_n if and only if

 $Q_l(t_1,\ldots t_n) \notin L\mathcal{F}$

Directly from the definition we we have that $\mathcal{M} \not\models L\mathcal{F}$ Our goal now is to prove that

$\mathcal{M} \not\models A$

For this purpose we first introduce, for any formula $A \in \mathcal{F}$, an inductive definition of the **order** ordA of the formula A

(1) If $A \in A\mathcal{F}$, then ord A = 1

(2) If ord A = n, then ord $\neg A = n + 1$

(3) If $ordA \le n$ and $ordB \le n$, then $ord(A \cup B) = ord(A \cap B) = ord(A \Rightarrow B) = n + 1$ (4) If ordA(x) = n, then $ord\exists xA(x) = ord\forall xA(x) = n + 1$

We conduct the proof of $\mathcal{M} \not\models A$ by contradiction. Assume that

$\mathcal{M} \models A$

Consider now a set $M\mathcal{F}$ of all formulas *B* appearing in one of the sequences Γ_i of the branch \mathcal{B}_A , such that

$\mathcal{M}\models B$

We write the the set $M\mathcal{F}$ formally as follows

 $M\mathcal{F} = \{B \in \mathcal{F} : \text{ for some } \Gamma_i \in \mathcal{B}_A, B \text{ is in } \Gamma_i \text{ and } \mathcal{M} \models B\}$

Observe that the formula A is in $M\mathcal{F}$ so

 $M\mathcal{F} \neq \emptyset$

Let B' be a formula in $M\mathcal{F}$ such that

ord $B' \leq ord B$ for every $B \in M\mathcal{F}$

There exists $\Gamma_i \in \mathcal{B}_A$ that is of the form Γ', B', Δ with an **indecomposable** Γ'

We have that B' can not be of the form

(*) $\neg \exists x A(x)$ or $\neg \forall x A(x)$

for if B' of the (*) form **is** in $M\mathcal{F}$, then also formula $\forall x \neg A(x)$ or $\exists x \neg A(x)$ is in $M\mathcal{F}$ and the **orders** of the two formulas are equal

We carry the same order argument and show that B' can not be of the form

(**) $(A \cup B)$, $\neg (A \cup B)$, $(A \cap B)$, $\neg (A \cap B)$, $(A \Rightarrow B)$, $\neg (A \Rightarrow B)$, $\neg \neg A$, $\forall xA(x)$ The formula *B'* can not be of the form $(***) \exists xB(x)$

since then there exists term t and j such that $i \le j$, and B'(t) appears in Γ_j and the formula B(t) is such that

 $\mathcal{M} \models B$

Thus $B(t) \in M\mathcal{F}$ and ordB(t) < ordB'This **contradicts** the definition of B'Since B' is not of the forms (*), (**), (***), B' is indecomposable. Thus $B' \in L\mathcal{F}$ and consequently

$\mathcal{M} \not\models B'$

On the other hand B' is in the set $M\mathcal{F}$ and hence is one of the formulas satisfying

$\mathcal{M} \models B'$

This **contradiction** proves that $\mathcal{M} \not\models A$ and hence we proved that

⊭ A

This ends the proof of the Completeness Theorem for QRS

Chapter 10 Predicate Automated Proof Systems Completeness of Classical Predicate Logic

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Slides Set 2

PART 3: Skolemization and Clauses

Skolemization and Clauses : Introduction

A **resolution** based proof system for predicate logic operates on sets of **clauses** as a basic expressions and uses a resolution rule as the only rule of inference

The **first goal** of this part is to define an **effective process** of transformation of any formula *A* of a predicate language

 $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$

into its logically equivalent set of clauses

CA

Skolemization and Clauses: Introduction

This process of transformation is done in two stages

S1. We convert any formula *A* of the predicate language \mathcal{L} into an **open** formula *A*^{*} of a language \mathcal{L}^* by a process of **elimination of quantifiers** from the original language \mathcal{L}

The elimination method is due to T. Skolem (1920) and is called Skolemization

Skolem Theorem

The resulting formula *A*^{*} is equisatisfiable with *A*: it is **satisfiable** if and only if the original one is **satisfiable**

Skolemization and Clauses; Introduction

The stage **S1.** is performed as the first step in a resolution based automated theorem prover

S2. We define a proof system **QRS**^{*} based on the Skolemized language

\mathcal{L}^*

and use it transform automatically any formula A^* of \mathcal{L}^* into an logically equivalent set of clauses

C_{A*}

Skolemization and Clauses; Introduction

The final result of stages S1. and S2., i.e. the set

\mathbf{C}_{A^*}

of clauses of the Skolemized language \mathcal{L}^* called a **clausal** form of the original formula *A* of the language \mathcal{L}

The **transformation** process for any propositional formula *A* into its **logically equivalent** set C_A of clauses follows directly from the use of the propositional system **RS**

Clauses: Definition

Definition

Given a formal language \mathcal{L} , propositional or predicate

1. A **literal** as an atomic , or a negation of an atomic formula of \mathcal{L} . We denote by *LT* the set of all **literals** of \mathcal{L}

A clause *C* is a finite set of literals
 Empty clause is denoted by {}

3. We denote by **C** any finite set of all **clauses**. For any $n \ge 0$,

$$\mathbf{C} = \{C_1, C_2, \ldots, C_n\}$$

Clauses: Definition

Definition

Given a propositional or predicate language L, and a sequence

$\Gamma \in LT^*$

determined by Γ is a set form out of all elements of the sequence Γ

We we denote it by

 \mathcal{C}_{Γ}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example

Example

In particular,

1. if $\Gamma_1 = a, a, \neg b, c, \neg b, c$ and $\Gamma_2 = \neg b, c, a$, then

$$C_{\Gamma_1} = C_{\Gamma_2} = \{a, c, \neg b\}$$

2. If $\Gamma_1 = \neg P(x_1), \neg R(x_1, y), P(x_2), \neg P(x_1), \neg R(x_1, y), P(x_2)$ and $\Gamma_2 = \neg P(x_1), \neg R(x_1, y), P(x_2)$, then

 $C_{\Gamma_1} = C_{\Gamma_2} = \{\neg P(x_1), \neg R(x_1, y), P(x_2)\}$

Clauses Semantics

Given a propositional or predicate language L We use the following notations For any **clause** C, write δ_C

for a disjunction of all literals in C

Let \mathcal{M} denote a **structure** [M, I] for a predicate language \mathcal{L} , or a **truth assignment** v in case when \mathcal{L} is a propositional language

Clauses Semantics

Definition

 \mathcal{M} is called a **model** for a clause \mathcal{C}

 $\mathcal{M} \models \mathcal{C}$, if and only if $\mathcal{M} \models \delta_{\mathcal{C}}$

 \mathcal{M} is called a **model** for a **set C** of clauses,

 $\mathcal{M} \models \mathbf{C}$ if and only if $\mathcal{M} \models C$ for all clauses $C \in \mathbf{C}$

Clauses Semantics

Definition

A formula A is equivalent with a set C of clauses

 $(A \equiv C)$ if and only if $A \equiv \sigma_C$

where σ_{C} is a conjunction of all formulas δ_{C} for all clauses $C \in C$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Propositional Formula-Clauses Equivalency

Theorem (Formula-Clauses Equivalency)

For any formula A of a propositional language \mathcal{L} , there is an **effective procedure** of generating a corresponding set C_A of clauses such that

$$A \equiv \mathbf{C}_A$$

Proof

Given a formula A, we first use the **RS** system (chapter 6) to build a **decomposition tree** T_A of A

We form clauses out of the **leaves** of the tree T_A , i.e. for every leaf *L* we create a clause C_L determined by *L*

Propositional Formula-Clauses Equivalency

We put

 $C_A = \{C_L : L \text{ is a leaf of } T_A\}$

Directly from the **strong soundness** of rules of inference of **RS** we get

$A \equiv \mathbf{C}_A$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This ends the proof for the propositional case

Example

Example Consider a decomposition tree TA $(((a \Rightarrow b) \cap \neg c) \cup (a \Rightarrow c))$ $|(\cup)$ $((a \Rightarrow b) \cap \neg c), (a \Rightarrow c)$ \wedge (\cap) $\neg c, (a \Rightarrow c)$ $(a \Rightarrow b), (a \Rightarrow c)$ $|(\Rightarrow)$ $|(\Rightarrow)$ $\neg c, \neg a, c$ $\neg a, b, (a \Rightarrow c)$ $|(\Rightarrow)$ $\neg a.b. \neg a.c$

Example

For the formula

$$A = (((a \Rightarrow b) \cap \neg c) \cup (a \Rightarrow c))$$

the leaves of its tree T_A are

 $L_1 = \neg a, b, \neg a, c$ and $L_2 = \neg c, \neg a, c$

The set of clauses determined by them is

 $C_A = \{\{\neg a, b, c\}, \{\neg c, \neg a, c\}\}$

By the Formula-Clauses Equivalency Theorem

 $A \equiv \mathbf{C}_A$

Semantically it means that

 $A \equiv (((\neg a \cup b) \cup c) \cap ((\neg c \cup \neg a) \cup c))$

Predicate Clausal Form

Theorem

For any formula A of a **predicate** language \mathcal{L} , there is an **effective** procedure of generating an **open** formula A^* of a quantifiers free language \mathcal{L}^* and a set C_{A^*} of **clauses** such that

 $(*) \quad A^* \equiv \mathbf{C}_{A^*}$

The set C_{A^*} of clauses of the language \mathcal{L}^* with the property (*) is called a **clausal form** of the formula A of \mathcal{L}

Proof of Theorem

Proof Given a formula *A* of a language \mathcal{L} The **open** formula A^* of the **quantifiers free** language \mathcal{L}^* is obtained by the Skolemization process

The effectiveness and correctness of the process follows from **PNF Theorem** and **Skolem Theorem** described in the next section

As the next step, we define there a proof system **QRS**^{*} based on the **quantifiers free** language \mathcal{L}^*

Proof of Predicate Clausal Form Theorem

The system **QRS**^{*} is a version of the predicate system **QRS** with inference rules restricted to Propositional Rules

At this point we use the system **QRS**^{*} to define in it a decomposition tree T_{A^*} for any **open** formula A^* We form **clauses** out of its leaves and we put

 $\mathbf{C}_{A^*} = \{C_L : L \text{ is a leaf of } \mathbf{T}_{A^*}\}$

(ロ)、(同)、(E)、(E)、(E)、(O)((C)

This is the **clausal form** of the formula A of \mathcal{L}

To complete the proof we develop in the next section all needed **notions** and **results**

Prenex Normal Forms and Skolemization

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Some Basic Notions

Let $A(x), A(x_1, x_2, ..., x_n) \in \mathcal{F}$ and $t, t_1, t_2, ..., t_n \in \mathbf{T}$ $A(t), A(t_1, t_2, ..., t_n)$

denote the result of replacing respectively all occurrences of the free variables x, x_1 , x_2 , ..., x_n , by the terms t, t_1 , t_2 , ..., t_n **We assume** that t, t_1 , t_2 , ..., t_n are **free for** x, x_1 , x_2 , ..., x_n , respectively, **in** *A*

The assumption that $t \in T$ is free for x in A(x) while substituting t for x, is **important** because otherwise we would distort the meaning of A(t)

・ロト・日本・日本・日本・日本・日本

Examples

Example 1

Let t = y and A(x) be

 $\exists y \big(x \neq y \big)$

Obviously t is not free for y in A

The **substitution** of *t* for *x* produces a formula A(t) of the form

 $\exists y(y \neq y)$

which has a different meaning than

 $\exists y(x \neq y)$

Examples

Example 2

Let A(x) be a formula

 $(\forall y P(x, y) \cap Q(x, z))$

and let t = f(x, z)

We **substitute** *t* on a place of *x* in A(x) and we obtain a formula A(t) of the form

 $(\forall y P(f(x,z),y) \cap Q(f(x,z),z))$

None of the occurrences of the variables x, z of t is **bound** in A(t), hence we say that t = f(x, z) is **free** for x in

 $(\forall y P(x, y) \cap Q(x, z))$

Examples

Example 3

Let A(x) be a formula

 $(\forall y P(x, y) \cap Q(x, z))$

The term t = f(y, z) is **not free** for x in A(x) because **substituting** t = f(y, z) on a place of x in A(x) we obtain now a formula A(t) of the form

 $(\forall y P(fy, z), y) \cap Q(f(y, z), z))$

which contain a **bound** occurrence of the variable y of t in sub-formula $(\forall y P(f(y, z), y))$

The other occurrence of y in sub-formula (Q(f(y, z), z)) is free, but it is not sufficient, as for term to be free for x, all occurrences of its variables has to be free in A(t)

Similar Formulas

Informally, we say that formulas A(x) and A(y) are **similar** if and only if A(x) and A(y) are the **same** except that A(x) has **free** occurrences of x in **exactly** those places where A(y) has **free** occurrence of of y

We define it formally as follows

Definition

Let x and y be two different variables. We say that the formulas A(x) and A(y) = A(x/y) are **similar** and denote it by

 $A(x) \sim A(y)$

if and only if y is free for x in A(x) and A(x) has no free occurrences of y

Similar Formulas Examples

Example 1

The formulas

$A(x): \exists z(P(x,z) \Rightarrow Q(x,y))$ and

 $A(y): \exists z(P(y,z) \Rightarrow Q(y,y))$

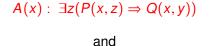
are not similar; y is free for x in A(x) as no occurrence of y becomes a bound occurrence in the formula A(y) but the formula A(x) has a free occurrence of y

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Similar Formulas Examples

Example 2

The formulas



 $A(w): \exists z(P(w,z) \Rightarrow Q(w,y))$

are similar; w is free for x in A(x) as no occurrence of w becomes a **bound** occurrence in the formula A(w) and the formula A(x) has no free occurrence of w

Renaming the Variables

Directly from the definition we get the following **Fact** (Renaming the Variables) For any formula $A(x) \in \mathcal{F}$, if A(x) and A(y) = A(x/y) are similar, i.e.

 $A(x) \sim A(y)$

then the following logical equivalences hold

 $\forall xA(x) \equiv \forall yA(y)$ and $\exists xA(x) \equiv \exists yA(y)$

Example

Example 3

We proved in Example 2 that

 $\exists z(P(x,z) \Rightarrow Q(x,y)) \sim \exists z(P(w,z) \Rightarrow Q(w,y))$

Hence by the Fact we get that

 $\forall x \exists z (P(x, z) \Rightarrow Q(x, y)) \equiv \forall w \exists z (P(w, z) \Rightarrow Q(w, y))$

and

 $\exists x \exists z (P(x,z) \Rightarrow Q(x,y)) \equiv \exists w \exists z (P(w,z) \Rightarrow Q(w,y))$

▲□▶▲□▶▲□▶▲□▶ ■ のへの

Replacement Theorem

We prove, by the **induction** on the number of connectives and quantifiers in a formula A the following

Replacement Theorem

For any formulas $A, B \in \mathcal{F}$,

if *B* is a **sub-formula** of *A*, and *A*^{*} is the result of **replacing** zero or more occurrences of *B* in *A* by a formula *C*, and $B \equiv C$, then $A \equiv A^*$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Change of Bound VariablesTheorem

Theorem (Change of Bound Variables) For any formula $A(x), A(y), B \in \mathcal{F}$, if the formulas A(x) and A(x/y) are **similar**, i.e.

 $A(x) \sim A(y)$

and the formula

 $\forall xA(x) \text{ or } \exists xA(x)$

is a **sub-formula** of *B*, and the formula B^* is the result of **replacing** zero or more occurrences of A(x) in *B* by a formula $\forall yA(y)$ or by a formula $\exists yA(y)$, then

 $B \equiv B^*$

Naming Variables Apart

Definition

We say that a formula *B* has its variables named apart if no two quantifiers in B **bind** the same variable and no bound variable is also free

We now use the Change of Bound Variables **Theorem** to prove its more general version

Naming Variables Apart

Theorem (Naming Variables Apart)

Every formula $A \in \mathcal{F}$ is logically **equivalent** to one in which all variables are named apart

We use the above theorems plus the **equational laws** for quantifiers to prove, as a next step a so called a **Prenex Form Theorem**

In order to do so we first we define an important notion of prenex normal form of a formula

Closure of a Formula

Here is an important notion we need for future definition

Definition(Closure of a Formula)

By a closure of a formula A we mean a closed formula A' obtained from A prefixing in universal quantifiers all those variables that a free in A; i.e.

if $A(x_1,\ldots,x_n)$ then $A' \equiv A$ is

$$\forall x_1 \forall x_2 \dots \forall x_n A(x_1, x_2, \dots, x_n)$$

Example

Let A be a formula $(P(x, y) \Rightarrow \neg \exists z \ R(x, y, z))$. its closure $A' \equiv A$ is $\forall x \forall y (P(x, y) \Rightarrow \neg \exists z \ R(x, y, z))$

Prenex Normal Form

PNF Definition

Any formula of the form

 $Q_1 x_1 Q_2 x_2 \dots Q_n x_n B$

where each Q_i is a **universal** or **existential quantifier**, i.e. the following holds

for all $1 \le i \le n$,

 $Q_i \in \{\exists, \forall\}$ and $x_i \neq x_j$ for $i \neq j$

and the formula *B* contains **no quantifiers**, is said to be in **Prenex Normal Form (PNF)**

We include the case n = 0 when there are no quantifiers at all

Prenex Normal Form Theorem

We assume that the formula A in **PNF** is always **closed** If it is not closed we form its closure instead

PNF Theorem

There is an effective procedure for transforming any formula $A \in \mathcal{F}$ into a formula B in the prenex normal form **PNF** such that

$A \equiv B$

Proof

The procedure uses the Replacement and Naming Variables Apart **Theorems** and and the following Equational Laws of Quantifiers proved in chapter 2

Equational Laws of Quantifiers

For any $A(x), B \in \mathcal{F}$, where *B* does not contain any free occurrence of *x* the following holds

$$\forall x(A(x) \cup B) \equiv (\forall xA(x) \cup B)$$

$$\forall x(A(x) \cap B) \equiv (\forall xA(x) \cap B)$$

$$\exists x(A(x) \cup B) \equiv (\exists xA(x) \cup B)$$

$$\exists x(A(x) \cap B) \equiv (\exists xA(x) \cap B)$$

$$\forall x(A(x) \Rightarrow B) \equiv (\exists xA(x) \Rightarrow B)$$

$$\exists x(A(x) \Rightarrow B) \equiv (\forall xA(x) \Rightarrow B)$$

$$\exists x(B \Rightarrow A(x)) \equiv (B \Rightarrow \exists xA(x))$$

The general **PNF procedure** is defined by induction on the number k of occurrences of connectives and quantifiers in A We show here how it works in some particular cases **Exercise** Find a prenex normal form **PNF** of a formula

 $A: \quad (\forall x (P(x) \Rightarrow \exists x Q(x)))$

Solution We find PNF as follows

Step 1: Naming Variables Apart

We make all **bound variables** in A different, i.e. we transform A into an equivalent formula A'

 $\forall x(P(x) \Rightarrow \exists y Q(y))$

Step 2: Pull Out Quantifiers

We apply the equational law $(C \Rightarrow \exists y Q(y)) \equiv \exists y \ (C \Rightarrow Q(y))$ to the sub-formula

 $B: (P(x) \Rightarrow \exists y Q(y))$

of A' for C = P(x), as P(x) **does not** contain the variable y We get its equivalent formula

 $B^*: \exists y(P(x) \Rightarrow Q(y))$

We substitute B^* on place of B in A' and get the formula

 $A'' \quad \forall x \exists y (P(x) \Rightarrow Q(y))$

By the Replacement **Theorem** $A'' \equiv A' \equiv A$ The formula A'' is a required prenex normal form **PNF** for A

Example

Let's now find **PNF** for the formula A:

 $(\exists x \forall y \ R(x,y) \Rightarrow \forall y \exists x \ R(x,y))$

Step 1: Rename Variables Apart

Take a sub- formula B(x, y): $\forall y \exists x \ R(x, y)$ of ARename variables in B(x, y), i.e. get B(x/z, y/w): $\forall w \exists z \ R(z, w)$ Replace B(x, y) by B(x/z, y/w) in A and get

 $(\exists x \forall y \ R(x,y) \Rightarrow \forall w \exists z \ R(z,w))$

Step 2: Pull out quantifiers

We use corresponding equational laws for quantifiers to pull out **first** (one by one) quantifiers $\exists x \forall y$ and **then** pulling out one by one the quantifiers $\forall w \exists z$ We get the following **PNF** for *A*

 $\forall x \exists y \forall w \exists z \ (R(x, y) \Rightarrow R(z, w))$

Observe we can also perform **Step 2** by pulling out **first** (one by one) the quantifiers $\forall w \exists z$ and **then** pulling out one by one the quantifiers $\exists x \forall y$.

We hence can obtain another PNF for A

 $\forall w \exists z \forall x \exists y \ (R(x, y) \Rightarrow R(z, w))$

Skolem Procedure of Elimination of Quantifiers

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Skolemization

We will show now how any formula A already in its prenex normal form **PNF** can be transformed into a certain **open formula** A^* , such that

$A \equiv A^*$

The **open formula** A^* belongs to a **richer language** then the initial language \mathcal{L} to which the formula A belongs

This transformation process adds new constants to the original language \mathcal{L} They are called **Skolem constants**

The process also $\operatorname{\textbf{adds}}$ to $\ \operatorname{\textbf{\pounds}}$ new functions symbols called Skolem functions

The whole transformation process is called Skolemization of the initial language \pounds

Such build extension of the initial language \mathcal{L} is called the **Skolem extension** of and \mathcal{L} and denoted

Skolem Elimination of Quantifiers

Skolem Procedure of Elimination of Quantifiers

Given a formula A of the language

 $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$

We assume that A is already in its prenex normal form **PNF**

 $Q_1 x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots, x_n)$

where each Q_i is a **universal** or **existential** quantifier, i.e. for all $1 \le i \le n$, $Q_i \in \{\exists, \forall\}, x_i \ne x_j$ for $i \ne j$, and the formula $B(x_1, x_2, ..., x_n)$ contains **no quantifiers**

Skolem Elimination of Quantifiers

We describe now a procedure of **elimination** of all quantifiers from a **PNF** formula A

The procedure transforms **PNF** formula A into a logically equivalent open formula A^*

We also assume that the **PNF** formula A is **closed** If it is not closed we form its closure instead

Closure of a Formula

For any formula A, its **closure** is a formula A' obtained from A by **prefixing** in universal quantifiers all those variables that are **free** in A

Example

Let A be a formula

 $(P(x,y) \Rightarrow \neg \exists z \ R(x,y,z))$

its closure i.e. a formula $A' \equiv A$ is

 $\forall x \forall y (P(x, y) \Rightarrow \neg \exists z \ R(x, y, z))$

Elimination of Quantifiers

Given a formula A in its closed PNF form

 $Q_1 x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots, x_n)$

We considerer 3 cases

Case 1

All quantifiers Q_i for $1 \le i \le n$ are **universal**, i.e. the formula A is

 $A: \quad \forall x_1 \forall x_2 \dots \forall x_n B(x_1, x_2, \dots, x_n)$

We replace the formula A by the open formula A*

$$A^*: B(x_1, x_2, ..., x_n)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Elimination of Quantifiers

Case 2

All quantifiers Q_i for $1 \le i \le n$ are **existential**, i.e. formula A is

$$A: \exists x_1 \exists x_2 \dots \exists x_n B(x_1, x_2, \dots, x_n)$$

We replace the formula A by the open formula A*

$$A^*: B(c_1, c_2, ..., c_n)$$

where c_1, c_2, \ldots, c_n and **new** individual constants **added** to our original language \mathcal{L}

We call such individual **constants** added to the original language Skolem constants

Case 3

The quantifiers in A are mixed

We **eliminate** the mixed quantifiers one by one and step by step depending on first, and then the consecutive quantifiers in the closed **PNF** formula A

 $A: \quad Q_1 x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots, x_n)$

We have two possibilities for the **first** quantifier $Q_1 x_1$

- **P1** $Q_1 x_1$ is **universal**
- **P2** $Q_1 x_1$ is existential

Step 1 Elimination of Q_1 We consider the two cases for the **first** quantifier Case **P1** First quantifier Q_1 is **universal** This means that A is

 $A: \quad \forall x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots, x_n)$

We **replace** A by the following formula A_1

 $A_1: Q_2 x_2 Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots, x_n)$

We have **eliminated** the quantifier Q_1 in this case

Case **P2** First quantifier Q_1 is **existential**. This means that **A** is $A: \exists x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots x_n)$ We **replace A** by a following formula A_1

 $A_1 \qquad Q_2 x_2 \ldots Q_n x_n B(b_1, x_2, \ldots x_n)$

where b_1 is a new constant symbol **added** to our original language \mathcal{L}

We call such constant symbol **added** to the language a Skolem constant

We have **eliminated** the quantifier Q_1 in both cases and this ends the **Step 1**

Step 2Elimination of Q_2 Consider now the PNF formula A_1 from Step1 - case P1

$$A_1 \qquad Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots x_n)$$

Remark that the formula A₁ might **not be closed**

We have again two cases for elimination of the quantifier Q_2

- P1 Q₂ is universal
- P2 Q2 is existential

Case **P1** First quantifier in A_1 is **universal** The formula A_1 is

 $A_1 \quad \forall x_2 Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots x_n)$ We **replace** A_1 by the following A_2

 $A_2 \qquad Q_3 x_3 \ldots Q_n x_n B(x_1, x_2, x_3, \ldots, x_n)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We have **eliminated** the quantifier Q_2 in this case

Case **P2** First quantifier in A_1 is **existential** The formula A_1 is

 $A_1 \quad \exists x_2 Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots, x_n)$

Observe that now the variable x_1 is a **free** variable in

 $B(x_1, x_2, x_3, \ldots x_n)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

and hence x_1 is a **free** variable in the formula A_1

The variable x_1 is free in A_1

 $A_1 \quad \exists x_2 Q_3 x_3 \dots Q_n x_n B(x_1, x_2, x_3, \dots, x_n)$

We **replace** A_1 by the following A_2

 $A_2 = Q_3 x_3 \dots Q_n x_n B(x_1, f(x_1), x_3, \dots, x_n)$

where f is a new **one** argument functional symbol **added** to our original language \mathcal{L}

We call such functional symbols **added** to the original language Skolem functional symbols

We have **eliminated** the quantifier Q_2 in this case

Consider now the PNF formula A1 from Step1 - case P2

 $A_1 \qquad Q_2 x_2 Q_3 x_3 \dots Q_n x_n B(b_1, x_2, \dots, x_n)$

Again we have two cases for the quantifier Q_2 Case **P1** First quantifier Q_2 in A_1 is **universal** The formula A_1 is $A_1 \quad \forall x_2 Q_3 x_3 \dots Q_n x_n B(b_1, x_2, x_3, \dots x_n)$ We **replace** A_1 by the following A_2

 $A_2 = Q_3 x_3 \dots Q_n x_n B(b_1, x_2, x_3, \dots, x_n)$

(ロ)、(型)、(E)、(E)、(E)、(Q)(()

We have eliminated the quantifier Q_2 in this case

Case **P2** First quantifier in A_1 is **existential** The formula A_1 is $A_1 = \exists x_2 Q_3 x_3 \dots Q_n x_n B(b_1, x_2, x_3, \dots, x_n)$ We **replace** A_1 by the following A_2 $A_2 = Q_3 x_3 \dots Q_n x_n B(b_1, b_2, x_3, \dots, x_n)$

where $b_2 \neq b_1$ is a **new** Skolem constant **added** to the original language \mathcal{L}

We have **eliminated** the quantifier Q_2 in this case We have covered all cases and this ends the **Step 2**

Step 3 Elimination of Q_3 Let's now consider, as an **example** a formula A_2 from **Step 2** - case **P1** i.e. the formula

 $Q_3x_3\ldots Q_nx_nB(x_1,x_2,x_3,\ldots x_n)$

We have two cases but we describe only the following **P2** First quantifier in A_2 is **existential** The formula A_2 is

 $A_2 = \exists x_2 Q_4 x_4 \dots Q_n x_n B(x_1, x_2, x_3, x_4, \dots x_n)$

Observe that now the variables x_1, x_2 are free variables in

$$B(x_1, x_2, x_3, \ldots x_n)$$

and hence in A2

The the variables x_1, x_2 are free in A_2

 $A_2 = \exists x_2 Q_4 x_4 \dots Q_n x_n B(x_1, x_2, x_3, x_4, \dots, x_n)$

We replace A_2 by the following A_3

 $A_3 \quad Q_4 x_3 \dots Q_n x_n B(x_1, x_2, g(x_1, x_2), x_4 \dots x_n)$

where g is a **new** two argument functional symbol **added** to the original language \mathcal{L}

We have **eliminated** the quantifier Q_3 in this case

Elimination of Quantifiers

At each **Step i** for $1 \le i \le n$ we build a **binary tree** of cases **P1** Q_i is universal or **P2** Q_i is existential

The result in each case is a formula A_i with one less quantifier

The **elimination** of the proper quantifier **adds** new Skolem constant or Skolem function symbol to the original language \mathcal{L}

Elimination of Quantifiers

The **elimination of quantifiers** process builds a sequence of formulas

 $A, A_1, A_2, \ldots, A_n = A^*$

where the formula A belongs to our original language

 $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C}),$

and the **open** formula A^* belongs to its Skolem extension defined as follows

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Skolem Extension

Definition

The **Skolem extension** \mathcal{L}^* of a language

 $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$

is the language

$$\mathcal{L}^* = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(\mathbf{P}, \mathbf{F} \cup S\mathbf{F}, \ \mathbf{C} \cup S\mathbf{C})$$

where the sets SF and SC are respectively the sets of Skolem functions and Skolem constants They are obtained by the **quantifiers elimination procedure** Elimination of Quantifiers Result

Given a formula A in its closed PNF form

 $Q_1 x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots, x_n)$

Observe that the **elimination** of an universal quantifier Q_i introduces a **free** variable x_i in the formula

 $Q_1 x_1 Q_2 x_2 \dots Q_n x_n B(x_1, x_2, \dots, x_n)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Elimination of Quantifiers Result

The **elimination** of an existential quantifier Q_i that follows universal quantifiers introduces a **new** functional symbol with number of arguments equal the number of universal quantifiers preceding it

The elimination of an existential quantifier Q_i that does not follows any universal quantifiers introduces a **new** constant symbol

The resulting **open** formula A^* is logically equivalent to the **PNF** formula A

Definition

Given a formula A of \mathcal{L} A formula

A*

of the Skolem extension language \mathcal{L}^* obtained from A by the **elimination of quantifiers** process is called a Skolem form of the formula A

The elimination of quantifiers process obtaining it is called **Skolemization**

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example 1 Let A be a closed PNF formula

 $A: \quad \forall y_1 \exists y_2 \forall y_3 \exists y_4 \ B(y_1, y_2, y_3, y_4, y_4)$

We eliminate $\forall y_1$ and get a formula A_1

 $A_1: \exists y_2 \forall y_3 \exists y_4 B(y_1, y_2, y_3, y_4)$

We eliminate $\exists y_2$ by replacing the variable y_2 by $h(y_1)$ The symbol *h* is a **new** one argument functional symbol added to the language \mathcal{L}

We get a formula A₂

$$A_2: \quad \forall y_3 \exists y_4 \ B(y_1, h(y_1), y_3, y_4)$$

Given the formula A2

 $A_2: \quad \forall y_3 \exists y_4 \ B(y_1, h(y_1), y_3, y_4)$

We eliminate $\forall y_3$ and get a formula A_3

 $A_3: \exists y_4 B(y_1, h(y_1), y_3, y_4)$

We eliminate $\exists y_4$ by replacing y_4 by $f(y_1, y_3)$, where *f* is a **new** two argument functional symbol **added** to \mathcal{L}

We get a formula A_4 that is our resulting **open** formula A^*

 $A^*: B(y_1, h(y_1), y_3, f(y_1, y_3))$

Example 2 Let A be a closed **PNF** formula $A: \exists y_1 \forall y_2 \forall y_3 \exists y_4 \exists y_5 \forall y_6 B(y_1, y_2, y_3, y_4, y_4, y_5, y_6)$ We eliminate $\exists y_1$ and get a formula A_1 $A_1: \forall y_2 \forall y_3 \exists y_4 \exists y_5 \forall y_6 B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$ where b_1 is a **new** constant added to the language \mathcal{L} We eliminate $\forall y_2, \forall y_3$ and get formulas A_2, A_3

 $A_2: \quad \forall y_3 \exists y_4 \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$

 $A_3: \exists y_4 \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$

We eliminate $\exists y_4$ and get a formula A_4

$A_4: \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, g(y_2, y_3), y_5, y_6)$

where g is a **new** two argument functional symbol **added** to the original language \mathcal{L}

We eliminate $\exists y_5$ and get a formula A_5

 $A_5: \quad \forall y_6 \ B(b_1, y_2, y_3, g(y_2, y_3), h(y_2, y_3), y_6)$

where *h* is a **new** two argument functional symbol **added** to the language \mathcal{L}

We **eliminate** $\forall y_6$ and get a formula A_6 that is the resulting **open** formula A^*

 $A^*: B(b_1, y_2, y_3, g(y_2, y_3), h(y_2, y_3), y_6)$

・ロト・日本・モト・モト・ ヨー のくぐ

Skolem Theorem

The **correctness** of the **Skolemization process** is established by the **Skolem Theorem**

It states informally that the formula A^* obtained from a formula A via the Skolemization process is satisfiable if and only if the original formula A is satisfiable

We define this notion formally as follows

Skolem Theorem

Definition Equisatisfiable formulas

Given any formulas A of \mathcal{L} and B of the Skolem extension \mathcal{L}^* of \mathcal{L}

We say that *A* and *B* are **equisatisfiable** if and only if the following conditions are satisfied

1. Any structure \mathcal{M} of \mathcal{L} can be **extended** to a structure \mathcal{M}^* of \mathcal{L}^* and following implication holds

If $\mathcal{M} \models A$, then $\mathcal{M}^* \models B$

2. Any structure \mathcal{M}^* of \mathcal{L}^* can be **restricted** to a structure \mathcal{M} of \mathcal{L} and following implication holds

If $\mathcal{M}^* \models B$, then $\mathcal{M} \models A$

Skolem Theorem

Skolem Theorem

Let \mathcal{L}^* be the **Skolem extension** of a language \mathcal{L} Any formula A of \mathcal{L} and its **Skolem form** A^* of \mathcal{L}^* are **equisatisfiable**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Clausal Form of Formulas

Let \mathcal{L}^* be the **Skolem extension** of \mathcal{L}

By definition, the language \mathcal{L}^* does not contain quantifiers and all its formulas and **open** We define a proof system **QRS**^{*} as an **open formulas** version of the proof system **QRS** based on the language \mathcal{L} We denote the set of **formulas** of \mathcal{L}^* by $O\mathcal{F}$ to stress the fact that all its formulas are **open** Let

$A\mathcal{F}\subseteq \mathcal{OF}$

be the set of all **atomic** formulas of \mathcal{L}^* and the set

 $LT = \{A : A \in A\mathcal{F}\} \cup \{\neg A : A \in A\mathcal{F}\}$

the set of all **literals** of \mathcal{L}^*

We denote by

$\Gamma', \Delta', \Sigma' \dots$

finite sequences (empty included) formed out of **literals**, i.e of the elements of LT^*

We will denote by

Γ, Δ, Σ...

finite sequences (empty included) formed out of formulas, i.e of the elements of $O\mathcal{F}^*$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We define the proof system **QRS*** formally as follows

$$QRS^* = (\mathcal{L}^*, \mathcal{E}, LA, \mathcal{R})$$

where $\mathcal{E} = \{ \Gamma : \Gamma \in \mathcal{OF}^* \}$

The set *LA* of logical axioms contains any sequence $\Gamma' \in LT^*$ which contains an atomic formula and its negation \mathcal{R} is the set inference rules

$$(\cup), \ (\neg \cup), \ (\cap), \ (\neg \cap), \ (\Rightarrow), \ (\neg \Rightarrow), \ (\neg \neg)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

defined as follows

Disjunction rules

$$(\cup) \quad \frac{\Gamma', \ A, B, \Delta}{\Gamma', \ (A \cup B), \ \Delta} \qquad (\neg \cup) \quad \frac{\Gamma', \ \neg A, \ \Delta \ ; \ \ \Gamma', \ \neg B, \ \Delta}{\Gamma', \ \neg (A \cup B), \ \Delta}$$

Conjunction rules

$$(\cap) \ \frac{\Gamma', \ A, \ \Delta \ ; \ \ \Gamma', \ B, \ \Delta}{\Gamma', \ (A \cap B), \ \Delta} \qquad (\neg \cap) \ \frac{\Gamma', \ \neg A, \ \neg B, \ \Delta}{\Gamma', \ \neg (A \cap B), \ \Delta}$$

where $\Gamma' \in LT^*$, $\Delta \in O\mathcal{F}^*$, $A, B \in O\mathcal{F}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Implication rules

$$(\Rightarrow) \ \frac{\Gamma', \ \neg A, B, \ \Delta}{\Gamma', \ (A \Rightarrow B), \ \Delta} \qquad (\neg \Rightarrow) \ \frac{\Gamma', \ A, \ \Delta \ : \ \Gamma', \ \neg B, \ \Delta}{\Gamma', \ \neg (A \Rightarrow B), \ \Delta}$$

Negation rule

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $\Gamma' \in LT^*$, $\Delta \in O\mathcal{F}^*$, $A, B \in O\mathcal{F}$

QRS* Semantics

Definition

For any sequence Γ of formulas of \mathcal{L}^* , any structure $\mathcal{M} = [M, I]$ for \mathcal{L}^* ,

 $\mathcal{M} \models \Gamma$ if and only if $\mathcal{M} \models \delta_{\Gamma}$

where δ_{Γ} denotes a **disjunction** of all formulas in Γ

The semantics for **clauses** is basically the same as for the sequences. We define it as follows

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Clauses Semantics

Definition

For any finite set of clauses **C** of \mathcal{L}^* , any structure

 $\mathcal{M} = [\mathcal{M}, \mathcal{I}]$ for \mathcal{L}^* , and any clause $\mathcal{C} \in \mathbf{C}$,

1. $\mathcal{M} \models C$ if and only if $\mathcal{M} \models \delta_C$

2. $\mathcal{M} \models \mathbf{C}$ if and only if $\mathcal{M} \models \delta_C$ for all $C \in \mathbf{C}$

3. $(A \equiv C)$ if and only if $A \equiv \sigma_C$

where $\delta_{\mathcal{C}}$ denotes a disjunction of all literals in \mathcal{C} and

 $\sigma_{\mathbf{C}}$ is a conjunction of all formulas δ_{C} for all clauses $C \in \mathbf{C}$

Obviously, the rules of inference of **QRS**^{*} are strongly sound and the following holds

Strong Soundness Theorem

The proof system **QRS*** is strongly sound

Formula to Clauses Transformation

We use the **QRS**^{*} system to define an effective procedure that **transforms** any formula A of \mathcal{L}^* into set of clauses and prove correctness of this transformation

We treat the rules of inference of **QRS**^{*} as decomposition rules and use them to **generate** needed set C_A of **clauses** corresponding to a given formula A

Decomposable, Indecomposable

Definition

A formula that is not a literal, i.e. any formula $A \in O\mathcal{F} - L$

is called a **decomposable**

Otherwise A is called indecomposable

Definition

A sequence Γ that contains a decomposable formula is called a decomposable sequence

Definition

A sequence Γ' built only out of literals, i.e. $\Gamma' \in L^*$ is called an **indecomposable** sequence

Decomposition Tree T_A

Definition

Given a formula $A \in O\mathcal{F}$

We build the **decomposition tree** T_A of A as follows

Step 1.

The formula *A* is the **root** of T_A For any node Δ of the tree T_A we follow the steps bellow

Step 2.

If Δ is **indecomposable**, then Δ becomes a **leaf** of the tree

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Decomposition Tree T_A

Step 3.

If Δ is **decomposable**, then we traverse Δ from left to right to identify the first **decomposable formula** *B*

In case of a one premiss rule we put is **premise** as a **leaf** In case of a two premisses rule we put its left and right premisses as the **left** and **right leaves**, respectively

Step 4.

We repeat steps 2. and 3. until we obtain only leaves

Formula-Clauses Equivalency

Formula-Clauses Equivalency Theorem

For any formula A of \mathcal{L}^* , there is an effective procedure of generating a set of **clauses** C_A of \mathcal{L}^* such that

 $A \equiv \mathbf{C}_A$

Proof

Given $A \in O\mathcal{F}$. Here is the two steps procedure

S1. We construct (finite and unique) decomposition tree T_A

S2. We form **clauses** out of the leaves of the tree T_A , i.e. for every **leaf** L we create a clause C_L determined by L and we put

$$\mathbf{C}_A = \{C_L : L \text{ is a leaf of } \mathbf{T}_A\}$$

Directly from the **QRS**^{*} **Strong Soundness Theorem** and the semantics for clauses definition we get that

 $A \equiv \mathbf{C}_A$

Exercise

Find the set C_A of clauses for the following formula A

 $(((P(b, f(x)) \Rightarrow Q(x)) \cup \neg R(z)) \cup (P(b, f(x)) \cap R(z))))$

Solution

Step **S1.** We construct the decomposition tree T_A for A

Step **S2.** We form **clauses** out of the leaves of the tree T_A We put

 $\mathbf{C}_A = \{C_L : L \text{ is a leaf of } \mathbf{T}_A\}$

Step **S1.** The decomposition tree is

T_A

 $(((P(b, f(x)) \Rightarrow Q(x)) \cup \neg R(z)) \cup (P(b, f(x)) \cap R(z)))$

|**(∪)**

 $(((P(b, f(x)) \Rightarrow Q(x)) \cup \neg R(z)), (P(b, f(x)) \cap R(z))$

| **(**∪**)**

 $(P(b, f(x)) \Rightarrow Q(x)), \neg R(z), (P(b, f(x)) \cap R(z))$

|(⇒)

 $\neg P(b, f(x)), Q(x), \neg R(z), (P(b, f(x)) \cap R(z))$

(∩)

 $\neg P(b, f(x)), Q(x), \neg R(z), P(b, f(x))$

 $\neg P(b, f(x)), Q(x), \neg R(z), R(z)$

L_1

 L_2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Step S2. The leaves of T_A are $L_1 = \neg P(b, f(x)), Q(x), \neg R(z), P(b, f(x))$ $L_2 = \neg P(b, f(x)), Q(x), \neg R(z), R(z)$ The corresponding clauses are $C_1 = \{\neg P(b, f(x)), Q(x), \neg R(z), P(b, f(x))\}$

 $C_2 = \{\neg P(b, f(x)), Q(x), \neg R(z), R(z)\}$

The set of clauses is

$$C_A = \{ C_1, C_2 \}$$

Clausal Form of Formulas of ${\cal L}$

Definition

Given a formula A of the original language \mathcal{L}

Let A^* of \mathcal{L}^* be the **Skolem form** A obtained by the **Skolemization** process

A a set C_{A^*} of clauses of \mathcal{L}^* such that

 $A^* \equiv \mathbf{C}_{A^*}$

is called a **clausal form** of the formula A $\,$ of the language $\,\mathcal{L}\,$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Exercise Find the clausal form of a formula A

 $A: (\exists x \forall y (R(x,y) \cup \neg P(x)) \Rightarrow \forall y \exists x \neg R(x,y))$

Solution We first find the Skolem form A^* of A **Step 1:** We **rename variables** apart in A and get a formula A'

 $A': (\exists x \forall y (R(x, y) \cup \neg P(x)) \Rightarrow \forall z \exists w \neg R(z, w))$

Step 2: We use **Equational Laws** of Quantifiers to pull out quantifiers $\exists x$ and $\forall y$ and get a formula A''

 $A'': \quad \forall x \exists y ((R(x,y) \cup \neg P(x)) \Rightarrow \forall z \exists w \neg R(z,w))$

- コン・1日・1日・1日・1日・1日・

Step 3 : We use **Equational Laws** of Quantifiers to pull out the quantifiers $\exists z$ and $\forall w$ from the sub formula

 $((R(x,y) \cup \neg P(x)) \Rightarrow \forall z \exists w \neg R(z,w))$

and get a formula A'''

 $A''': \quad \forall x \exists y \forall z \exists w ((R(x, y) \cup \neg P(x)) \Rightarrow \neg R(z, w))$

This is the Prenex Normal Form **PNF** of **A**

Step 4: We perform the Skolemization Procedure Observe that the formula

 $\forall x \exists y \forall z \exists w ((R(x, y) \cup \neg P(x)) \Rightarrow \neg R(z, w))$

is of the form of the formulas of the **Examples 1, 2** We follow them and eliminate $\forall x$ and get a formula A_1

 $A_1: \exists y \forall z \exists w ((R(x,y) \cup \neg P(x)) \Rightarrow \neg R(z,w))$

We eliminate $\exists y$ by replacing y by h(x) where h is a **new** one argument functional symbol **added** to the language \mathcal{L} We get a formula A_2

 $A_2: \quad \forall z \exists w ((R(x,h(x)) \cup \neg P(x)) \Rightarrow \neg R(z,w))$

We eliminate $\forall z$ and get a formula A_3

 A_3 : $\exists w ((R(x, h(x)) \cup \neg P(x)) \Rightarrow \neg R(z, w))$ We eliminate $\exists w$ by replacing w by f(x, z), where f is a **new** two argument functional symbol **added** to the original language \mathcal{L}

We get a formula A_4 that is the resulting **open** formula A^* of \mathcal{L}^*

 $A^*: ((R(x,h(x)) \cup \neg P(x)) \Rightarrow \neg R(z,(x,z)))$

Step 5: We build the decomposition tree of A^{*} as follows T⊿∗ $((R(x, h(x)) \cup \neg P(x)) \Rightarrow \neg R(z, f(x, z)))$ $|(\Rightarrow)$ $\neg (R(x, h(x)) \cup \neg P(x)), \neg R(z, f(x, z))$ ((¬∪) $\neg \neg P(x), \neg R(z, f(x, z))$ $\neg R(x, h(x)), \neg R(z, f(x, z))$ |(--) $P(x), \neg R(z, f(x, z))$

Step 6: The leaves of T_{A^*} are

$$L_1 = \neg R(x, h(x)), \neg R(z, f(x, z))$$

 $L_2 = P(x), \ \neg R(z, f(x, z))$

The corresponding clauses are

$$C_1 = \{\neg R(x, h(x)), \neg R(z, f(x, z))\}$$

 $C_2 = \{P(x), \ \neg R(z, f(x, z))\}$

Step 7: The clausal form of the formula A

 $A: \quad (\exists x \forall y \ (R(x,y) \cup \neg P(x)) \Rightarrow \forall y \exists x \ \neg R(x,y))$

is the set of clauses

 $\mathbf{C}_{A^*} = \{ \{ \neg R(x, h(x)), \neg R(z, f(x, z)) \}, \{ P(x), \neg R(z, f(x, z)) \} \}$