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Chapter 5
HILBERT PROOF SYSTEMS: Completeness of Classical

Propositional Logic

PART 1: Hilbert Proof System H1 and examples of

applications of Deduction Theorem

PART 2: Proof of Deduction Theorem for System H1

PART 3: System H2 and examples of formal proofs in H2



Hilbert Proof Systems

Hilbert proof systems are based on a language with

implication and contain Modus Ponens as a rule

of inference

Modus Ponens is probably the oldest of all known rules

of inference as it was already known to the Stoics in

3rd century B.C. and is also considered as the most natural

to our intuitive thinking

The proof systems containing Modus Ponens as the

inference rule play a special role in logic.



Hilbert Proof Systems

Hilbert systems put major emphasis on logical axioms and

keep the number of rules of inference at the minimum

Hilbert systems often admit the Modus Ponens as the

sole rule of inference

There are many proof systems that describe classical

propositional logic, i.e. that are complete with respect to the

classical semantics

We present a Hilbert proof system for the classical

propositional logic and discuss two ways of proving the

Completeness Theorem for it



Hilbert Proof Systems

The first proof is based on the one included in Elliott

Mendelson’s book Introduction to Mathematical Logic

It is is a constructive proof that shows how one can use the

assumption that a formula A is a tautology in order to

construct its formal proof

The second proof is non-constructive

Its importance lies in a fact that the methods it uses can be

applied to the proof of completeness for classical

predicate logic (chapter 9)

It also generalizes to some non-classical logics



Hilbert Proof Systems

We prove completeness part of the Completeness Theorem

by proving the converse implication to it

We show how one can deduce that a formula A is not

a tautology from the fact that it does not have a proof

It is hence called a counter-model construction proof

Both proofs relay on the Deduction Theorem and so

this is the first theorem we are now going to prove



Hilbert Proof System H1

We consider now a Hilbert proof system H1 based on a this
is language with implication as the only connective, with two

logical axioms, and with Modus Ponens as a sole rule of

inference



Hilbert Proof System H1

We define Hilbert system H1 as follows

H1 = ( L{⇒}, F , {A1,A2}, MP )

A1 (Law of simplification)

(A ⇒ (B ⇒ A))

A2 (Frege’s Law)

((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

MP is the Modus Ponens rule

(MP)
A ; (A ⇒ B)

B

where A, B, C are any formulas from F



Formal Proofs in H1

Finding formal proofs in this system requires some ingenuity.
The formal proof of (A ⇒ A) in H1 is a sequence

B1, B2, B3, B4,B5

as defined below.
B1 :((A ⇒ ((A ⇒ A)⇒ A))⇒ ((A ⇒ (A ⇒ A))⇒ (A ⇒ A))),
axiom A2 for A = A , B = (A ⇒ A), and C = A

B2 :(A ⇒ ((A ⇒ A)⇒ A)),
axiom A1 for A = A , B = (A ⇒ A)

B3 :((A ⇒ (A ⇒ A))⇒ (A ⇒ A))),
MP application to B1 and B2

B4 :(A ⇒ (A ⇒ A)),
axiom A1 for A = A , B = A

B5 :(A ⇒ A)
MP application to B3 and B4



Searching for Proofs in a Proof System

A general procedure for automated search for proofs in

a proof system S can be stated is as follows

Let B be an expression of the system S that is not an axiom

If B has a proof in S, B must be the conclusion of one of

the inference rules

Let’s say it is a rule r

We find all its premisses, i.e. we evaluate r−1(B)

If all premisses are axioms, the proof is found

Otherwise we repeat the procedure for any premiss that

is not an axiom



Search for Proof by the Means of MP

The MP rule says:

given two formulas A and (A ⇒ B) we conclude a formula B

Assume now that and want to find a proof of a formula B

If B is an axiom, we have the proof; the formula itself

If B is not an axiom, it had to be obtained by the application

of the Modus Ponens rule to certain two formulas

A and (A ⇒ B) and there is infinitely many of such

formulas!

The proof system H1 is not syntactically decidable



Semantic Links

Semantic Link 1

System H1 is sound under classical semantics and

H1 is not sound under K semantics

Soundness Theorem for H1

For any A ∈ F , if `H1 A , then |= A



Semantic Links

Semantic Link 2

The system H1 is not complete under classical semantics

Not all classical tautologies have a proof in H1

We proved that can’t define negation in term of implication

alone and so for example, a basic tautology (¬¬A ⇒ A)

is not provable in H1 , i.e.

0H1 (¬¬A ⇒ A)



Proof from Hypothesis

Given a proof system S = (L,E, LA ,R)

While proving expressions we often use some extra

information available, besides the axioms of the proof system

This extra information is called hypothesis in the proof

Let Γ ⊆ E be any set expressions called hypothesis

We write Γ `S E to denote that

” E has a proof in S from the set Γ and the logical axioms LA”



Formal Definition

Definition

We say that E ∈ E has a formal proof in S from the set Γ

and the logical axioms LA and denote it as Γ `S E

if and only if there is a sequence

A1, ... , An

of expressions from E, such that

A1 ∈ LA ∪ Γ, An = E

and for each 1 < i ≤ n, either Ai ∈ LA ∪ Γ or Ai is a

direct consequence of some of the preceding expressions

by virtue of one of the rules of inference of S



Special Cases

Case 1: Γ ⊆ E is a finite set and Γ = {B1,B2, ...,Bn}

We write
B1,B2, ...,Bn `S E

instead of {B1,B2, ...,Bn} `S E

Case 2: Γ = ∅

By the definition of a proof of E from Γ, ∅ `S E means

that in the proof of E we use only the logical axioms LA of S

We hence write
`S E

to denote that E has a proof from Γ = ∅



Proof from Hypothesis in H1

Show that

(A ⇒ B), (B ⇒ C) `H1 (A ⇒ C)

We construct a formal proof

B1,B2, .....B7

of (A ⇒ C) from hypothesis (A ⇒ B) and (B ⇒ C)

as follows



Proof from Hypothesis in H1

B1 : (B ⇒ C), B2 : (A ⇒ B),
hypothesis hypothesis

B3 : ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C))),
axiom A2

B4 : ((B ⇒ C)⇒ (A ⇒ (B ⇒ C))),
axiom A1 for A = (B ⇒ C), B = A

B5 : (A ⇒ (B ⇒ C)),
B1 and B4 and MP

B6 : ((A ⇒ B)⇒ (A ⇒ C)), B7 : (A ⇒ C)
MP



Deduction Theorem

In mathematical arguments, one often proves a statement B
on the assumption of some other statement A and then
concludes that we have proved the implication ”if A, then B”

This reasoning is justified by a following theorem, called a
Deduction Theorem

Reminder

We write Γ,A ` B for Γ ∪ {A } ` B

In general, we write Γ,A1,A2, ...,An ` B

for Γ ∪ {A1,A2, ...,An} ` B



Deduction Theorem for H1

Deduction Theorem for H1

For any A ,B ∈ F and Γ ⊆ F

Γ, A `H1 B if and only if Γ `H1 (A ⇒ B)

In particular

A `H1B if and only if `H1 (A ⇒ B)



Formal Proofs

The proof of the following Lemma provides a good example of

multiple applications of the Deduction Theorem

Lemma

For any A ,B ,C ∈ F ,

(a) (A ⇒ B), (B ⇒ C) `H1 (A ⇒ C),

(b) (A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))

Observe that by Deduction Theorem we can re-write (a) as

(a’) (A ⇒ B), (B ⇒ C),A `H1 C



Formal Proofs

Poof of (a’)
We construct a formal proof

B1,B2,B3,B4,B5

of (A ⇒ B), (B ⇒ C),A `H1 C as follows.
B1 : (A ⇒ B)
hypothesis
B2 : (B ⇒ C)
hypothesis
B3 : A
hypothesis
B4 : B
B1,B3 and MP
B5 : C
B2,B4 and MP



Formal Proofs

Thus we proved by Deduction Theorem that (a) holds, i.e.

(A ⇒ B), (B ⇒ C) `H1 (A ⇒ C)

Proof of Lemma part (b)

By Deduction Theorem we have that

(A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))

if and only if

(A ⇒ (B ⇒ C)),B `H1 (A ⇒ C)



Formal Proofs

We construct a formal proof

B1,B2,B3,B4,B5,B6,B7

of (A ⇒ (B ⇒ C)),B `H1 (A ⇒ C) as follows.

B1 : (A ⇒ (B ⇒ C))
hypothesis

B2 : B
hypothesis

B3 : ((B ⇒ (A ⇒ B))
A1 for A = B ,B = A

B4 : (A ⇒ B)
B2,B3 and MP



Formal Proofs

B5 : ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))
axiom A2

B6 : ((A ⇒ B)⇒ (A ⇒ C))
B1,B5 and MP

B7 : (A ⇒ C)

Thus we proved by Deduction Theorem that

(A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))



Simpler Proof

Here i a simpler proof of Lemma part (b)

We apply the Deduction Theorem twice, i.e. we get

(A ⇒ (B ⇒ C)) `H1 (B ⇒ (A ⇒ C))

if and only if

(A ⇒ (B ⇒ C)),B `H1 (A ⇒ C)

if and only if

(A ⇒ (B ⇒ C)),B ,A `H1 C



Simpler Proof

We now construct a proof of (A ⇒ (B ⇒ C)),B ,A `H1 C as
follows

B1 : (A ⇒ (B ⇒ C))
hypothesis

B2 : B
hypothesis

B3 : A
hypothesis

B4 : (B ⇒ C)
B1 , B3 and (MP)

B5 : C
B2 , B4 and (MP)



CONSEQUENCE OPERATION
Review



Definition: Consequences of Γ

Given a proof system

S = (L,E, LA ,R)

For any Γ ⊆ E , and A ∈ E ,

If Γ `S A , then A is called a consequence of Γ in S

We denote by CnS(Γ) the set of all consequences of Γ in
S, i.e. we put

CnS(Γ) = {A ∈ E : Γ `S A }



Definition: Consequence Operation

Observe that by defining a consequence of Γ in S, we define

in fact a function which to every set Γ ⊆ E assigns a set of

all its consequences CnS(Γ)

We denote this function by CnS and adopt the following

Definition

Any function
CnS : 2E −→ 2E

such that for every Γ ∈ 2E

CnS(Γ) = {A ∈ E : Γ `S A }

is called the consequence operation determined by S



Consequence Operation: Monotonicity

Take any consequence operation determined by S

CnS : 2E −→ 2E

Monotonicity Property

For any sets Γ,∆ of expressions of S,

if Γ ⊆ ∆ then CnS(Γ) ⊆ CnS(∆)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of

the formal proof



Consequence Operation: Transitivity

Take any consequence operation

CnS : 2E −→ 2E

Transitivity Property

For any sets Γ1, Γ2, Γ3 of expressions of S,

if Γ1 ⊆ CnS(Γ2) and Γ2 ⊆ CnS(Γ3), then Γ1 ⊆ CnS(Γ3)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof



Consequence Operation: Finiteness

Take any consequence operation determined by

CnS : 2E −→ 2E

Finiteness Property

For any expression A ∈ E and any set Γ ⊆ E,

A ∈ CnS(Γ) if and only if there is a finite subset Γ0 of Γ
such that A ∈ CnS(Γ0)

Exercise: write the proof;

it follows directly from the definition of CnS and definition of
the formal proof



Proof Deduction Theorem for H1



The Deduction Theorem

As we now fix the proof system to be H1, we write A ` B
instead of A`H1 B

Deduction Theorem (Herbrand, 1930) for H1

For any formulas A ,B ∈ F ,

If A ` B , then ` (A ⇒ B)

Deduction Theorem (General case) for H1

For any formulas A ,B ∈ F , Γ ⊆ F

Γ, A ` B if and only if Γ ` (A ⇒ B)

Proof:

Part 1 We first prove the ”if” part:

If Γ, A ` B then Γ ` (A ⇒ B)



Proof of The Deduction Theorem

Assume that
Γ, A `B

i.e. that we have a formal proof

B1,B2, ...,Bn

of B from the set of formulas Γ ∪ {A }

We have to show that

Γ ` (A ⇒ B)



Proof of The Deduction Theorem

In order to prove that

Γ ` (A ⇒ B) follows from Γ, A ` B

we prove a stronger statement, namely that

Γ ` (A ⇒ Bi)

for any Bi , 1 ≤ i ≤ n in the formal proof B1,B2, ...,Bn of B
also follows from Γ, A ` B

Hence in particular case, when i = n we will obtain that
Γ ` (A ⇒ B) follows from Γ, A ` B

and that will end the proof of Part 1



Base Step

The proof of Part 1 is conducted by mathematical
induction on i, for 1 ≤ i ≤ n

Step 1 i = 1 (base step)

Observe that when i = 1, it means that the formal proof
B1,B2, ...,Bn contains only one element B1

By the definition of the formal proof from Γ ∪ {A }, we have
that

(1) B1 is a logical axiom, or B1 ∈ Γ , or

(2) B1 = A

This means that B1 ∈ {A1,A2} ∪ Γ ∪ {A }



Base Step

Now we have two cases to consider.

Case1: B1 ∈ {A1,A2} ∪ Γ

Observe that (B1 ⇒ (A ⇒ B1)) is the axiom A1

By assumption B1 ∈ {A1,A2} ∪ Γ

We get the required proof of (A ⇒ B1) from Γ

by the following application of the Modus Ponens rule

(MP)
B1 ; (B1 ⇒ (A ⇒ B1))

(A ⇒ B1)



Base Step

Case 2: B1 = A
When B1 = A then to prove Γ ` (A ⇒ B1)

This means we have to prove

Γ ` (A ⇒ A)

This holds by monotonicity of the consequence and the fact
that we have shown that

`(A ⇒ A)

The above cases conclude the proof for i = 1 of

Γ ` (A ⇒ Bi)



Inductive Step

Inductive Step

Assume that
Γ `(A ⇒ Bk )

for all k < i (strong induction)

We will show that using this fact we can conclude that also

Γ `(A ⇒ Bi)



Inductive Step

Consider a formula Bi in the formal proof

B1,B2, ...,Bn

By definition of the formal proof we have to show the

following tow cases

Case 1 : Bi ∈ {A1,A2} ∪ Γ ∪ {A } and

Case 2: Bi follows by MP from certain Bj ,Bm such that

j < m < i

Consider now the Case 1: Bi ∈ {A1,A2} ∪ Γ ∪ {A }

The proof of (A ⇒ Bi)

from Γ in this case is obtained from the proof of the

Step i = 1 by replacement B1 by Bi

and is omitted here as a straightforward repetition



Inductive Step

Case 2:

Bi is a conclusion of (MP)

If Bi is a conclusion of (MP), then we must have two

formulas Bj , Bm in the formal proof

B1,B2, ...,Bn

such that j < i, m < i, j , m and

(MP)
Bj ; Bm

Bi



Inductive Step

By the inductive assumption the formulas Bj , Bm are

such that Γ ` (A ⇒ Bj) and Γ ` (A ⇒ Bm)

Moreover, by the definition of (MP) rule, the formula Bm has
to

have a form (Bj ⇒ Bi)

This means that
Bm = (Bj ⇒ Bi)

The inductive assumption can be re-written as follows

Γ ` (A ⇒ (Bj ⇒ Bi))

for j < i



Inductive Step

Observe now that the formula

((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

is a substitution of the axiom A2 and hence has a proof

in our system

By the monotonicity of the consequence, it also has a proof

from the set Γ, i.e.

Γ ` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))



Inductive Step

We know that

Γ ` ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

Applying the rule MP i.e. performing the following

(A ⇒ (Bj ⇒ Bi)) ; ((A ⇒ (Bj ⇒ Bi))⇒ ((A ⇒ Bj)⇒ (A ⇒ Bi)))

((A ⇒ Bj)⇒ (A ⇒ Bi))

we get that also

Γ `((A ⇒ Bj)⇒ (A ⇒ Bi))



Inductive Step

Applying again the rule MP i.e. performing the following

(A ⇒ Bj) ; ((A ⇒ Bj)⇒ (A ⇒ Bi))

(A ⇒ Bi)
)

we get that
Γ `(A ⇒ Bi)

what ends the proof of the inductive step



Proof of the Deduction Theorem

By the mathematical induction principle, we have proved that

Γ `(A ⇒ Bi), for all 1 ≤ i ≤ n

In particular it is true for i = n, i.e. for Bn = B

and we proved that
Γ `(A ⇒ B)

This ends the proof of the first part of the Deduction

Theorem:

If Γ,A `B , then Γ ` (A ⇒ B)



Proof of the Deduction Theorem

The proof of the second part, i.e. of the i
¯
nverse implication:

If Γ ` (A ⇒ B), then Γ, A ` B

is straightforward and goes as follows.

Assume that Γ ` (A ⇒ B)

By the monotonicity of the consequence we have also that
Γ,A ` (A ⇒ B)

Obviously Γ,A ` A

Applying Modus Ponens to the above, we get the proof of
B from {Γ,A }

We have hence proved that

Γ,A ` B



Proof of the Deduction Theorem

This ends the proof of

Deduction Theorem (General case ) for H1

For any formulas A ,B ∈ F and any Γ ⊆ F

Γ, A ` B if and only if Γ ` (A ⇒ B)

The particular case we get also the particular case

Deduction Theorem (Herbrand, 1930) for H1

For any formulas A ,B ∈ F ,

If A ` B , then ` (A ⇒ B)

is obtained from the above by assuming that the set Γ

is empty



Classical Propositional Proof System H2



Hilbert System H2

The proof system H1 is sound and strong enough to prove

the Deduction Theorem, but it is not complete

We extend now its language and the set of logical axioms to

a complete set of axioms

We define a system H2 that is complete with respect to

the classical semantics

The proof of completeness theorem is be presented in the

next chapter.



Hilbert System H2 Definition

Definition

H2 = ( L{⇒,¬}, F , {A1,A2,A3} (MP) )

A1 (Law of simplification)
(A ⇒ (B ⇒ A))

A2 (Frege’s Law)
((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

MP (Rule of inference)

(MP)
A ; (A ⇒ B)

B

where A ,B ,C are any formulas of the propositional

language L{⇒,¬}



Deduction Theorem for System H2

Observation 1

The proof system H2 is obtained by adding axiom A3 to the
system H1

Observation 2

The language of H2 is obtained by adding the connective ¬
to the language of H1

Observation 3

The use of axioms A1,A2 in the proof of Deduction
Theorem for the system H1 is independent of the connective
¬ added to the language of H1

Observation 4

Hence the proof of the Deduction Theorem for the system H1

can be repeated as it is for the system H2



Deduction Theorem for System H2

Observations 1-4 prove that he Deduction Theorem holds for
system H2

Deduction Theorem for H2

For any Γ ⊆ F and A ,B ∈ F

Γ, A `H2 B if and only if Γ `H2 (A ⇒ B)

In particular

A `H2B if and only if `H2 (A ⇒ B)



Soundness and CompletenessTheorems

We get by easy verification

Soundness Theorem H2

For every formula A ∈ F

if `H2 A then |= A

We prove in the next Lecture, that H2 is also complete, i.e. we
prove

Completeness Theorem for H2

For every formula A ∈ F ,

`H2 A if and only if |= A



CompletenessTheorems

The proof of completeness theorem (for a given semantics) is

always a main point in creation of any new logic

There are many techniques to prove it, depending on the

proof system, and on the semantics we define for it

We present in Lecture 5a and Lecture 5b two proofs of the
Completeness Theorem for the system H2

These proofs use very different techniques, hence the reason
of presenting both of them



FORMAL PROOFS IN H2



Examples and Exercises

We present now some examples of formal proofs in H2

There are two reasons for presenting them.

First reason is that all formulas we prove here to be provable
play a crucial role in the proof of Completeness Theorem for
H2

The second reason is that they provide a ”training ground”
for a reader to learn how to develop formal proofs

For this reason we write some proofs in a full detail and we
leave some for the reader to complete in a way explained in
the following example.



Important Lemma

We write ` instead of `H2 for the sake of simplicity

Reminder

In the construction of the formal proofs we often use the
Deduction Theorem and the following Lemma 1 they was
proved in previous section

Lemma 1

(a) (A ⇒ B), (B ⇒ C) `H2 (A ⇒ C)

(b) (A ⇒ (B ⇒ C)) `H2 ((B ⇒ (A ⇒ C))



Example 1

Example 1

Here are consecutive steps

B1, ...,B5, B6

of the proof in H2 of (¬¬B ⇒ B)

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B3 : (¬B ⇒ ¬B)

B4 : ((¬B ⇒ ¬¬B)⇒ B)

B5 : (¬¬B ⇒ (¬B ⇒ ¬¬B))

B6 : (¬¬B ⇒ B)



Exercise 1

Exercise 1

Complete the proof presented in Example 1 by providing
comments how each step of the proof was obtained.

ATTENTION

The solution presented on the next slide shows you how you
will have to write details of your solutions on the TESTS

Solutions of other problems presented later are less detailed

Use them as exercises to write a detailed, complete solutions



Exercise 1 Solution

Solution

The comments that complete the proof are as follows.

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))
Axiom A3 for A = ¬B ,B = B

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))
B1 and Lemma 1 (b) for
A = (¬B ⇒ ¬¬B), B = (¬B ⇒ ¬B),C = B, i.e. we have
((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B)) ` ((¬B ⇒ ¬B)⇒
((¬B ⇒ ¬¬B)⇒ B))



Exercise 1 Solution

B3 : (¬B ⇒ ¬B)
We proved for H1 and hence for H2 that ` (A ⇒ A) and we
substitute A = ¬B

B4 : ((¬B ⇒ ¬¬B)⇒ B)
B2,B3 and MP

B5 : (¬¬B ⇒ (¬B ⇒ ¬¬B))
Axiom A1 for A = ¬¬B ,B = ¬B

B6 : (¬¬B ⇒ B)
B4,B5 and Lemma 1 (a) for
A = ¬¬B ,B = (¬B ⇒ ¬¬B),C = B; i.e.
(¬¬B ⇒ (¬B ⇒ ¬¬B)), ((¬B ⇒ ¬¬B)⇒ B) ` (¬¬B ⇒ B)



Proofs from Axioms Only

General remark

Observe that in steps B2,B3,B5,B6 we call on previously
proved facts and use them as a part of our proof.

We can obtain a proof that uses only axioms by inserting
previously constructed formal proofs of these facts into the
places occupying by the steps B2,B3,B5,B6

For example in previously constructed proof of (A ⇒ A) we
replace A by ¬B and insert such constructed proof of
(¬B ⇒ ¬B) after step B2

The last step of the inserted proof becomes now ”old” step B3

and we re-numerate all other steps accordingly



Proofs from Axioms Only

Here are consecutive first THREE steps of the proof of
(¬¬B ⇒ B)

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B))

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B))

B3 : (¬B ⇒ ¬B)

We insert now the proof of (¬B ⇒ ¬B) after step B2 and
erase the B3

The last step of the inserted proof becomes the erased B3



Proofs from Axioms Only

A part of new transformed proof is

B1 : ((¬B ⇒ ¬¬B)⇒ ((¬B ⇒ ¬B)⇒ B)) (Old B1 )

B2 : ((¬B ⇒ ¬B)⇒ ((¬B ⇒ ¬¬B)⇒ B)) (Old B2 )

We insert here the proof from axioms only of Old B3

B3 : ((¬B ⇒ ((¬B ⇒ ¬B)⇒ ¬B))⇒ ((¬B ⇒ (¬B ⇒
¬B))⇒ (¬B ⇒ ¬B))), ( New B3 )

B4 : (¬B ⇒ ((¬B ⇒ ¬B)⇒ ¬B))

B5: ((¬B ⇒ (¬B ⇒ ¬B))⇒ (¬B ⇒ ¬B)))

B6: (¬B ⇒ (¬B ⇒ ¬B))

B7: (¬B ⇒ ¬B) ( Old B3 )



Proofs from Axioms Only

We repeat our procedure by replacing the step B2 by its
formal proof as defined in the proof of the Lemma 1 (b)

We continue the process for all other steps which involved
application of the Lemma 1 until we get a full formal proof
from the axioms of H2 only

Usually we don’t do it and we don’t need to do it, but it is
important to remember that it always can be done



Example 2

Example 2

Here are consecutive steps

B1, B2, ....., B5

in a proof of (B ⇒ ¬¬B)

B1 ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))

B2 (¬¬¬B ⇒ ¬B)

B3 ((¬¬¬B ⇒ B)⇒ ¬¬B)

B4 (B ⇒ (¬¬¬B ⇒ B))

B5 (B ⇒ ¬¬B)



Exercise 2

Exercise 2

Complete the proof presented in Example 2 by providing
detailed comments how each step of the proof was obtained.

Solution

The comments that complete the proof are as follows.

B1 ((¬¬¬B ⇒ ¬B)⇒ ((¬¬¬B ⇒ B)⇒ ¬¬B))
Axiom A3 for A = B ,B = ¬¬B

B2 (¬¬¬B ⇒ ¬B)
Example 1 for B = ¬B



Exercise 2

B3 ((¬¬¬B ⇒ B)⇒ ¬¬B)
B1,B2 and MP, i.e.

(¬¬¬B⇒¬B);((¬¬¬B⇒¬B)⇒((¬¬¬B⇒B)⇒¬¬B))
((¬¬¬B⇒B)⇒¬¬B)

B4 (B ⇒ (¬¬¬B ⇒ B))
Axiom A1 for A = B , B = ¬¬¬B

B5 (B ⇒ ¬¬B)
B3,B4 and lemma 1a for A = B ,B = (¬¬¬B ⇒ B),C = ¬¬B,
i.e.

(B ⇒ (¬¬¬B ⇒ B)), ((¬¬¬B ⇒ B)⇒ ¬¬B) ` (B ⇒ ¬¬B)



Example 3

Example 3

Here are consecutive steps

B1, B2, ..., B12 in a proof of (¬A ⇒ (A ⇒ B))

B1 ¬A

B2 A

B3 (A ⇒ (¬B ⇒ A))

B4 (¬A ⇒ (¬B ⇒ ¬A))

B5 (¬B ⇒ A)

B6 (¬B ⇒ ¬A)

B7 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))



Example 3

B8 ((¬B ⇒ A)⇒ B)

B9 B

B10 ¬A ,A ` B

B11 ¬A ` (A ⇒ B)

B12 (¬A ⇒ (A ⇒ B))

Exercise 3

1. Complete the proof from the Example 3 by providing
comments how each step of the proof was obtained.

2. Prove that
¬A ,A ` B



Exercise 4

Example 4

Here are consecutive steps B1, ...,B7

in a proof of ((¬B ⇒ ¬A)⇒ (A ⇒ B))

B1 (¬B ⇒ ¬A)

B2 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

B3 (A ⇒ (¬B ⇒ A))

B4 ((¬B ⇒ A)⇒ B)

B5 (A ⇒ B)

B6 (¬B ⇒ ¬A) ` (A ⇒ B)

B7 ((¬B ⇒ ¬A)⇒ (A ⇒ B))

Exercise 4

Complete the proof from Example 4 by providing comments
how each step of the proof was obtained



Example 5

Example 5

Here are consecutive steps B1, ...,B9

in a proof of ((A ⇒ B)⇒ (¬B ⇒ ¬A))

B1 (A ⇒ B)

B2 (¬¬A ⇒ A)

B3 (¬¬A ⇒ B)

B4 (B ⇒ ¬¬B)

B5 (¬¬A ⇒ ¬¬B)

B6 ((¬¬A ⇒ ¬¬B)⇒ (¬B ⇒ ¬A))

B7 (¬B ⇒ ¬A)

B8 (A ⇒ B) ` (¬B ⇒ ¬A)

B9 ((A ⇒ B)⇒ (¬B ⇒ ¬A))



Exercise 5

Exercise 5

Complete the proof of Example 5 by providing comments how
each step of the proof was obtained.

Solution

B1 (A ⇒ B)
Hypothesis

B2 (¬¬A ⇒ A)
Example 1 for B = A

B3 (¬¬A ⇒ B)
Lemma 1 a for A = ¬¬A ,B = A ,C = B

B4 (B ⇒ ¬¬B)
Example 2



Exercise 5

B5 (¬¬A ⇒ ¬¬B)
Lemma 1 a for A = ¬¬A ,B = B ,C = ¬¬B

B6 ((¬¬A ⇒ ¬¬B)⇒ (¬B ⇒ ¬A))
Example 4 for B = ¬A ,A = ¬B

B7 (¬B ⇒ ¬A)
B5,B6 and MP

B8 (A ⇒ B) ` (¬B ⇒ ¬A)
B1 − B7

B9 ((A ⇒ B)⇒ (¬B ⇒ ¬A))
Deduction Theorem



Example 6

Example 6
Prove that ` (A ⇒ (¬B ⇒ (¬(A ⇒ B))))

Solution Here are consecutive steps of building the formal
proof.
B1 A , (A ⇒ B) ` B
by MP
B2 A ` ((A ⇒ B)⇒ B)
Deduction Theorem
B3 ` (A ⇒ ((A ⇒ B)⇒ B))
Deduction Theorem
B4 ` (((A ⇒ B)⇒ B)⇒ (¬B ⇒ ¬(A ⇒ B)))
Example 5 for A = (A ⇒ B),B = B
B5 ` (A ⇒ (¬B ⇒ (¬(A ⇒ B)))
B3 and B4 and lemma 2a for
A = A ,B = ((A ⇒ B)⇒ B),C = (¬B ⇒ (¬(A ⇒ B))



Example 7

Example 7

Here are consecutive steps B1, ...,B12

in a proof of ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

B1 (A ⇒ B)

B2 (¬A ⇒ B)

B3 ((A ⇒ B)⇒ (¬B ⇒ ¬A))

B4 (¬B ⇒ ¬A)

B5 ((¬A ⇒ B)⇒ (¬B ⇒ ¬¬A))

B6 (¬B ⇒ ¬¬A)

B7 ((¬B ⇒ ¬¬A)⇒ ((¬B ⇒ ¬A)⇒ B)))



Example 7

B8 ((¬B ⇒ ¬A)⇒ B)

B9 B

B10 (A ⇒ B), (¬A ⇒ B) ` B

B11 (A ⇒ B) ` ((¬A ⇒ B)⇒ B)

B12 ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

Exercise 7

Complete the proof in Example 7 by providing comments how
each step of the proof was obtained.



Exercise 7

Exercise 7

Solution

B1 (A ⇒ B)
Hypothesis

B2 (¬A ⇒ B)
Hypothesis

B3 ((A ⇒ B)⇒ (¬B ⇒ ¬A))
Example 5

B4 (¬B ⇒ ¬A)
B1,B3 and MP

B5 ((¬A ⇒ B)⇒ (¬B ⇒ ¬¬A))
Example 5 for A = ¬A ,B = B

B6 (¬B ⇒ ¬¬A)
B2,B5 and MP



Exercise 7

B7 ((¬B ⇒ ¬¬A)⇒ ((¬B ⇒ ¬A)⇒ B)))
Axiom A3 for B = B ,A = ¬A

B8 ((¬B ⇒ ¬A)⇒ B)
B6,B7 and MP

B9 B
B4,B8 and MP

B10 (A ⇒ B), (¬A ⇒ B) ` B
B1 − B9

B11 (A ⇒ B) ` ((¬A ⇒ B)⇒ B)
Deduction Theorem

B12 ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))
Deduction Theorem



Exercise 8

Example 8
Here are consecutive steps B1, ...,B3

in a proof of ((¬A ⇒ A)⇒ A)

B1 ((¬A ⇒ ¬A)⇒ ((¬A ⇒ A)⇒ A)))

B1 (¬A ⇒ ¬A)

B1 ((¬A ⇒ A)⇒ A))

Exercise 8
Complete the proof of example 8 by providing comments how
each step of the proof was obtained.
Solution
B1 ((¬A ⇒ ¬A)⇒ ((¬A ⇒ A)⇒ A)))
Axiom A3 for B = A
B1 (¬A ⇒ ¬A)
Already proved (A ⇒ A) for A = ¬A
B1 ((¬A ⇒ A)⇒ A))
B1,B2 and MP



LEMMA

We summarize all the formal proofs in H2 provided in our
Examples and Exercises in a form of a following Lemma

Lemma

The following formulas a are provable in H2

1. (A ⇒ A)

2. (¬¬B ⇒ B)

3. (B ⇒ ¬¬B)

4. (¬A ⇒ (A ⇒ B))

5. ((¬B ⇒ ¬A)⇒ (A ⇒ B))

6. ((A ⇒ B)⇒ (¬B ⇒ ¬A))

7. (A ⇒ (¬B ⇒ (¬(A ⇒ B)))

8. ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

9. ((¬A ⇒ A)⇒ A)



Proof of Completeness Theorem

Formulas 1, 3, 4, and 7-9 from the set of provable formulas

from the Lemma are all formulas we need together with

H2 axioms to execute two proofs of the

Completeness Theorem for H2

We present these proofs in Lecture 5a and Lecture 5b

The two proofs represent two different methods of proving

the Completeness Theorem


