
CSE581
Computer Science Fundamentals: Theory

Professor Anita Wasilewska



P1 LOGIC: LECTURE 3d



CHAPTER 3
Classical Tautologies and Logical Equivalences

PART 1: Classical Tautologies

PART2: Classical Logical Equivalence of Formulas

PART3: Classical Logical Equivalence of Languages

PART 4: Semantics M Logical Equivalence of Formulas

Semantics M Logical Equivalence Languages



CHAPTER 3
Classical Tautologies and Logical Equivalences

We present and discuss here a set of most widely used

classical tautologies and logical equivalences

We introduce a notion of equivalence of propositional

languages under classical and under other semantics

We also discuss the relationship between definability of

connectives the equivalences of languages in classical and

non-classical semantics



Classical Tautologies

PART 1: Classical Tautologies



Classical Tautologies

We assume that all formulas considered here belong to

the language
L = L{¬, ∪, ∩, ⇒,⇔}

Here is a list of some of the most known classical notions

and tautologies

Modus Ponens known to the Stoics (3rd century B.C)

|= ((A ∩ (A ⇒ B))⇒ B)

Detachment
|= ((A ∩ (A ⇔ B))⇒ B)

|= ((B ∩ (A ⇔ B))⇒ A)



Stoics, 3rd century B.C.

Hypothetical Syllogism

|= (((A ⇒ B) ∩ (B ⇒ C))⇒ (A ⇒ C)),

|= ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C))),

|= ((B ⇒ C)⇒ ((A ⇒ B)⇒ (A ⇒ C))).

Modus Tollendo Ponens

|= (((A ∪ B) ∩ ¬A)⇒ B),

|= (((A ∪ B) ∩ ¬B)⇒ A)



12 to 19 Century

Duns Scotus 12/13 century

|= (¬A ⇒ (A ⇒ B))

Clavius 16th century

|= ((¬A ⇒ A)⇒ A)

Frege 1879

|= (((A ⇒ (B ⇒ C)) ∩ (A ⇒ B))⇒ (A ⇒ C)),

|= ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

Frege gave the the first formulation of the classical

propositional logic as a formalized axiomatic system



CLASSICAL TAUTOLOGIES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL

TAUTOLOGIES in CHAPTER 2 and in CHAPTER 3

Read them, memorize and use them to solve Hmk Problems

listed in the BOOK and in published tests and quizzes

We will use them freely in the future Chapters assuming that

you remember them



PART 2: Logical Equivalences



Logical Equivalence Definition

Logical equivalence:

For any formulas A ,B, we say that are logically equivalent if
and only if they always have the same logical value

Notation: we write symbolically A ≡ B to denote that A, B

are logically equivalent

Symbolic Definition

A ≡ B if and only if v∗(A) = v∗(B) for all v : VAR → {T ,F}



Logical Equivalence Property

The following property follows directly from the definition

Property

A ≡ B if and only if |= (A ⇔ B)

Remember

≡ is not a logical connective

≡ is just a metalanguage symbol for saying that the

formulas A, B are logically equivalent



Some of Logical Equivalence Laws

Laws of contraposition

(A ⇒ B) ≡ (¬B ⇒ ¬A),

(B ⇒ A) ≡ (¬A ⇒ ¬B),

(¬A ⇒ B) ≡ (¬B ⇒ A),

(A ⇒ ¬B) ≡ (B ⇒ ¬A)

Law of Double Negation

¬¬A ≡ A

Exercise: Prove validity of all of them



CLASSICAL LOGICAL EQUIVALENCES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL

LOGICAL EQUIVALENCES in CHAPTER 3

Read them, memorize them and use to solve Hmk Problems

listed in the BOOK and problems on your TESTS

We will use them freely in the future Chapters assuming that

you remember them



Use of Logical Equivalence

Logical equivalence is a very useful notion to use

when we want to obtain new formulas, or new tautologies

on a base of some already known and we want to do so

in a way that guarantee preservation of the logical value

of the initial formula



Use of Logical Equivalence

Example

We easily obtain new Law of Contraposition

from the one we already have and from already known

Law of Double Negation as follows

(¬A ⇒ B) ≡ (¬B ⇒ ¬¬A) ≡ (¬B ⇒ A), i.e. we proved that

(¬A ⇒ B) ≡ (¬B ⇒ A)

(A ⇒ ¬B) ≡ (¬¬B ⇒ ¬A) ≡ (B ⇒ ¬A), i.e. we proved that

(A ⇒ ¬B) ≡ (B ⇒ ¬A)



Substitution Theorem

The correctness of the above procedure of proving new
equivalences from already the known ones is established by

the following theorem

Substitution Theorem

Let B1 be obtained from A1 by substitution of a formula

B for one or more occurrences of a sub-formula A of A1,

what we denote as
B1 = A1(A/B)

Then the following holds.

If A ≡ B , then A1 ≡ B1

Proof in the book - but write it as an exercise- and then check

with the book



Example 1

Example 1

Let A1 be a formula (C ∪ D), i.e. A1 = (C ∪ D)

and let C = ¬¬C

We get
B1 = A1(C/¬¬C) = (¬¬C ∪ D)

By Double Negation Law

¬¬C ≡ C

So we get by Substitution Theorem that

(C ∪ D) ≡ (¬¬C ∪ D)



Example 2

Example 2

We want to transform any formula with implication into a

logically equivalent formula without implication

We use in this type of problems one of the Definability of
Connectives Equivalences that concerns the implication, for
example we use

(A ⇒ B) ≡ (¬A ∪ B)

Remark that it is not the only one equivalence we can use.



Example 2

We transform via the Substitution Theorem a formula

((C ⇒ ¬B)⇒ (B ∪ C))

into its logically equivalent formula as follows

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(C ⇒ ¬B) ∪ (B ∪ C)))

≡ ¬(¬C ∪ ¬B) ∪ (B ∪ C)) and we get that

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(¬C ∪ ¬B) ∪ (B ∪ C))

Observe that if the formulas B, C contain⇒ as logical
connective we can continue this process until we obtain a
logically equivalent formula not containing ⇒ at all



PART 3: Definability of Connectives and Equivalences
Equivalence of Languages



Definability of Connectives Equivalences

Chapter 3 contains a large set of logical equivalences,

or corresponding tautologies that deal with the definability of

connectives in classical semantics

Remember they the logical equivalences corresponding to

the definability of connectives property is very strongly

connected with the classical semantics

We leave it as an excellent EXERCISE to verify which of

them (in any) holds in which of our different non-classical

semantics



Definability of Connectives Equivalences

Definability of Implication in terms of negation and

disjunction equivalence

(A ⇒ B) ≡ (¬A ∪ B)

is defined by a a classical tautology

|= ((A ⇒ B)⇔ (¬A ∪ B))

We use the notion of logical equivalence instead of the

tautology notion, as it makes the manipulation of formulas

via Substitution Theorem much easier



Definability of Connectives Equivalences

Here is the

Definability of Implication in terms of negation and

disjunction equivalence

(A ⇒ B) ≡ (¬A ∪ B)

The proof of this logical equivalence, and hence the

corresponding tautology follows directly from definability of

implication connective i n terms of disjunction and negation

connectives already proved for classical semantics, hence the

same name



Proofs of Definability of Connectives Equivalences

We present here the proof of Definability of Implication in
terms of negation and

disjunction equivalence

(A ⇒ B) ≡ (¬A ∪ B)

as an example of a pattern to follow while conducting

the proofs of Definability of Connectives Equivalences for

other connectives



Proofs of Definability of Connectives Equivalences

Poof of .(A ⇒ B) ≡ (¬A ∪ B)

By definition of logical equivalence we have that

(A ⇒ B) ≡ (¬A ∪ B) holds if and only if

v∗(A ⇒ B) = v∗(¬A ∪ B) for all v : VAR → {T ,F}

Observe that, by definition of v∗ we have that

v∗(A ⇒ B) = v∗(A)⇒v∗(B) = ¬v∗(A)∪v∗(B) where

v∗(A), v∗(B) ∈ {T ,F} and ⇒,¬,∪ are functions defined by

the classical semantics

We have proved (definability of classical connectives) that

for any x, y ∈ {T ,F} we have that x ⇒ y = ¬x ∪ y

hence v∗(A ⇒ B) = v∗(¬A ∪ B) for all v : VAR → {T ,F}

what ends the proof



Definability of Connectives Equivalences

Definability of Implication equivalence allows us, by the force

of Substitution Theorem to replace any formula of the form

(A ⇒ B) placed anywhere in another formula by a formula

(¬A ∪ B)

Hence it allows us to recursively transform a given formula

containing implication into an logically equivalent formula

that does contain implication but contains negation and

disjunction only



Equivalence of Languages

The Substitution Theorem and the equivalence

(A ⇒ B) ≡ (¬A ∪ B) let us transform a language that

contains implication into a language that does not

contain the implication, but contains negation and disjunction

instead

Observe that we use this equivalence recursively, i.e.

if the formulas A, B contain ⇒ as logical connective

we continue this process until we obtain a logically equivalent

formula not containing ⇒ at all



Equivalence of Languages

Example

The language L1 = L{¬,∩,⇒} becomes a language

L2 = L{¬,∩,∪} such that all its formulas are colorred logically
equivalent to the formulas of the language L1

We write it as the following condition C1

C1: For any formula A of a language L1, there is a formula B

of the language L2, such that A ≡ B.



Example 2

Let now A be a formula

(¬A ∪ (¬A ∪ ¬B))

We can use here the definability of implication equivalence

(A ⇒ B) ≡ (¬A ∪ B)

to eliminate disjunction as follows

(¬A ∪ (¬A ∪ ¬B)) ≡ (¬A ∪ (A ⇒ ¬B))

≡ (A ⇒ (A ⇒ ¬B))



Example 2

Observe that we can’t always use the equivalence

(A ⇒ B) ≡ (¬A ∪ B)

to eliminate disjunction

For example, we can’t use it for a formula

((A ∪ B) ∩ ¬A)

Nevertheless we can eliminate disjunction from it,

but we need a different equivalence



Connectives Elimination

In order to be able to transform any formula of a language

containing disjunction (and some other connectives)

into a language with negation and implication (and some

other connectives), but without disjunction we need the

following logical equivalence

Definability of Disjunction in terms of negation and
implication

(A ∪ B) ≡ (¬A ⇒ B)



Example 3

Consider a formula
(A ∪ B) ∩ ¬A)

We use the equivalence

(A ∪ B) ≡ (¬A ⇒ B)

to transform (A ∪ B) ∩ ¬A) into its logically equivalent form

not containing ∪ but containing ⇒ as follows.

((A ∪ B) ∩ ¬A) ≡ ((¬A ⇒ B) ∩ ¬A)



Equivalence of Languages

The equivalence

(A ∪ B) ≡ (¬A ⇒ B)

allows us to transform a language L2 = L{¬, ∩, ∪} into

a language L1 = L{¬,∩,⇒} with all their formulas being

logically equivalent



Equivalence of Languages

We write this property as the following condition C2 similar to

the already adopted condition

C1: for any formula A of L1, there is a formula B of L2, such
that A ≡ B.

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D

We say that the languages L1 and L2 for which

the conditions C1, C2 hold are logically equivalent and

we adopt the following definition



Equivalence of Languages Definition

Definition

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are logically equivalent, i.e.

L1 ≡ L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1 , there is a formula B of L2,
such that A ≡ B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D



Example 4

To prove the logical equivalence of the languages

L{¬,∪} ≡ L{¬,⇒}

we need two definability equivalences:

implication in terms of disjunction and negation

(A ⇒ B) ≡ (¬A ∪ B)

and disjunction in terms of implication negation,

(A ∪ B) ≡ (¬A ⇒ B)

and the Substitution Theorem



Example 5

To prove the logical equivalence of the languages

L{¬,∩,∪,⇒} ≡ L{¬,∩,∪}

we need only the definability of implication in terms of
disjunction and negation equivalence

It proves, by Substitution Theorem that

for any formula A of L{¬,∩,∪,⇒} there is a formula B of
L{¬,∩,∪} such that A ≡ B and the condition C1 holds

Observe that any formula A of language L{¬,∩,∪} is also a
formula of the language L{¬,∩,∪,⇒} and of course A ≡ A so
the condition C2 also holds



Example 6

The logical equivalences:

Definability of Conjunction in terms of implication and
negation

(A ∩ B) ≡ ¬(A ⇒ ¬B)

and Definability of Implication in terms of conjunction and
negation

(A ⇒ B) ≡ ¬(A ∩ ¬B)

and the Substitution Theorem prove that

L{¬,∩} ≡ L{¬,⇒}.



Exercise 1

Exercise 1 Prove that

L{∩,¬} ≡ L{∪,¬}

Solution

Equivalence holds due to the Substitution Theorem and two

definability of connectives equivalences:

(A ∩ B) ≡ ¬(¬A ∪ ¬B), (A ∪ B) ≡ ¬(¬A ∩ ¬B)

They transform recursively any formula from L{∩,¬} into a
formula of L{∪,¬} and vice-versa, respectively



Exercise 2

Exercise 2

Use the Definability of Conjunction in terms of disjunction

and negation equivalence to transform a formula

A = ¬(¬(¬a ∩ ¬b) ∩ a) of L{∩,¬} into a logically equivalent

formula B of L{∪,¬}
Solution

¬(¬(¬a ∩ ¬b)∩a)≡ ¬¬(¬¬(¬a ∩ ¬b) ∪ ¬a)

≡ ((¬a∩¬b) ∪ ¬a) ≡ (¬(¬¬a ∪ ¬¬b) ∪ ¬a)

≡ ¬(a ∪ b) ∪ ¬a)

The formula B of L{∪,¬} equivalent to A is

B = (¬(a ∪ b) ∪ ¬a)



Exercise 3

Exercise 3

Prove by transformation, using proper logical equivalences
that

¬(A ⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩ B))

Solution
¬(A ⇔ B)

≡def¬((A ⇒ B) ∩ (B ⇒ A))

≡de Morgan(¬(A ⇒ B) ∪ ¬(B ⇒ A))

≡neg impl((A ∩ ¬B) ∪ (B ∩ ¬A))

≡commut((A ∩ ¬B) ∪ (¬A ∩ B))



Exercise 4

Exercise 4

Prove by transformation, using proper logical equivalences
that

((B ∩ ¬C)⇒ (¬A ∪ B))

≡ ((B ⇒ C) ∪ (A ⇒ B))

Solution
((B ∩ ¬C)⇒ (¬A ∪ B))

≡impl(¬(B ∩ ¬C) ∪ (¬A ∪ B))

≡de Morgan((¬B ∪ ¬¬C) ∪ (¬A ∪ B))

≡neg((¬B ∪ C) ∪ (¬A ∪ B))

≡impl((B ⇒ C) ∪ (A ⇒ B))



PART 4

Semantics M Logical Equivalence of Formulas

Semantics M Logical Equivalence Languages



M - Logical Equivalence of Formulas

Given an extensional semantics M defined for a propositional

language LCON and let V , ∅ be its set set of logical values

We say that any two formulas A , B of the language LCON

are M -logically equivalent if and only if they always have

the same logical value assigned by the semantics M

Notation

we write symbolically A ≡M B to denote that the formulas

A, B are M -logically equivalent



M - Logical Equivalence of Formulas

Definition

For any formulas A , B,

A ≡M B if amd only if v∗(A) = v∗(B) for all v : VAR → V

Remember

≡M is not a logical connective

≡M is just a metalanguage symbol for saying

” Formulas A, B are M -logically equivalent ”



M - Logical Equivalence of Languages

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are M- logically equivalent, i.e.

L1 ≡M L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1, there is a formula B of L2,
such that A ≡M B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡M D



Exercise 5

Exercise 5

Prove that in classical semantics

L{¬,⇒} ≡ L{¬,⇒,∪}

Solution

Observe that the condition C1 holds because any formula of
L{¬,⇒} is also a formula of L{¬,⇒,∪}
Condition C2 holds due to the following definability of

connectives equivalence

(A ∪ B) ≡ (¬A ⇒ B)

and the Substitution Theorem



Exercise 6

Exercise 6

Prove that the equivalence defining ∪ in terms of negation
and implication in classical logic does not hold under L
semantics, i.e. that

(A ∪ B) .L (¬A ⇒ B)

but nevertheless
L{¬,⇒} ≡L L{¬,⇒,∪}



Exercise 6

Observe that the equivalence

(A ∪ B) ≡ (¬A ⇒ B)

defining ∪ in terms of ¬ and ⇒ seems a valuable

candidate for L semantics as definability as the definition of

all L connectives restricted to the logical values T ,F is the

same as in the classical case

Unfortunately it is not a good one for L semantics, as

any v such that v∗(A) = v∗(B) =⊥ is counter- model

But it does not prove that a different definability equivalence
does not exist!



Exercise 6

We prove
L{¬,⇒} ≡L L{¬,⇒,∪}

as follows

Condition C2 holds because the definability of connectives
equivalence

(A ∪ B)≡L((A ⇒ B)⇒ B)

Check it by verification as an exercise

C1 holds because any formula of L{¬,⇒} is a formula of
L{¬,⇒,∪}

Observe that the equivalence (A ∪ B) ≡ (A ⇒ B)⇒ B)

provides also an alternative proof of C2 in classical case


