CSE581 Computer Science Fundamentals: Theory

Professor Anita Wasilewska

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

P1 LOGIC: LECTURE 2b

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

CHAPTER 2 REVIEW

Mathematical Statements Translations

Our goal now is to "translate " mathematical and natural language statement into correct formulas of the predicate language \mathcal{L} .

Let's start with some observations.

O1 The quantifiers in $\forall_{x \in N}$, $\exists_{y \in Z}$ are not the one used in logic.

O2 The predicate language \mathcal{L} admits only quantifiers $\forall x, \exists y$, for any variables $x, y \in VAR$.

O3 The quantifiers $\forall_{x \in N}, \exists_{y \in Z}$ are called **quantifiers with** restricted domain.

The **restriction** of the quantifier domain can, and often is given by more complicated statements.

Quantifiers with Restricted Domain

The quantifiers $\forall_{A(x)}$ and $\exists_{A(x)}$ are called quantifiers with **restricted domain**, or **restricted quantifiers**, where $A(x) \in \mathcal{F}$ is any formula with a free variable $x \in VAR$. **Definition**

 $\forall_{A(x)}B(x)$ stands for a formula $\forall x(A(x) \Rightarrow B(x)) \in \mathcal{F}$. $\exists_{A(x)}B(x)$ stands for a formula $\exists x(A(x) \cap B(x)) \in \mathcal{F}$. We write it as the following **transformations rules** for **restricted quantifiers**

$$\forall_{A(x)} B(x) \equiv \forall x (A(x) \Rightarrow B(x))$$

$$\exists_{A(x)} B(x) \equiv \exists x (A(x) \cap B(x))$$

Translations to Formulas of ${\cal L}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Translations to Formulas of $\boldsymbol{\mathcal{L}}$

Given a mathematical statement **S** written with logical symbols.

We obtain a formula $A \in \mathcal{F}$ that is a **translation** of **S** into \mathcal{L} by conducting a following sequence of steps.

Step 1 We **identify** basic statements in **S**, i.e. mathematical statements that involve only relations. They are to be translated into atomic formulas.

We **identify** the relations in the basic statements and **choose** the predicate symbols as their names.

We **identify** all functions and constants (if any) in the basic statements and **choose** the function symbols and constant symbols as their names.

Step 2 We write the basic statements as atomic formulas of \mathcal{L} .

(日)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

Translations to Formulas of $\mathcal L$

Remember that in the predicate language \mathcal{L} we write a function symbol in front of the function arguments not between them as we write in mathematics.

The same applies to relation symbols.

For example we re-write a basic mathematical statement x + 2 > y as > (+(x, 2), y), and then we write it as an **atomic formula** P(f(x, c), y)

 $P \in \mathbf{P}$ stands for two argument relation >,

 $f \in \mathbf{F}$ stands for two argument function +, and $c \in \mathbf{C}$ stands for the number 2.

Translations to Formulas of $\mathcal L$

Step 3 We write the statement **S** a formula with restricted quantifiers (if needed)

Step 4. We apply the transformations rules for restricted quantifiers to the formula from Step 3 and obtain a proper formula A of \mathcal{L} as a result, i.e. as a transtlation of the given mathematical statement **S**

In case of a translation from mathematical statement written without logical symbols we add a following step.

Step 0 We **identify** propositional connectives and quantifiers and use them to re-write the statement in a form that is as close to the structure of a logical formula as possible

Exercise

Given a mathematical statement **S** written with logical symbols

$$(\forall_{x\in N} x \ge 0 \cap \exists_{y\in Z} y = 1)$$

1. Translate it into a proper logical formula with restricted quantifiers i.e. into a formula of \mathcal{L} that **uses** the restricted domain quantifiers.

2. Translate your restricted quantifiers formula into a correct formula **without** restricted domain quantifiers, i.e. into a proper formula of \mathcal{L}

A long and detailed solution is given in Chapter 2, page 28. A short statement of the exercise and a short solution follows

Exercise

Given a mathematical statement S written with logical symbols

 $(\forall_{x\in N} x \ge 0 \cap \exists_{y\in Z} y = 1)$

Translate it into a proper formula of *L*.

Short Solution

The basic statements in **S** are: $x \in N$, $x \ge 0$, $y \in Z$, y = 1

The corresponding atomic formulas of \mathcal{L} are: N(x), $G(x, c_1)$, Z(y), $E(y, c_2)$, for $n \in N$, x > 0, $y \in Z$, y = 1, respectively.

 $n \in N, x \ge 0, y \in Z, y = 1$, respectively.

The statement S becomes restricted quantifiers formula

 $(\forall_{N(x)}G(x,c_1) \cap \exists_{Z(y)} E(y,c_2))$

By the transformation rules we get $A \in \mathcal{F}$:

 $(\forall x(N(x) \Rightarrow G(x, c_1)) \cap \exists y(Z(y) \cap E(y, c_2)))$

・ロト・日本・モト・モト・ ヨー のへぐ

Exercise

Here is a mathematical statement **S**:

"For all real numbers x the following holds: If x < 0, then there is a natural number n, such that x + n < 0."

1. Re-write **S** as a symbolic mathematical statement SF that only uses mathematical and logical symbols.

2. Translate the symbolic statement SF into to a corresponding formula $A \in \mathcal{F}$ of the predicate language \mathcal{L}

Solution

The statement **S** is:

"For all real numbers x the following holds: If x < 0, then there is a natural number n, such that x + n < 0."

S becomes a symbolic mathematical statement SF

$$\forall_{x \in R} (x < 0 \Rightarrow \exists_{n \in N} x + n < 0)$$

We write R(x) for $x \in R$, N(y) for $n \in N$, a constant c for the number 0. We use $L \in P$ to denote the relation < We use $f \in F$ to denote the function +

The statement x < 0 becomes an **atomic formula** L(x, c). The statement x + n < 0 becomes L(f(x,y), c)

Solution c.d.

The symbolic mathematical statement SF

 $\forall_{x\in R} (x < 0 \Rightarrow \exists_{n\in N} x + n < 0)$

becomes a restricted quantifiers formula

 $\forall_{R(x)}(L(x,c) \Rightarrow \exists_{N(y)}L(f(x,y),c))$

We apply now the **transformation rules** and get a corresponding formula $A \in \mathcal{F}$:

 $\forall x(N(x) \Rightarrow (L(x,c) \Rightarrow \exists y(N(y) \cap L(f(x,y),c)))$

PART 3: Translations to Predicate Languages

(ロト (個) (E) (E) (E) (9)

Translations Exercises

Exercise 1

Given a Mathematical Statement written with logical symbols

 $\forall_{x \in R} \exists_{n \in N} (x + n > 0 \Rightarrow \exists_{m \in N} (m = x + n))$

1. Translate it into a proper logical formula with restricted domain quantifiers

2. Translate your restricted domain quantifiers logical formula into a correct logical formula **without** restricted domain quantifiers

1. We translate the Mathematical Statement

 $\forall_{x \in R} \exists_{n \in N} (x + n > 0 \Rightarrow \exists_{m \in N} (m = x + n))$

into a proper **logical formula** with restricted domain quantifiers as follows

Step 1

We identify all **predicates** and use their **symbolic** representation as follows:

```
R(x) for x \in R
```

```
N(x) for n \in N
```

G(x,y) for relation >, E(x,y) for relation =

Step 2

We identify all **functions** and **constants** and their **symbolic** representation as follows:

f(x,y) for the function +, c for the constant 0

Step 3

We write **mathematical** expressions in as **symbolic logic** formulas as follows:

G(f(x,y), c) for x + n > 0 and E(z, f(x,y)) for m = x + nStep 4

We identify logical **connectives** and **quantifiers** and write the **logical formula** with restricted domain quantifiers as follows

 $\forall_{R(x)} \exists_{N(y)} (G(f(x,y),c) \Rightarrow \exists_{N(z)} E(z,f(x,y)))$

(日)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

2. We translate the **logical formula** with restricted domain quantifiers

 $\forall_{R(x)} \exists_{N(y)} (G(f(x,y),c) \Rightarrow \exists_{N(z)} E(z,f(x,y)))$

into a correct **logical formula without** restricted domain quantifiers as follows

 $\forall x(R(x) \Rightarrow \exists_{N(y)}(G(f(x,y),c) \Rightarrow \exists_{N(z)}E(z,f(x,y))))$

 $\equiv \forall x (R(x) \Rightarrow \exists y (N(y) \cap (G(f(x, y), c) \Rightarrow \exists_{N(z)} E(z, f(x, y)))))$

 $\exists \forall x (R(x) \Rightarrow \exists y (N(y) \cap (G(f(x, y), c) \Rightarrow \exists z (N(z) \cap E(z, f(x, y)))))$ Correct logical formula is:

 $\forall x(R(x) \Rightarrow \exists y(N(y) \cap (G(f(x,y),c) \Rightarrow \exists z(N(z) \cap E(z,f(x,y)))))))$

Translations Exercises

Exercise 2

Here is a mathematical statement S:

For all natural numbers n the following holds:

If n < 0, then there is a natural number *m*, such that m + n < 0

P1. Re-write **S** as a Mathematical Statement "formula" **MSF** that only uses **mathematical** and **logical symbols**

P2. Translate your Mathematical Statement "formula" **MSF** into to a correct **predicate language formula LF**

P3. Argue whether the statement S it true of false

P4. Give an interpretattion of the predicate language formula LF under which it is false

P1. We **re-write** mathematical statement **S** For all natural numbers *n* the following holds: If n < 0, then there is a natural number *m*, such that m + n < 0

as a Mathematical Statement "formula" **MSF** that only uses mathematical and logical symbols as follows

 $\forall_{n\in N} (n < 0 \Rightarrow \exists_{m\in N} (m + n < 0))$

P2. We translate the MSF "formula"

```
\forall_{n \in N} (n < 0 \Rightarrow \exists_{m \in N} (m + n < 0))
```

into a correct **predicate language formula** using the following **5** steps

Step 1

We identify **predicates** and write their **symbolic** representation as follows

We write N(x) for $x \in N$ and L(x,y) for relation <

Step 2

We identify **functions** and **constants** and write their **symbolic** representation as follows

f(x,y) for the function + and c for the constant 0

Step 3

We write the mathematical expressions in **S** as atomic formulas as follows:

L(f(y,c), c) for m + n < 0

Step 4

We identify logical **connectives** and **quantifiers** and write the **logical formula** with restricted domain quantifiers as follows

 $\forall_{N(x)}(L(x,c) \Rightarrow \exists_{N(y)}L(f(y,c),c))$

Step 5

We translate the above into a correct logical formula

 $\forall x(N(x) \Rightarrow (L(x,c) \Rightarrow \exists y(N(y) \cap L(f(y,c),c)))$

P3 Argue whether the statement **S** it true of false Statement $\forall_{n \in N} (n < 0 \Rightarrow \exists_{m \in N} (m + n < 0))$ is TRUE as the statement n < 0 is FALSE for all $n \in N$ and the classical implication FALSE \Rightarrow Anyvalue is always TRUE

P4. Here is an **interpretation** in a non-empty set X under which the **predicate language formula**

 $\forall x(N(x) \Rightarrow (L(x,c) \Rightarrow \exists y(N(y) \cap L(f(y,c),c))))$

is false

Take a set $X = \{1, 2\}$

We interpret N(x) as $x \in \{1, 2\}$, L(x, y) as x > y, and constant c as 1

We **interpret** f as a two argument function f_i defined on the set X by a formula $f_i(y, x) = 1$ for all $y, x \in \{1, 2\}$ The mathematical statement

 $\forall_{x \in \{1,2\}} (x > 1 \Rightarrow \exists_{y \in \{1,2\}} (f_l(y,x) > 1))$

is a **false statement** when x = 2In this case we have 2 > 1 is **true** and as $f_l(y, 2) = 1$ for all $y \in \{1, 2\}$ we get that $\exists_{y \in \{1, 2\}} (f_l(y, 2) > 1))$ is **false** as 1 > 1 is **false**

Predicate Tautologies

The notion of **predicate tautology** is much more **complicated** then that of the **propositional** one

We **introduce** it **intuitively** here and **define** it **formally** in later chapters

Predicate tautologies are also called valid formulas, or laws of quantifiers to distinguish them from the **propositional** case

We provide here a motivation, some examples and an intuitive definitions

We also list and discuss the most used and useful **predicate tautologies** and **equational laws** of quantifiers

(日)

Interpretation

The formulas of the **predicate** language \mathcal{L} have a meaning only when an **interpretation** is given for its symbols

We define the interpretation I in a set $U \neq \emptyset$ by interpreting predicate and functional symbols of \mathcal{L} as concrete relations and functions defined in the set U We interpret constants symbols as elements of the set U

The set U is called the **universe** of the **interpretation** I

Model Structure

We define a **model structure** for the predicate language \mathcal{L} as a pair

$$\mathsf{M}=(U, I)$$

where the set U is called the structure **universe** and of the I is the structure **interpretation** in the universe U

Given a formula A of \mathcal{L} , and the **model structure** M = (U, I) We **denote** by

A

a statement defined in the structure $\mathbf{M} = (U, I)$ that is **determined** by the formula A and the interpretation I in the universe U

Model Structure

When the formula A is a **sentence**, it means it is a formula without free variables, the **model structure** statement

A

represents a proposition that is **true** or **false** in the universe U, under the interpretation I

When the formula A is not a sentence, it contains free variables and may be satisfied (i.e. true) for some values in the universe U and not satisfied (i.e. false) for the others

Lets look at few simple examples

Example

Let A be a formula $\exists x P(x, c)$

Consider a model structure $M_1 = (N, I_1)$

The universe of the interpretation I_1 is the set N of natural numbers

We **define** I_1 as follows:

We **interpret** the two argument predicate P as a relation < and the constant c as number 5, i.e we put

 $P_{l_1} :=$ and $c_{l_1} : 5$

The formula A: $\exists x P(x, c)$ under the interpretation I_1 becomes a mathematical statement

 $\exists x \ x = 5$

defined in the set N of natural numbers We write it for short

 $A_{l_1}: \exists_{x \in N} x = 5$

 A_{l_1} is obviously a **true** mathematical statement in the model structure $M_1 = (N, l_1)$

We write it symbolically as

 $\mathbf{M}_1 \models \exists x P(x, c)$

and say: M₁ is a model for the formula A

Example

Consider now a model structure $M_2 = (N, I_2)$ and the formula A: $\exists x P(x, c)$

We **interpret** now the predicate P as relation < in the set N of natural numbers and the constant c as number 0 We write it as

 P_{l_2} : < and c_{l_2} : 0

The formula A: $\exists x P(x, c)$ under the interpretation I_2 becomes a mathematical statement $\exists x \ x < 0$ defined in the set N of natural numbers

We write it for short

 $A_{l_2}: \exists_{x \in N} x < 0$

 A_{l_2} is obviously a **false** mathematical statement. We say: the formula A: $\exists x P(x, c)$ is **false** under the interpretation l_2 in M_2 , or we say for short: A is **false** in M_2 We write it **symbolically** as

 $\mathbf{M}_2 \not\models \exists x P(x, c)$

and say that M_2 is a **counter-model** for the formula A

Example Consider now a model structure $M_3 = (Z, I_3)$ and the formula A: $\exists x P(x, c)$

We **define** an interpretation I_3 in the set of all integers Z exactly as the interpretation I_1 was defined, i.e. we put

 P_{l_3} : < and c_{l_3} : 0

In this case we get

 A_{l_3} : $\exists_{x\in Z} x < 0$

Obviously A_{l_3} is a **true** mathematical statement

The formula A is **true** under the interpretation I_3 in M_3 (A is **satisfied**, **true** in M_3)

We write it symbolically as

 $\mathbf{M}_3 \models \exists x P(x, c)$

M₃ is yet another model for the formula A

When a formula A **is not** a closed, i.e. is not a sentence, the situation gets more complicated

A can be **satisfied** (i.e. true) for some values in the universe U of a $\mathbf{M} = (U, I)$

But also and can be **not satisfied** (i.e. false) for some other values in the universe U of a M = (U, I)

We explain it in the following examples

Example

Consider a formula

 $A_1:R(x,y),$

We define a model structure

 $\mathsf{M}=(N,I)$

where R is **interpreted** as a relation \leq defined in the set N of all natural numbers, i.e. we put $R_l :\leq$ In this case we get

 A_{1I} : $x \leq y$

and A_1 : R(x, y) is **satisfied** in model structure $\mathbf{M} = (N, I)$ by all $n, m \in N$ such that $n \leq m$

Example

Consider a following formula

 A_2 : $\forall y R(x, y)$

and the same model structure M = (N, I), where R is **interpreted** as a relation \leq defined in the set N of all natural numbers, i.e. we put

 $R_I : \leq$

In this case we get that

 $A_{21}: \forall_{y \in N} x \leq y$

and so the formula A_2 : $\forall y R(x, y)$ is **satisfied** in $\mathbf{M} = (N, I)$ **only** by the natural number 0

Example

Consider now a formula

 A_3 : $\exists x \forall y R(x, y)$

and the same model structure $\mathbf{M} = (N, I)$, where R is **interpreted** as a relation \leq defined in the set N of all natural numbers, i.e. we put $R_I : \leq$

In this case the statement

$$A_{31}: \exists_{x\in N} \forall_{y\in N} \ x \leq y$$

asserts that there is a smallest number

This is a **true** statement and we call the structure $\mathbf{M} = (N, I)$ ia **model** for the formula $A_3 : \exists x \forall y R(x, y)$

ション ふゆ マ キャット マックタン

We want the predicate language **tautologies** to have the same property as the **tautologies** of the propositional language, namely to be **always true**

In this case, we intuitively agree that it means that we want the **predicate tautologies** to be formulas that are **true** under **any** interpretation in **any** possible universe

A rigorous definition of the **predicate tautology** is provided in Chapter 8

ション ふゆ マ キャット マックタン

We construct the rigorous definition of a **predicate tautology** in a following sequence of steps

S1 We define **formally** the notion of **interpretation** I of symbols of the language \mathcal{L} in a set $U \neq \emptyset$, i.e. in a **model** structure $\mathbf{M} = (U, I)$ for \mathcal{L}

S2 We define formally a notion

" a formula A of \mathcal{L} is **true** in the structure $\mathbf{M} = (U, I)$ " We write it symbolically $\mathbf{M} \models A$ and call the structure $\mathbf{M} = (U, I)$ a **model** for the formula A

S3 We define a notion "A is a predicate tautology" as follows

Defintion

For any formula A of predicate language \mathcal{L} ,

A is a predicate tautology (valid formula) if and only if

$\mathbf{M} \models \mathbf{A}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for all model structures M = (U, I) for the language \mathcal{L}

Directly from the above definition we get the following definition of a notion " A is not a predicate tautology"

Defintion

For any formula A of predicate language \mathcal{L} , A **is not** a predicate **tautology** if and only if **there is** a model structure $\mathbf{M} = (U, I)$ for \mathcal{L} , such that

$M \not\models A$

We call such model structure M a counter-model for A

The definition of a notion

" A is not a predicate tautology"

says that in order to prove that a formula A is not a predicate tautology one has to show a counter-model for it

It means that one has to **define** a non-empty set U and **define** an interpretation I, such that we can prove that

A

is false

We use terms **predicate** tautology or **valid** formula instead of just saying a **tautology** in order to distinguish tautologies belonging to two very different languages

For the same reason we usually reserve the symbol \models for **propositional** case

Sometimes we use symbols

 \models_p or \models_f

to denote predicate tautologies

p stands for predicate and f stands first order
Predicate tautologies are also called laws of quantifiers
We will use both names

(日)

Predicate Tautologies Examples

Here are some examples of predicate tautologies and counter models for formulas that are not tautologies Example

For any formula A(x) with a free variable x:

 $\models_{\rho} (\forall x \ A(x) \Rightarrow \exists x \ A(x))$

Observe that the formula

 $(\forall x \ A(x) \Rightarrow \exists x \ A(x))$

represents an infinite number of formulas.

It is a **tautology** for **any** formula A(x) of \mathcal{L} with a free variable x

Predicate Tautologie Examples

The **inverse** implication to $(\forall x \ A(x) \Rightarrow \exists x \ A(x))$ is **not** a predicate tautology, i.e.

 $\not\models_{p} (\exists x \ A(x) \Rightarrow \forall x \ A(x))$

To **prove it** we have to provide an **example** of a **concrete** formula A(x) and construct a **counter-model** M = (U, I) for the formula

 $F: (\exists x \ A(x) \Rightarrow \forall x \ A(x))$

Let the **concrete** A(x) be an **atomic** formula P(x, c)We define $\mathbf{M} = (N, I)$ for N set of natural numbers and $P_I : <, \quad c_I : 3$

The formula F becomes an obviously **false** mathematical statement

$$F_{I}: \left(\exists_{n \in N} n < 3 \Rightarrow \forall_{n \in N} n < 3 \right)$$

We have to be very careful when we deal with restricted domain quantifiers

For example, the most basic predicate tautology

 $(\forall x \ A(x) \Rightarrow \exists x \ A(x))$

fails when written with the **restricted domain** quantifiers, i.e. We show that

$$\not\models_{p} (\forall_{B(x)} A(x) \Rightarrow \exists_{B(x)} A(x))$$

To **prove** this we have to show that corresponding formula of \mathcal{L} obtained by the restricted quantifiers transformations rules **is not** a predicate tautology, i.e. to prove:

 $\not\models_{p} (\forall x (B(x) \Rightarrow A(x)) \Rightarrow \exists x (B(x) \cap A(x))).$

Restricted Quantifiers Laws

We construct a **counter-model** M for the formula

 $F: (\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x)))$

We take

 $\mathsf{M}=(N,I),$

where N is the set of natural numbers We take as the **concrete** formulas B(x), A(x) atomic formulas

$$Q(x, c)$$
 and $P(x, c)$,

respectively, and the interpretation | i defined as

$$Q_{l}:<, P_{l}:>, c_{l}:$$

Restricted Quantifiers Laws

The formula

 $F: (\forall x(B(x) \Rightarrow A(x)) \Rightarrow \exists x(B(x) \cap A(x)))$

becomes a mathematical statement

 $F_{I}: (\forall_{n \in N} (x < 0 \Rightarrow n > 0) \Rightarrow \exists_{n \in N} (n < 0 \cap n > 0))$

The satement F_{l} is a **false**

because the statement n < 0 is **false** for all natural numbers and the implication $false \Rightarrow B$ is **true** for any logical value of B Hence $\forall_{n \in N} (n < 0 \Rightarrow n > 0)$ is a **true** statement and $\exists_{n \in N} (n < 0 \cap n > 0)$ is obviously **false** **Restricted Quantifiers Laws**

Restricted quantifiers law corresponding to the predicate tautology

 $(\forall x \ A(x) \Rightarrow \exists x \ A(x))$

is

$$\models_{\rho} (\forall_{B(x)} A(x) \Rightarrow (\exists x \ B(x) \Rightarrow \exists_{B(x)} A(x)))$$

We remind that it means that we prove that the corresponding proper formula of \mathcal{L} obtained by the restricted quantifiers **transformations rules** is a predicate tautology, i.e. that

 $\models_{p} (\forall x (B(x) \Rightarrow A(x)) \Rightarrow (\exists x \ B(x) \Rightarrow \exists x \ (B(x) \cap A(x))))$

Another basic predicate tautology called a dictum de omni law is

$$\models_{\rho} (\forall x \ A(x) \Rightarrow A(y))$$

where A(x) are any formulas with a free variable x and $y \in VAR$

The corresponding restricted quantifiers law is:

 $\models_{\rho} (\forall_{B(x)} A(x) \Rightarrow (B(y) \Rightarrow A(y))),$

where A(x), B(x) are any formulas with a free variable x and $y \in VAR$

The next important laws are the Distributivity Laws

Distributivity of existential quantifier over conjunction holds only in **one direction**, namely the following is a predicate tautology

 $\models_{p} (\exists x (A(x) \cap B(x)) \Rightarrow (\exists x A(x) \cap \exists x B(x))),$

where A(x), B(x) are any formulas with a free variable x The **inverse** implication **is not** a predicate tautology, i.e.

 $\not\models_p ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$

To **prove** it we have to find an example of **concrete** formulas A(x), $B(x) \in \mathcal{F}$ and a model structure $\mathbf{M} = (U, I)$ with the interpretation I, such that **M** is **counter-model** for the formula

 $F: ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$

We define the **counter - model** for F is as follows Take $\mathbf{M} = (R, I)$ where R is the set of real numbers Let A(x), B(x) be **atomic** formulas Q(x, c), $\P(x, c)$ We define the interpretation I as $Q_I :>$, $P_I :<$, $c_I : 0$. The formula F becomes an obviously **false** mathematical statement

 $F_{I}: \left(\left(\exists_{x \in R} \ x > 0 \cap \exists_{x \in R} \ x < 0 \right) \Rightarrow \exists_{x \in R} \ (x > 0 \cap x < 0) \right)$

Distributivity of universal quantifier over disjunction holds only on **one direction**, namely the following is a predicate tautology for any formulas A(x), B(x) with a free variable x.

$\models_{p} ((\forall x A(x) \cup \forall x B(x)) \Rightarrow \forall x (A(x) \cup B(x))).$

The inverse implication is not a predicate tautology, i.e.

 $\not\models_{\rho} (\forall x (A(x) \cup B(x)) \Rightarrow (\forall x A(x) \cup \forall x B(x)))$

To **prove** it we have to find an example of **concrete** formulas A(x), $B(x) \in \mathcal{F}$ and a model structure $\mathbf{M} = (U, I)$ that is **counter-model** for the formula

$F: (\forall x (A(x) \cup B(x)) \Rightarrow (\forall x A(x) \cup \forall x B(x)))$

We take $\mathbf{M} = (R, I)$ where R is the set of real numbers, and A(x), B(x) are **atomic** formulas Q(x, c), R(x, c)We define $Q_I \ge$ and $R_I :<$, $c_I : 0$ The formula F becomes an obviously **false** mathematical statement

 $F_{I}: (\forall_{x \in R} (x \ge 0 \cup x < 0) \Rightarrow (\forall_{x \in R} x \ge 0 \cup \forall_{x \in R} x < 0))$

Logical Equivalence

The most frequently used laws of quantifiers have a form of a **logical equivalence**, symbolically written as \equiv

Remember that = is not a new logical connective

This is a very useful symbol It says that two formulas always have the same logical value It can be used in the same way we the equality symbol =

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Logical Equivalence

We formally define the logical equivalence as follows

Definition

For any formulas $A, B \in \mathcal{F}$ of the **predicate language** \mathcal{L} ,

$$A \equiv B$$
 if and only if $\models_p (A \Leftrightarrow B)$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We have also a similar definition for the propositional language and propositional tautology

De Morgan

For any formula $A(x) \in \mathcal{F}$ with a free variable x,

 $\neg \forall x A(x) \equiv \exists x \neg A(x), \quad \neg \exists x A(x) \equiv \forall x \neg A(x)$

Definability

For any formula $A(x) \in \mathcal{F}$ with a free variable x,

 $\forall x A(x) \equiv \neg \exists x \neg A(x), \quad \exists x A(x) \equiv \neg \forall x \neg A(x)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Renaming the Variables

Let A(x) be any formula with a free variable x and let y be a variable that **does not occur** in A(x). Let A(x/y) be a result of **replacement** of each occurrence of x by y, then the following holds.

 $\forall x A(x) \equiv \forall y A(y), \quad \exists x A(x) \equiv \exists y A(y)$

Alternations of Quantifiers

Let A(x, y) be any formula with a free variables x and y.

 $\forall x \forall y (A(x,y) \equiv \forall y \forall x (A(x,y),$

 $\exists x \exists y (A(x,y) \equiv \exists y \exists x (A(x,y))$

・ロト・日本・モト・モト・ ヨー のへぐ

Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence of x, then the following logical equivalences hold.

 $\forall x (A(x) \cup B) \equiv (\forall x A(x) \cup B),$

 $\exists x (A(x) \cup B) \equiv (\exists x A(x) \cup B),$

 $\forall x (A(x) \cap B) \equiv (\forall x A(x) \cap B),$

 $\exists x (A(x) \cap B) \equiv (\exists x A(x) \cap B)$

Introduction and Elimination Laws

If B is a formula such that B does not contain any free occurrence of x, then the following logical equivalences hold.

 $\forall x (A(x) \Rightarrow B) \equiv (\exists x A(x) \Rightarrow B),$

 $\exists x (A(x) \Rightarrow B) \equiv (\forall x A(x) \Rightarrow B),$

 $\forall x(B \Rightarrow A(x)) \equiv (B \Rightarrow \forall xA(x)),$

 $\exists x (B \Rightarrow A(x)) \equiv (B \Rightarrow \exists x A(x))$

Distributivity Laws

Let A(x), B(x) be any formulas with a free variable x

Distributivity of universal quantifier over conjunction.

 $\forall x \ (A(x) \cap B(x)) \equiv (\forall x A(x) \cap \forall x B(x))$

Distributivity of existential quantifier over disjunction.

 $\exists x \ (A(x) \cup B(x)) \ \equiv \ (\exists x A(x) \cup \exists x B(x))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We also define the notion of logical equivalence \equiv for the formulas of the **propositional language** and its semantics For any formulas $A, B \in \mathcal{F}$ of the **propositional language** \mathcal{L} ,

$$A \equiv B$$
 if and only if $\models (A \Leftrightarrow B)$

Moreover, we prove that any substitution of **propositional tautology** by a formulas of the predicate language is a **predicate tautology**

The same holds for the logical equivalence

In particular, we transform the **propositional tautologies** into the following corresponding predicate equivalences. For any formulas A, B of the **predicate language** \mathcal{L} ,

 $(A \Rightarrow B) \equiv (\neg A \cup B),$

 $(A \Rightarrow B) \equiv (\neg A \cup B)$

We use them to prove the following De Morgan Laws for restricted quantifiers.

Restricted De Morgan

For any formulas $A(x), B(x) \in \mathcal{F}$ with a free variable x,

 $\neg \forall_{B(x)} A(x) \equiv \exists_{B(x)} \neg A(x), \quad \neg \exists_{B(x)} A(x) \equiv \forall_{B(x)} \neg A(x)$

Here is a poof of first equality. The proof of the second one is similar and is left as an exercise.

$$\neg \forall_{B(x)} A(x) \equiv \neg \forall x (B(x) \Rightarrow A(x))$$
$$\equiv \neg \forall x (\neg B(x) \cup A(x))$$
$$\equiv \exists x \neg (\neg B(x) \cup A(x)) \equiv \exists x (\neg \neg B(x) \cap \neg A(x))$$
$$\equiv \exists x (B(x) \cap \neg A(x)) \equiv \exists_{B(x)} \neg A(x))$$