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CHAPTER 2 REVIEW



Mathematical Statements Translations

Our goal now is to ”translate ” mathematical and natural
language statement into correct formulas of the predicate
language L.

Let’s start with some observations.

O1 The quantifiers in ∀x∈N , ∃y∈Z are not the one used in
logic.

O2 The predicate language L admits only quantifiers
∀x, ∃y, for any variables x, y ∈ VAR.

O3 The quantifiers ∀x∈N , ∃y∈Z are called quantifiers with
restricted domain.

The restriction of the quantifier domain can, and often is
given by more complicated statements.



Quantifiers with Restricted Domain

The quantifiers ∀A(x) and ∃A(x) are called quantifiers with
restricted domain , or restricted quantifiers , where
A(x) ∈ F is any formula with a free variable x ∈ VAR.

Definition

∀A(x)B(x) stands for a formula ∀x(A(x)⇒ B(x)) ∈ F .

∃A(x)B(x) stands for a formula ∃x(A(x) ∩ B(x)) ∈ F .

We write it as the following transformations rules for
restricted quantifiers

∀A(x) B(x) ≡ ∀x(A(x)⇒ B(x))

∃A(x) B(x) ≡ ∃x(A(x) ∩ B(x))



Translations to Formulas of L



Translations to Formulas of L

Given a mathematical statement S written with logical
symbols.

We obtain a formula A ∈ F that is a translation of S into L by
conducting a following sequence of steps.

Step 1 We identify basic statements in S, i.e. mathematical
statements that involve only relations. They are to be
translated into atomic formulas.

We identify the relations in the basic statements and choose
the predicate symbols as their names.

We identify all functions and constants (if any) in the basic
statements and choose the function symbols and constant
symbols as their names.

Step 2 We write the basic statements as atomic formulas
of L.



Translations to Formulas of L

Remember that in the predicate language L we write a
function symbol in front of the function arguments not
between them as we write in mathematics.

The same applies to relation symbols.

For example we re-write a basic mathematical statement
x + 2 > y as > (+(x, 2), y), and then we write it as an atomic
formula P(f(x, c), y)

P ∈ P stands for two argument relation >,

f ∈ F stands for two argument function +, and c ∈ C stands
for the number 2.



Translations to Formulas of L

Step 3 We write the statement S a formula with restricted
quantifiers (if needed)

Step 4. We apply the transformations rules for restricted
quantifiers to the formula from Step 3 and obtain a proper
formula A of L as a result, i.e. as a transtlation of the given
mathematical statement S

In case of a translation from mathematical statement written
without logical symbols we add a following step.

Step 0 We identify propositional connectives and quantifiers
and use them to re-write the statement in a form that is as
close to the structure of a logical formula as possible



Translations Examples

Exercise

Given a mathematical statement S written with logical
symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

1. Translate it into a proper logical formula with restricted
quantifiers i.e. into a formula of L that uses the restricted
domain quantifiers.

2. Translate your restricted quantifiers formula into a correct
formula without restricted domain quantifiers, i.e. into a
proper formula of L

A long and detailed solution is given in Chapter 2, page 28.

A short statement of the exercise and a short solution follows



Translations Examples

Exercise
Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

Translate it into a proper formula of L.
Short Solution
The basic statements in S are: x ∈ N, x ≥ 0, y ∈ Z , y = 1
The corresponding atomic formulas of L are:
N(x), G(x, c1), Z(y), E(y, c2), for
n ∈ N, x ≥ 0, y ∈ Z , y = 1, respectively.
The statement S becomes restricted quantifiers formula

(∀N(x)G(x, c1) ∩ ∃Z(y) E(y, c2))

By the transformation rules we get A ∈ F :

(∀x(N(x)⇒ G(x, c1)) ∩ ∃y(Z(y) ∩ E(y, c2)))



Translations Examples

Exercise

Here is a mathematical statement S:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

1. Re-write S as a symbolic mathematical statement SF that
only uses mathematical and logical symbols.

2. Translate the symbolic statement SF into to a
corresponding formula A ∈ F of the predicate language L



Translations Examples

Solution

The statement S is:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

S becomes a symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

We write R(x) for x ∈ R, N(y) for n ∈ N, a constant c for the
number 0. We use L ∈ P to denote the relation <We use
f ∈ F to denote the function +

The statement x < 0 becomes an atomic formula L(x, c).
The statement x + n < 0 becomes L(f(x,y), c)



Translations Examples

Solution c.d.

The symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

becomes a restricted quantifiers formula

∀R(x)(L(x, c)⇒ ∃N(y)L(f(x, y), c))

We apply now the transformation rules and get a
corresponding formula A ∈ F :

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(x, y), c)))



PART 3: Translations to Predicate Languages



Translations Exercises

Exercise 1

Given a Mathematical Statement written with logical symbols

∀x∈R ∃n∈N(x + n > 0⇒ ∃m∈N(m = x + n))

1. Translate it into a proper logical formula with restricted
domain quantifiers

2. Translate your restricted domain quantifiers logical formula
into a correct logical formula without restricted domain
quantifiers



Exercise 1 Solution

1. We translate the Mathematical Statement

∀x∈R ∃n∈N(x + n > 0⇒ ∃m∈N(m = x + n))

into a proper logical formula with restricted domain
quantifiers as follows

Step 1

We identify all predicates and use their symbolic
representation as follows:

R(x) for x ∈ R

N(x) for n ∈ N

G(x,y) for relation >, E(x,y) for relation =



Exercise 1 Solution

Step 2

We identify all functions and constants and their symbolic
representation as follows:

f(x,y) for the function + , c for the constant 0

Step 3

We write mathematical expressions in as symbolic logic
formulas as follows:

G(f(x,y), c) for x + n > 0 and E(z, f(x,y)) for m = x + n

Step 4

We identify logical connectives and quantifiers and write
the logical formula with restricted domain quantifiers as
follows

∀R(x) ∃N(y)(G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y)))



Exercise 1 Solution

2. We translate the logical formula with restricted domain
quantifiers

∀R(x) ∃N(y)(G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y)))

into a correct logical formula without restricted domain
quantifiers as follows

∀x(R(x)⇒ ∃N(y)(G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y))))

≡ ∀x(R(x)⇒ ∃y(N(y) ∩ (G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y)))))

≡ ∀x(R(x)⇒ ∃y(N(y) ∩ (G(f(x, y), c)⇒ ∃z(N(z) ∩ E(z, f(x, y))))))

Correct logical formula is:

∀x(R(x)⇒ ∃y(N(y) ∩ (G(f(x, y), c)⇒ ∃z(N(z) ∩ E(z, f(x, y))))))



Translations Exercises

Exercise 2

Here is a mathematical statement S:

For all natural numbers n the following holds:

If n < 0, then there is a natural number m, such that
m + n < 0

P1. Re-write S as a Mathematical Statement ”formula” MSF
that only uses mathematical and logical symbols

P2. Translate your Mathematical Statement ”formula” MSF
into to a correct predicate language formula LF

P3. Argue whether the statement S it true of false

P4. Give an interpretattion of the predicate language
formula LF under which it is false



Exercise 2 Solution

P1. We re-write mathematical statement S

For all natural numbers n the following holds:

If n < 0, then there is a natural number m, such that
m + n < 0

as a Mathematical Statement ”formula” MSF that only uses
mathematical and logical symbols as follows

∀n∈N(n < 0⇒ ∃m∈N(m + n < 0))



Exercise 2 Solution

P2. We translate the MSF ”formula”

∀n∈N(n < 0⇒ ∃m∈N(m + n < 0))

into a correct predicate language formula using the
following 5 steps

Step 1

We identify predicates and write their symbolic
representation as follows

We write N(x) for x ∈ N and L(x,y) for relation <

Step 2

We identify functions and constants and write their
symbolic representation as follows

f(x,y) for the function + and c for the constant 0



Exercise 2 Solution

Step 3

We write the mathematical expressions in S as atomic
formulas as follows:

L(f(y,c), c) for m + n < 0

Step 4

We identify logical connectives and quantifiers and write
the logical formula with restricted domain quantifiers as
follows

∀N(x)(L(x, c)⇒ ∃N(y)L(f(y, c), c))



Exercise 2 Solution

Step 5

We translate the above into a correct logical formula

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(y, c), c)))

P3 Argue whether the statement S it true of false

Statement ∀n∈N(n < 0⇒ ∃m∈N(m + n < 0)) is TRUE as the
statement n < 0 is FALSE for all n ∈ N and the classical
implication FALSE⇒ Anyvalue is always TRUE



Exercise 2 Solution

P4. Here is an interpretation in a non-empty set X under
which the predicate language formula

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(y, c), c)))

is false
Take a set X = {1, 2}
We interpret N(x) as x ∈ {1, 2}, L(x, y) as x > y, and
constant c as 1
We interpret f as a two argument function fI defined on the
set X by a formula fI(y, x) = 1 for all y, x ∈ {1, 2}
The mathematical statement

∀x∈{1,2}(x > 1⇒ ∃y∈{1,2}(fI(y, x) > 1))

is a false statement when x = 2
In this case we have 2 > 1 is true and as fI(y, 2) = 1 for all
y ∈ {1, 2} we get that ∃y∈{1,2}(fI(y, 2) > 1)) is false as 1 > 1
is false



Predicate Tautologies

The notion of predicate tautology is much more complicated
then that of the propositional one

We introduce it intuitively here and define it formally in later
chapters

Predicate tautologies are also called valid formulas, or laws
of quantifiers to distinguish them from the propositional case

We provide here a motivation, some examples and an intuitive
definitions

We also list and discuss the most used and useful predicate
tautologies and equational laws of quantifiers



Interpretation

The formulas of the predicate language L have a meaning
only when an interpretation is given for its symbols

We define the interpretation I in a set U , ∅ by interpreting
predicate and functional symbols of L as concrete
relations and functions defined in the set U

We interpret constants symbols as elements of the set U

The set U is called the universe of the interpretation I



Model Structure

We define a model structure for the predicate language L as
a pair

M = (U, I)

where the set U is called the structure universe and of the I
is the structure interpretation in the universe U

Given a formula A of L, and the model structure M = (U, I)

We denote by
AI

a statement defined in the structure M = (U, I) that is
determined by the formula A and the interpretation I in the
universe U



Model Structure

When the formula A is a sentence, it means it is a formula
without free variables, the model structure statement

AI

represents a proposition that is true or false in the universe
U, under the interpretation I

When the formula A is not a sentence, it contains free
variables and may be satisfied (i.e. true) for some values in
the universe U and not satisfied (i.e. false) for the others

Lets look at few simple examples



Examples

Example

Let A be a formula ∃xP(x, c)

Consider a model structure M1 = (N, I1)

The universe of the interpretation I1 is the set N of natural
numbers

We define I1 as follows:

We interpret the two argument predicate P as a relation <
and the constant c as number 5, i.e we put

PI1 : = and cI1 : 5



Examples

The formula A: ∃xP(x, c) under the interpretation I1
becomes a mathematical statement

∃x x = 5

defined in the set N of natural numbers

We write it for short

AI1 : ∃x∈N x = 5

AI1 is obviously a true mathematical statement in the model
structure M1 = (N, I1)

We write it symbolically as

M1 |= ∃xP(x, c)

and say: M1 is a model for the formula A



Examples

Example

Consider now a model structure M2 = (N, I2) and the
formula A: ∃xP(x, c)

We interpret now the predicate P as relation < in the set N
of natural numbers and the constant c as number 0

We write it as
PI2 : < and cI2 : 0



Examples

The formula A: ∃xP(x, c) under the interpretation I2
becomes a mathematical statement ∃x x < 0 defined in the
set N of natural numbers

We write it for short

AI2 : ∃x∈N x < 0

AI2 is obviously a false mathematical statement.

We say: the formula A: ∃xP(x, c) is false under the
interpretation I2 in M2, or we say for short: A is false in M2

We write it symbolically as

M2 6|= ∃xP(x, c)

and say that M2 is a counter-model for the formula A



Examples

Example

Consider now a model structure

M3 = (Z , I3) and the formula A: ∃xP(x, c)

We define an interpretation I3 in the set of all integers Z
exactly as the interpretation I1 was defined, i.e. we put

PI3 : < and cI3 : 0



Examples

In this case we get

AI3 : ∃x∈Z x < 0

Obviously AI3 is a true mathematical statement

The formula A is true under the interpretation I3 in M3 (A is
satisfied, true in M3)

We write it symbolically as

M3 |= ∃xP(x, c)

M3 is yet another model for the formula A



Examples

When a formula A is not a closed, i.e. is not a sentence, the
situation gets more complicated

A can be satisfied (i.e. true) for some values in the universe
U of a M = (U, I)

But also and can be not satisfied (i.e. false) for some other
values in the universe U of a M = (U, I)

We explain it in the following examples



Examples

Example

Consider a formula
A1 : R(x, y),

We define a model structure

M = (N, I)

where R is interpreted as a relation ≤ defined in the set N
of all natural numbers, i.e. we put RI : ≤

In this case we get
A1I : x ≤ y

and A1 : R(x, y) is satisfied in model structure M = (N, I)
by all n,m ∈ N such that n ≤ m



Examples

Example

Consider a following formula

A2 : ∀yR(x, y)

and the same model structure M = (N, I), where R is
interpreted as a relation ≤ defined in the set N of all natural
numbers, i.e. we put

RI : ≤

In this case we get that

A2I : ∀y∈N x ≤ y

and so the formula A2 : ∀yR(x, y) is satisfied in M = (N, I)
only by the natural number 0



Examples

Example

Consider now a formula

A3 : ∃x∀yR(x, y)

and the same model structure M = (N, I), where R is
interpreted as a relation ≤ defined in the set N of all natural
numbers, i.e. we put RI : ≤

In this case the statement

A3I : ∃x∈N∀y∈N x ≤ y

asserts that there is a smallest number

This is a true statement and we call the structure M = (N, I)
ia model for the formula A3 : ∃x∀yR(x, y)



Predicate Tautology Definition

We want the predicate language tautologies to have the
same property as the tautologies of the propositional
language, namely to be always true

In this case, we intuitively agree that it means that we want
the predicate tautologies to be formulas that are true under
any interpretation in any possible universe

A rigorous definition of the predicate tautology is provided in
Chapter 8



Predicate Tautology Definition

We construct the rigorous definition of a predicate tautology
in a following sequence of steps

S1 We define formally the notion of interpretation I of
symbols of the language L in a set U , ∅, i.e. in a model
structure M = (U, I) for L

S2 We define formally a notion

” a formula A of L is true in the structure M = (U, I)”

We write it symbolically M |= A and call thestructure
M = (U, I) a model for the formula A



Predicate Tautology Definition

S3 We define a notion ”A is a predicate tautology” as follows

Defintion

For any formula A of predicate language L,

A is a predicate tautology (valid formula) if and only if

M |= A

for all model structures M = (U, I) for the language L



Predicate Tautology Definition

Directly from the above definition we get the following
definition of a notion ” A is not a predicate tautology”

Defintion

For any formula A of predicate language L,

A is not a predicate tautology if and only if

there is a model structure M = (U, I) for L , such that

M 6|= A

We call such model structure M a counter-model for A



Predicate Tautology Definition

The definition of a notion

” A is not a predicate tautology”

says that in order to prove that a formula A is not a predicate
tautology one has to show a counter- model for it

It means that one has to define a non-empty set U and
define an interpretation I, such that we can prove that

AI

is false



Predicate Tautology Definition

We use terms predicate tautology or valid formula instead
of just saying a tautology in order to distinguish tautologies
belonging to two very different languages

For the same reason we usually reserve the symbol |= for
propositional case

Sometimes we use symbols

|=p or |=f

to denote predicate tautologies

p stands for predicate and f stands first order

Predicate tautologies are also called laws of quantifiers

We will use both names



Predicate Tautologies Examples

Here are some examples of predicate tautologies and
counter models for formulas that are not tautologies

Example

For any formula A(x) with a free variable x:

|=p (∀x A(x)⇒ ∃x A(x))

Observe that the formula

(∀x A(x)⇒ ∃x A(x))

represents an infinite number of formulas.

It is a tautology for any formula A(x) of L with a free
variable x



Predicate Tautologie Examples

The inverse implication to (∀x A(x)⇒ ∃x A(x)) is not a
predicate tautology, i.e.

6|=p (∃x A(x)⇒ ∀x A(x))

To prove it we have to provide an example of a concrete
formula A(x) and construct a counter-model M = (U, I) for
the formula

F : (∃x A(x)⇒ ∀x A(x))

Let the concrete A(x) be an atomic formula P(x, c)

We define M = (N, I) for N set of natural numbers and
PI : <, cI : 3

The formula F becomes an obviously false mathematical
statement

FI : (∃n∈Nn < 3⇒ ∀n∈Nn < 3)



Restricted Quantifiers Laws

We have to be very careful when we deal with restricted
domain quantifiers

For example, the most basic predicate tautology

(∀x A(x)⇒ ∃x A(x))

fails when written with the restricted domain quantifiers, i.e.

We show that

6|=p (∀B(x) A(x)⇒ ∃B(x) A(x))

To prove this we have to show that corresponding formula of
L obtained by the restricted quantifiers transformations rules
is not a predicate tautology, i.e. to prove:

6|=p (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x))).



Restricted Quantifiers Laws

We construct a counter-model M for the formula

F : (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x)))

We take
M = (N, I),

where N is the set of natural numbers

We take as the concrete formulas B(x), A(x) atomic
formulas

Q(x, c) and P(x, c),

respectively, and the interpretation I i defined as

QI : <, PI : >, cI :



Restricted Quantifiers Laws

The formula

F : (∀x(B(x)⇒ A(x))⇒ ∃x(B(x) ∩ A(x)))

becomes a mathematical statement

FI : (∀n∈N (x < 0⇒ n > 0)⇒ ∃n∈N(n < 0 ∩ n > 0))

The satement FI is a false

because the statement n < 0 is false for all natural numbers
and the implication false ⇒ B is true for any logical value of B

Hence ∀n∈N (n < 0⇒ n > 0) is a true statement and
∃n∈N(n < 0 ∩ n > 0) is obviously false



Restricted Quantifiers Laws

Restricted quantifiers law corresponding to the predicate
tautology

(∀x A(x)⇒ ∃x A(x))

is
|=p (∀B(x) A(x)⇒ (∃x B(x)⇒ ∃B(x) A(x)))

We remind that it means that we prove that the corresponding
proper formula of L obtained by the restricted quantifiers
transformations rules is a predicate tautology, i.e. that

|=p (∀x(B(x)⇒ A(x))⇒ (∃x B(x)⇒ ∃x (B(x) ∩ A(x))))



Quantifiers Laws

Another basic predicate tautology called a dictum de omni
law is

|=p (∀x A(x)⇒ A(y))

where A(x) are any formulas with a free variable x and
y ∈ VAR

The corresponding restricted quantifiers law is:

|=p (∀B(x) A(x)⇒ (B(y)⇒ A(y))),

where A(x), B(x) are any formulas with a free variable x and
y ∈ VAR



Quantifiers Laws

The next important laws are the Distributivity Laws

Distributivity of existential quantifier over conjunction holds
only in one direction, namely the following is a predicate
tautology

|=p (∃x (A(x) ∩ B(x)) ⇒ (∃xA(x) ∩ ∃xB(x))),

where A(x),B(x) are any formulas with a free variable x

The inverse implication is not a predicate tautology, i.e.

6|=p ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩ B(x)))



Quantifiers Laws

To prove it we have to find an example of concrete formulas
A(x), B(x) ∈ F and a model structure M = (U, I) with the
interpretation I, such that M is counter- model for the formula

F : ((∃xA(x) ∩ ∃xB(x))⇒ ∃x (A(x) ∩ B(x)))

We define the counter - model for F is as follows

Take M = (R , I) where R is the set of real numbers

Let A(x), B(x) be atomic formulas Q(x, c), ¶(x, c)

We define the interpretation I as QI : >, PI : <, cI : 0.

The formula F becomes an obviously false mathematical
statement

FI : ((∃x∈R x > 0 ∩ ∃x∈R x < 0)⇒ ∃x∈R (x > 0 ∩ x < 0))



Quantifiers Laws

Distributivity of universal quantifier over disjunction holds
only on one direction, namely the following is a predicate
tautology for any formulas A(x),B(x) with a free variable x.

|=p ((∀xA(x) ∪ ∀xB(x))⇒ ∀x (A(x) ∪ B(x))).

The inverse implication is not a predicate tautology, i.e.

6|=p (∀x (A(x) ∪ B(x))⇒ (∀xA(x) ∪ ∀xB(x)))



Quantifiers Laws

To prove it we have to find an example of concrete formulas
A(x), B(x) ∈ F and a model structure M = (U, I) that is
counter- model for the formula

F : (∀x (A(x) ∪ B(x))⇒ (∀xA(x) ∪ ∀xB(x)))

We take M = (R , I) where R is the set of real numbers, and
A(x), B(x) are atomic formulas Q(x, c), R(x, c)

We define QI :≥ and RI :<, cI : 0

The formula F becomes an obviously false mathematical
statement

FI : (∀x∈R (x ≥ 0 ∪ x < 0)⇒ (∀x∈R x ≥ 0 ∪ ∀x∈R x < 0))



Logical Equivalence

The most frequently used laws of quantifiers have a form of a
logical equivalence, symbolically written as ≡

Remember that ≡ is not a new logical connective

This is a very useful symbol

It says that two formulas always have the same logical value

It can be used in the same way we the equality symbol =



Logical Equivalence

We formally define the logical equivalence as follows

Definition

For any formulas A ,B ∈ F of the predicate language L,

A ≡ B if and only if |=p (A ⇔ B).

We have also a similar definition for the propositional
language and propositional tautology



Equational Laws for Quantifiers

De Morgan

For any formula A(x) ∈ F with a free variable x,

¬∀xA(x) ≡ ∃x¬A(x), ¬∃xA(x) ≡ ∀x¬A(x)

Definability

For any formula A(x) ∈ F with a free variable x,

∀xA(x) ≡ ¬∃x¬A(x), ∃xA(x) ≡ ¬∀x¬A(x)



Equational Laws for Quantifiers

Renaming the Variables

Let A(x) be any formula with a free variable x

and let y be a variable that does not occur in A(x).

Let A(x/y) be a result of replacement of each occurrence of
x by y, then the following holds.

∀xA(x) ≡ ∀yA(y), ∃xA(x) ≡ ∃yA(y)

Alternations of Quantifiers

Let A(x, y) be any formula with a free variables x and y.

∀x∀y (A(x, y) ≡ ∀y∀x (A(x, y),

∃x∃y (A(x, y) ≡ ∃y∃x (A(x, y)



Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold.

∀x(A(x) ∪ B) ≡ (∀xA(x) ∪ B),

∃x(A(x) ∪ B) ≡ (∃xA(x) ∪ B),

∀x(A(x) ∩ B) ≡ (∀xA(x) ∩ B),

∃x(A(x) ∩ B) ≡ (∃xA(x) ∩ B)



Equational Laws for Quantifiers

Introduction and Elimination Laws

If B is a formula such that B does not contain any free
occurrence of x, then the following logical equivalences hold.

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B),

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B),

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x)),

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x))



Equational Laws for Quantifiers

Distributivity Laws

Let A(x), B(x) be any formulas with a free variable x

Distributivity of universal quantifier over conjunction.

∀x (A(x) ∩ B(x)) ≡ (∀xA(x) ∩ ∀xB(x))

Distributivity of existential quantifier over disjunction.

∃x (A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))
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We also define the notion of logical equivalence ≡ for the
formulas of the propositional language and its semantics

For any formulas A ,B ∈ F of the propositional languageL,

A ≡ B if and only if |= (A ⇔ B)

Moreover, we prove that any substitution of propositional
tautology by a formulas of the predicate language is a
predicate tautology

The same holds for the logical equivalence



Equational Laws for Quantifiers

In particular, we transform the propositional tautologies into
the following corresponding predicate equivalences.

For any formulas A ,B of the predicate language L,

(A ⇒ B) ≡ (¬A ∪ B),

(A ⇒ B) ≡ (¬A ∪ B)

We use them to prove the following De Morgan Laws for
restricted quantifiers.
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Restricted De Morgan

For any formulas A(x),B(x) ∈ F with a free variable x,

¬∀B(x) A(x) ≡ ∃B(x) ¬A(x), ¬∃B(x) A(x) ≡ ∀B(x)¬A(x)

Here is a poof of first equality. The proof of the second one is
similar and is left as an exercise.

¬∀B(x) A(x)≡¬∀x (B(x)⇒ A(x))

≡ ¬∀x (¬B(x) ∪ A(x))

≡ ∃x ¬(¬B(x) ∪ A(x)) ≡ ∃x (¬¬B(x) ∩ ¬A(x))

≡ ∃x (B(x) ∩ ¬A(x)) ≡ ∃B(x) ¬A(x))


