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Very Short History

Logic Origins: Stoic school of philosophy (3rd century
B.C.), with the most eminent representative was Chryssipus.

Modern Origins: Mid-19th century

English mathematician G. Boole, who is sometimes regarded
as the founder of mathematical logic

First Axiomatic System: 1879 by German logician G. Frege.
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Logic

Logic builds symbolic models of our world

Logic builds the models in order to describe formally the
ways we reason in and about our world

Logic also poses questions about correctness of such
models and develops tools to answer them



Classical Model Assumptions

Assumption 1

Classical logic model admits only two logical values

Why two logical values only?

Classical logic was created to model the reasoning
principles of mathematics

We expect from mathematical theorems to be always either
true or false and the reasonings leading to them should
guarantee this without any ambiguity



Classical Model Assumptions

Assumption 2

1. The language in which we reason uses sentences

2. The sentences are build up from basic assertions about the
world using special words or phrases:

”not”, ”not true” ”and”, ”or”, ” implies”, ”if ..... then”, ”from the
fact that .... we can deduce”, ” if and only if”, ”equivalent”,
”every”, ”for all”, ”any”, ”some”,” exists”

3. We use symbols do denote basic assertions and special
words or phrases

Hence the name symbolic logic



Logic

Logic studies the behavior of the special words and phrases

Special words and phrases have accepted intuitive meanings

Logic builds models to formalize these intuitive meanings

To do so we first define formal symbolic languages and
then define a formal meaning of their symbols

The formal meaning is called semantics



Propositional Connectives

The symbols for he special words and phrases are called
propositional connectives

There are different choices of symbols for the propositional
connectives; we adopt the following:

¬ for ”not”, ”not true”

∩ for ”and”

∪ for ”or”

⇒ for ” implies” , ”if ..... then”, ”from the fact that... we can
deduce”

⇔ for ” if and only if”, ”equivalent”

The names for the propositional connectives are:

¬ negation

∩ conjunction, ∪ disjunction

⇒ implication and ⇔ equivalence.



Propositional Logic

Restricting our attention to the role of propositional
connectives yields to what is called propositional logic

The basic components of the propositional logic are a
propositional language and a propositional semantics

The propositional logic is a quite simple model to justify,
describe and develop

We will devote first few chapters to it

We do it both for its own sake and because it provides a good
background for developing and understanding more difficult
logics to follow



Quantifiers and Predicate Logic

We use symbols:

∀ for ”every”, ”any”, ”all”

∃ for ”some” ,” exists”, ”there is”

The symbols ∀, ∃ are called quantifiers

Consideration and study of the role of propositional
connectives and quantifiers leads to what is called a
predicate logic

The basic components of the predicate logic are predicate
language and predicate semantics

The predicate logic is a much more complicated model

We develop and study it in full formality in chapters following
the introduction and examination of the propositional logic
model
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Propositional Language

Propositional language is a quite simple, symbolic language
into which we can translate (represent) sentences of a
natural language

Example

Consider natural language sentence
” If 2 + 2 = 5, then 2 + 2 = 4”

We translate it into the propositional language as follows

We denote the basic assertion (proposition) ”2 + 2 = 5” by
a variable, let’s say a, and the proposition ”2 + 2 = 4” by a
variable b

We write a connective⇒ for ”if ..... then”

As a result we obtain a propositional language formula

(a ⇒ b)



Propositional Translation

Exercise

Translate a natural language sentence S
”The fact that it is not true that at the same time 2+2 = 4 and
2+2 = 5 implies that 2+2 = 4”

into a corresponding propositional language formula

We carry the translation as follows

1. We identify all words and phrases representing the
logical connectives and we re-write the sentence S in a
simpler form introducing parenthesis to better express its
meaning



Propositional Translation

The sentence S becomes:
” If not (2 + 2 = 4 and 2 + 2 = 5) then 2 + 2 = 4”

2.

We identify the basic assertions (propositions) and assign
propositional variables to them:

a : ”2 + 2 = 4” and b : ”2 + 2 = 5”

Step 3

We write the propositional language formula:

(¬(a ∩ b)⇒ a)



Syntax

A formal description of symbols and the definition of the set of
formulas is called a syntax of a symbolic language

We use the word syntax to stress that the formulas do not
carry neither formal meaning nor a logical value

We assign the meaning and logical value to syntactically
defined formulas in a separate step

This next, separate step is called a semantics of the given
symbolic language

A given symbolic language can have different semantics and
the different semantics can define different logics



Natural Languages

One can think about a natural language as a setW of all
words and sentences based on a given alphabet A

This leads to a simple, abstract model of a natural language
NL as a pair

NL = (A, W)

Some natural languages share the same alphabet, some have
different alphabets.

All of them face serious problems with a proper recognition
and definitions of accepted words and complex sentences



Symbolic Languages

We do not want the symbolic languages to share the
difficulties of the natural languages

We define their components precisely and in such a way
that their recognition and correctness will be easily decided

We call their words and sentences formulas and denote the
set of all formulas by F

We define a symbolic language as a pair

SL = (A, F )



Symbolic Languages Categories

We distinguish two categories of symbolic languages:

propositional and predicate

We define first the propositional language

The definition of the predicate language, with its much more
complicated structure will follow



Propositional Language Definition

Definition

By a propositional language L we understand a pair

L = (A,F )

where A is called propositional alphabet

F is called a set of all well formed formulas



Language Components: Alphabet

1. Alphabet A

The alphabet A consists of

a countably infinite set VAR of propositional variables,

a finite set of propositional connectives, and

a set of two parenthesis

We denote the propositional variables by letters

a, b , c, p, q, r , .......

with indices if necessary. It means that we can also use

a1, a2, ..., b1, b2, ...

as symbols for propositional variables



Language Components: Alphabet

Propositional connectives are:

¬, ∩, ∪, ⇒, ⇔

The connectives have well established names

The connectives names are:

negation, conjunction, disjunction, implication, and
equivalence (biconditional)

for the connectives ¬, ∩, ∪, ⇒, and⇔, respectively

Parenthesis are symbols ( and )



Language Components: Formulas

Formulas are expressions build by means of elements of the
alphabet A. We denote formulas by capital letters
A , B , C , D, ....., with indices, if necessary.
The set F of all formulas of the propositional language L is
defined recursively as follows

1. Base step: all propositional variables are are formulas

They are called atomic formulas

2. Recursive step: for any already defined formulas A ,B ,
the expressions

¬A , (A ∩ B), (A ∪ B), (A ⇒ B), (A ⇔ B)

are also formulas

3. Only those expressions are formulas that are determined
to be so by means of conditions 1. and 2.



Formulas Example

By the definition, any propositional variable is a formula.
Let’s take two variables a and b.

By the recursive step we get that

(a ∩ b), (a ∪ b), (a ⇒ b), (a ⇔ b), ¬a, ¬b

are formulas

The recursive step applied again produces for example
formulas :

¬(a ∩ b), ((a ⇔ b) ∪ ¬b), ¬¬a, ¬¬(a ∩ b)



Formulas

Observe that we listed only few formulas obtained in the first
recursive step

As as the recursive process continue we obtain a set of well
formed of formulas

The set of all formulas is countably infinite



Formulas

Remark that we put parenthesis within the formulas in a way
to avoid ambiguity

The expression
a ∩ b ∪ a

is ambiguous

We don’t know whether it represents a formula

(a ∩ b) ∪ a or a formula a ∩ (b ∪ a)

Observe that neither of formulas a ∩ b ∪ a, (a ∩ b) ∪ a or
a ∩ (b ∪ a) is a well formed formula



Exercises

Exercise

Consider a following set

S = {¬a ⇒ (a ∪ b), ((¬a)⇒ (a ∪ b)), ¬(a ⇒ (a ∪ b)), (a → a)}

1. Determine which of the elements of S are, and which are
not well formed formulas of L = (A,F )

2. For any A < F re-write it as a correct formula and write
what it says in the natural language



Exercises

Solution

The formula ¬a ⇒ (a ∪ b) is not a well formed formula

A corrected formula is (¬a ⇒ (a ∪ b))

It says: ”If a is not true , then we have a or b ”

Another corrected formula in is ¬(a ⇒ (a ∪ b))

It says: ”It is not true that a implies a or b ”



Exercises

Solution

The formula ((¬a)⇒ (a ∪ b)) is not correct because
(¬a) < F

The correct formula is (¬a ⇒ (a ∪ b))

The formula ¬(a ⇒ (a ∪ b)) is correct

The formula ¬(a → a) < F is not correct

The connective→ does not belong to the language L

¬(a → a) is a correct formula of another propositional
language; the one that uses a symbol→ for implication



Exercises

Exercise
Write following natural language statement:
”One likes to play bridge or from the fact that the weather is
good we conclude the following: one does not like to play
bridge or one likes swimming”
as a formula of the propositional language L = (A,F )

Solution
First we identify the needed components of the alphabet A:
propositional variables: a, b , c
a denotes statement: one likes to play bridge, b denotes a
statement: the weather is good, c denotes a statement: one
likes swimming
Connectives: ∪, ⇒, ∪. ¬
The corresponding formula of L is

(a ∪ (b ⇒ (¬a ∪ c)))



Symbols for Connectives

The connectives symbols we use are not the only one used in
mathematical, logical, or computer science literature

Some Other Symbols
Negation Disjunction Conjunction Implication Equivalence
−A (A ∪ B) (A ∩ B) (A ⇒ B) (A ⇔ B)
NA DAB CAB IAB EAB
A (A ∨ B ) (A & B ) (A → B) (A ↔ B)
∼ A (A ∨ B) (A · B) (A ⊃ B) (A ≡ B)
A ′ (A + B) (A · B) (A → B) (A ≡ B)

The first notation is the closest to ours and is drawn mainly
from the algebra of sets and lattice theory

The second comes from the Polish logician J. Łukasiewicz
and is called the Polish notation

The third was used by D. Hilbert.

The fourth comes from Peano and Russell

The fifth goes back to Schröder and Pierce
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Propositional Semantics

We present now definitions of propositional connectives in
terms of two logical values true or false and discuss their
motivations

The resulting definitions are called a semantics for the
classical propositional connectives

The semantics presented here is fairly informal

The formal definition of classical propositional semantics is
presented in chapter 4



Conjunction: Motivation and Definition

Conjunction

A conjunction (A ∩ B) is a true formula if both A and B are
true formulas

If one of the formulas, or both, are false, then the
conjunction is a false formula

Let’s denote statement: ”formula A is false ” by A = F and

a statement: ”formula A is true ” by A = T



Conjunction: Definition

Conjunction

The logical value of a conjunction depends on the logical
values of its factors in a way which is express in the form of
the following table (truth table)

Conjunction Table

A B (A ∩ B)

T T T
T F F
F T F
F F F



Disjunction

Disjunction

The word or is used in natural language in two different
senses.

First: A or B is true if at least one of the statements A, B is
true

Second: A or B is true if one of the statements A and B is
true and the other is false

In mathematics and hence in logic, the word or is used in the
first sense



Disjunction: Definition

Disjunction

We adopt the convention that a disjunction (A ∪ B) is true if
at least one of the formulas A , B is true

Disjunction Table

A B (A ∪ B)

T T T
T F T
F T T
F F F



Negation: Definition

Negation

The negation of a true formula is a false formula, and the
negation of a false formula is a true formula

Negation Table

A ¬A
T F
F T



Implication: Motivation and Definition

The semantics of the statements in the form

if A, then B

needs a little bit more discussion.

In everyday language a statement if A, then B is interpreted
to mean that B can be inferred from A.

In mathematics its interpretation differs from that in natural
language



Implication: Motivation and Definition

Consider the following

Theorem

For every natural number n,

if 6 DIVIDES n, then 3 DIVIDES n

The theorem is true for any natural number, hence in
particular, it is true for numbers 2, 3, 6

Consider number 2

The following proposition is true

if 6 DIVIDES 2, then 3 DIVIDES 2

It means an implication (A ⇒ B) in which A and B are
false is interpreted as a true statement



Implication: Motivation and Definition

Consider now a number 3

The following proposition is true

if 6 DIVIDES 3, then 3 DIVIDES 3,

It means that an implication (A ⇒ B) in which A is false and
B is true is interpreted as a true statement

Consider now a number 6

The following proposition is true

if 6 DIVIDES 6, then 3 DIVIDES 6.

It means that an implication (A ⇒ B) in which A and B
are true is interpreted as a true statement



Implication: Motivation and Definition

One more case.

What happens when in the implication (A ⇒ B) the formula
A is true and the formula B is false

Consider a sentence

if 6 DIVIDES 12, then 6 DIVIDES 5.

Obviously, this is a false statement



Implication: Definition

Implication

The above examples justify adopting the following definition
of a semantics for the implication (A ⇒ B)

Implication Table
A B (A ⇒ B)

T T T
T F F
F T T
F F T



Equivalence Definition

Equivalence

An equivalence (A ⇔ B) is true if both formulas A and B
have the same logical value

Equivalence Table

A B (A ⇔ B)

T T T
T F F
F T F
F F T



Truth Tables Semantics

We summarize the tables for propositional connectives in the
following one table.

We call it a truth table definition of propositional;
connectives and hence we call the semantics defined here a
truth tables semantics.

A B ¬A (A ∩ B) (A ∪ B) (A ⇒ B) (A ⇔ B)

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T



Truth Tables Semantics

The truth tables indicate that the logical value of of
propositional connectives independent of the formulas A, B

We write the connectives in a ”formula independent” form
as a set of of the following equations

¬T = F , ¬F = T ;

T ∩ T = T , T ∩ F = F , F ∩ T = F , F ∩ F = F ;

T ∪ T = T , T ∪ F = T , F ∪ T = T , F ∪ F = F ;

T ⇒ T = T , T ⇒ F = F , F ⇒ T = T , F ⇒ F = T ;

T ⇔ T = T , T ⇔ F = F , F ⇔ T = F , T ⇔ T = T

We use the above set of connectives equations to evaluate
logical values of formulas



Exercise

Exercise

Show that (A ⇒ (¬A ∩ B)) = F for the following logical
values of its basic components: A=T and B=F

Solution

We calculate the logical value of the formula

(A ⇒ (¬A ∩ B))

by substituting the respective logical values T, F for the
component formulas A, B and applying the set of
connectives equations as follows

T ⇒ (¬T ∩ F) = T ⇒ (F ∩ F) = T ⇒ F = F



Extensional Connectives

Extensional connectives are the connectives that have the
following property:
the logical value of the formulas form by means of these
connectives and certain given formulas depends only on
the logical value(s) of the given formulas

All classical propositional connectives

¬, ∪, ∩, ⇒, ⇔

are extensional



Propositional Connectives

Remark

In everyday language there are expressions such as

”I believe that”, ”it is possible that”, ” certainly”, etc....

They are represented by some propositional connectives
which are not extensional

They do not play any role in mathematics and so are not
discussed in classical logic, they belong to non-classical
logics



All Extensional Two Valued Connectives

There are many other binary (two valued) extensional
propositional connectives

Here is a table of all unary connectives

A 51A 52A ¬A 54A
T F T F T
F F F T T



All Extensional Binary Connectives

Here is a table of all binary connectives

A B (A◦1B) (A ∩ B) (A◦3B) (A◦4B)
T T F T F F
T F F F T F
F T F F F T
F F F F F F
A B (A ↓ B) (A◦6B) (A◦7B) (A ⇔ B)
T T F T T T
T F F T F F
F T F F T F
F F T F F T
A B (A◦9B) (A◦10B) (A◦11B) (A ∪ B)
T T F F F T
T F T T F T
F T T F T T
F F F T T F
A B (A◦13B) (A ⇒ B) (A ↑ B) (A◦16B)
T T T T F T
T F T F T T
F T F T T T
F F T T T T



Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of
defining some connectives in terms of some others

All classical propositional connectives can be defined in
terms of disjunction and negation

Two binary connectives: ↓ and ↑ suffice, each of them
separately, to define all classical connectives, whether
unary or binary



Functional Dependency

The connective ↑ was discovered in 1913 by H.M. Sheffer,
who called it alternative negation

Now it is often called a Sheffer’s connective

The formula

A ↑ B reads: not both A and B.

Negation ¬A is defined as A ↑ A .

Disjunction (A ∪ B) is defined as (A ↑ A) ↑ (B ↑ B)



Functional Dependency

The connective ↓ was discovered by J. Łukasiewicz and is
called a joint negation

The formula

A ↓ B reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no propositional
connective other than ↑ and ↓ suffices to define all the
remaining classical connectives
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Propositional Tautologies

Now we connect syntax (formulas of a given language L)
with semantics (assignment of truth values to the formulas of
the language L)

In logic we are interested in those propositional formulas
that must be always true because of their syntactical
structure without reference to the natural language meaning
of the propositions they represent

Such formulas are called propositional tautologies



Example

Example

Given a formula (A ⇒ A)

We evaluate the logical value of our formula for all possible
logical values of its basic component A

We put our calculation in a form of a table, called a truth
table below

A (A ⇒ A) computation (A ⇒ A)

T T ⇒ T = T T
F F ⇒ F = T T

The logical value of the formula (A ⇒ A) is always T

This means that it is a propositional tautology.



Example

Example

Here is a truth table for a formula (A ⇒ B)

A B (A ⇒ B) computation (A ⇒ B)

T T T ⇒ T = T T
T F T ⇒ F = F F
F T F ⇒ T = T T
F F F ⇒ F = T T

The logical value of the formula (A ⇒ B) is F for A = T and
B = F what means that it is not a propositional tautology



Tautology Definition

Definition

For any formula A ∈ F of a propositional language
L = (A,F ), we say that A is a propositional tautology

if and only if the logical value of A is T (we write it A = T)
for all possible logical values of its basic components

We write
|= A

to denote that A is a tautology



Classical Tautologies

Here is a list of some of the most known classical notions
and tautologies

Modus Ponens known to the Stoics (3rd century B.C)

|= ((A ∩ (A ⇒ B))⇒ B)

Detachment
|= ((A ∩ (A ⇔ B))⇒ B)

|= ((B ∩ (A ⇔ B))⇒ A)



Sufficient and Necessary

Sufficient: Given an implication (A ⇒ B),

A is called a sufficient condition for B to hold.

Necessary : Given an implication (A ⇒ B),

B is called a necessary condition for A to hold.



Implication Names

Simple:

(A ⇒ B) is called a simple implication

Converse:

(B ⇒ A) is called a converse implication to (A ⇒ B)

Opposite:

(¬B ⇒ ¬A) is called an opposite implication to (A ⇒ B)

Contrary:

(¬A ⇒ ¬B) is called a contrary implication to (A ⇒ B)



Laws of contraposition

Laws of Contraposition

|= ((A ⇒ B)⇔ (¬B ⇒ ¬A)),

|= ((B ⇒ A)⇔ (¬A ⇒ ¬B)).

These Laws make it possible to replace, in any deductive
argument, a sentence of the form (A ⇒ B) by
(¬B ⇒ ¬A), and conversely



Necessary and sufficient

We read the formula (A ⇔ B) as

”B is necessary and sufficient for A”

because of the following tautology

|= ((A ⇔ B))⇔ ((A ⇒ B) ∩ (B ⇒ A)))



Stoics, 3rd century B.C.

Hypothetical Syllogism

|= (((A ⇒ B) ∩ (B ⇒ C))⇒ (A ⇒ C)),

|= ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C))),

|= ((B ⇒ C)⇒ ((A ⇒ B)⇒ (A ⇒ C))).

Modus Tollendo Ponens

|= (((A ∪ B) ∩ ¬A)⇒ B),

|= (((A ∪ B) ∩ ¬B)⇒ A)



12 to 19 Century

Duns Scotus 12/13 century

|= (¬A ⇒ (A ⇒ B))

Clavius 16th century

|= ((¬A ⇒ A)⇒ A)

Frege 1879

|= (((A ⇒ (B ⇒ C)) ∩ (A ⇒ B))⇒ (A ⇒ C)),

|= ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

Frege gave the the first formulation of the classical
propositional logic as a formalized axiomatic system



Apagogic Proofs

Apagogic Proofs: means proofs by reductio ad absurdum

Reductio ad absurdum: to prove A to be true,

we assume ¬A

If we get a contradiction, it means that we have proved A to
be true

Correctness of this reasoning is guarantee by the following
tautology

|= ((¬A ⇒ (B ∩ ¬B))⇒ A)



Chapter 2 Classical Tautologies

Chapter 2 contains a very extensive list of classical
propositional tautologies

Read, prove , and memorize as many as you can

We will use them freely in later Chapters assuming that you
are really familiar with all of them


