
cse581
Computer Science Fundamentals: Theory

Professor Anita Wasilewska

TCB - LECTURE 6

CONTEXT FREE, NOT CONTEXT FREE LANGUAGES
and

PUSHDOWN AUTOMATA

PDA Main Theorem

We are show that the Pushdown Automaton (PDA) is exactly

what is needed to accept arbitrary context-free language, i.e.

we prove the following

PDA Main Theorem

The class of languages accepted by PD Automata is exactly

the class of Context-free Languages

PDA Main Theorem Proof

The PDA Main Theorem consists of two parts

PDA Theorem 1

Each context free language is accepted by some

PDA automaton

PDA Theorem 2

If a language is accepted by a PDA automaton, it is a

context free language

We prove only the PDA Theorem 1. The proof of and the

PDA Theorem 2 is included in the Book B2 on pages 139 -
142

Establishing Context-freeness of Languages

The PDA Main Theorem establishes an equivalency of the

following two views of context -free languages

1. A language L is context-free if it is generated by a

context-free grammar (definition)

2. A language L is context-free if it is accepted by a

push-down automaton

These characterizations enrich our understanding of the

context-free languages since they provide two different

methods for recognizing when a language is context free

Establishing Context-freeness of Languages

We examine and provide further tools for establishing

context-freeness of languages

We prove some important Closure Properties of the

context free languages under certain language operations,

as we have done in a case of the regular languages.

Establishing Context-Freeness of Languages

We present a version of the Pumping Lemma for the Context
Free Languages

The Pumping Lemma enables us to show that certain

languages are not context-free and we examine

some of these languages.

Closure Theorems

We prove the following Closure Theorems by a direct
construction of proper Context- Free Grammars

Closure Theorem 1

The context-free languages are closed under union,
concatenation, and Kleene star

Closure Theorem 2

The intersection of a context-free language with a regular
language is a context-free language

Closure Theorem 3

The context-free languages are not closed under

intersection and complementation

Closure Theorem 1 Proof

Closure Theorem 1

The context-free languages are closed under union,
concatenation, and Kleene star

Proof

Let G1 = (V1 Σ1, R1, S1) and G2 = (V2 Σ2, R2, S2)

be two CF Grammars

We assume that they have two disjoint sets of nonterminals,
i.e. that (V1 − Σ1) ∩ (V2 − Σ2) = ∅

Union Closure G = G1 ∪ G2

We construct a grammar G = G1 ∪ G2 as follows

Let S be a new symbol and let

G = (V1 ∪ V2 ∪ {S}, Σ1, ∪ Σ2, R , S)

Closure Theorem 1 Proof

We define

R = R1 ∪ R2 ∪ {S → S1, S → S2}

For the only rules involving S are S → S1, S → S2

we have that

S
∗
⇒
G

w if and only if S1
∗
⇒
G

w or S2
∗
⇒
G

w

Since G1 and G1 have two disjoint sets of nonterminals this is

equivalent to saying that

w ∈ L(G) if and only if w ∈ L(G1) or w ∈ L(G1)

and it proves that

L(G) = L(G1) ∪ L(G2)

Closure Theorem 1 Proof

Concatenation G = G1 ◦ G2

We construct a grammar G = G1 ◦ G2 as follows

G = (V1 ∪ V2 ∪ {S}, Σ1 ∪ Σ2, R , S)

where
R = R1 ∪ R2 ∪ {S → S1S2}

For the only rule involving S is S → S1S2 and G1 and G1

have two disjoint sets of nonterminals this is

saying that

w ∈ L(G) if and only if w = w1w2 for w1 ∈ L(G1),w2 ∈ L(G2)

It proves that
L(G) = L(G1) ◦ L(G2)

Closure Theorem 1 Proof

Kleene star G = G1
∗

We construct a grammar G = G = G1
∗ as follows

G = (V1 ∪ {S}, Σ1, R , S)

where
R = R1 ∪ R2 ∪ {S → e, S → SS1}

Observe that we need the rule S → e to make sure that
L(G) , set

Obviouly,
L(G) = L(G1)∗

Closure Theorem 2

We use FA Main Theorem and PDA Main Theorem to prove
the following

Closure Theorem 2

The intersection of a context-free language with

a regular language is a context-free language

Pumping Lemma
for Context Free Languages

Pumping Lemma

Pumping Lemma

Let G be a context-free grammar

Then there is a number K, depending on G, such that

any word w ∈ L(G) of length greater than K

can be re-written as

w = uvxyz for v , e or y , e

and for any n ≥ 0

uvnxynz ∈ L(G)

Not Context-free Languages

We use the Pumping Lemma to prove the following

Theorem

The language
L = {anbncn : n ≥ 0}

is NOT context-free

Proof

We carry the proof by contradiction.

Assume that L is context-free, i.e. that L = L(G) for some

context-free grammar G. Let K be a constant for G as
specified by the Pumping Lemma and let n > K/3

Not Context-free Languages

Then w = anbncn ∈ L(G) has a representation w = uvxyz
such that v , e or y , e and uvnxynz ∈ L(G) for
i = 0, 1, 2, 3, . . .

But this is impossible

for anbncn = uvxyz and either v or y contains two symbols

from {a, b , c} , then uv2xy2z contains a b before an a or a c

before a.

If v and y each contains only a’s only b’s, or only c’s, then

uv2xy2z cannot contain equal number of a’s, b’s, and c’s

This contradiction ends the proof.

Closure Theorems

Now we are ready to prove that the context-free languagaes

are not closed under certain operations

Closure Theorem 3

The context-free languages are not closed under
intersection and complementation

Proof

We divide the proof into proving the following two parts

Part 1

The context-free languages are not closed under intersection

Part 2

The context-free languages are not closed under

complementation

Closure Theorem 3 Proof

Part 1

The context-free languages are not closed under intersection

Proof

Assume that the context-free languages are are closed under
intersection

Observe that both languages

L1 = {anbncm : m, n ≥ 0} and L2 = {ambncn : m, n ≥ 0}

are context-free, so the language L1 ∩ L2 must be
context-free, but

L1 ∩ L2 = {anbncn : n ≥ 0}

and we have proved that L = {anbncn : n ≥ 0} is NOT

context-free. Contradiction

Closure Properties

Part 2

The context-free languages are not closed under
complementation

Proof

Assume that the context-free languages are are closed under
complementation

Take any two context-free languages L1, L2

Then the language

L1 ∩ L2 = Σ∗ − ((Σ∗ − L1) ∪ (Σ∗ − L2))

would be context-free, what contradicts just proved that fact

that the context-free languages are not closed under
intersection

Not Context-free Languages

Theorem 4

The following languages are NOT context-free

L1 = {a ib ja ib j : i, j ≥ 0}

L2 = {ap : p is prime}

L3 = {an2
: n ≥ 0}

L4 = {www : w ∈ {a, b}∗}

Proof

By the Pumping Lemma

Power of Pumping Lemma

We use the Pumping Lemma to prove that many languages
are not context-free

Unfortunately, there are some very simple non-context-free

languages which cannot be shown not to be context-free by

a direct application of the Pumping Lemma

One such example is

L = {ambn : either m > n, or m is prime and n ≥ m}

We prove L to be not context-free using the following

Parikh Theorem

Parikh Theorem

Parikh Theorem

If L is context-free, then Ψ(L) is semilinear,

where Ψ(L) is a certain well defined set of of n-tuples of

natural numbers associated with L

Hence to prove a language to be not context -free we use

Parikh Theorem in a following equivalent form

Parikh Theorem

If Ψ(L) is not semilinear, then L is not context-free

Parikh Theorem

We also use Parikh Theorem to show the following

interesting property of contex-free languages

Theorem 5

Every contex-free language over a one symbol alphabet

is regular

Context-free/ NOT Context-free

Exercise

Prove that the language

L = {ww : w ∈ {a, b}∗}

is NOT context-free

Hint

We know that
L1 = {a ib ja ib j : i, j ≥ 0}

is NOT context-free

Context-Free/ NOT Context-Free

Solution

Assume that L = {ww : w ∈ {a, b}∗} is context-free

Then the language
L ∩ a∗b∗a∗b∗

is context-free by Closure Theorem 2 that says:

”The intersection of a context-free language with a regular

language is a context-free language ”. But the language

{ww : w ∈ {a, b}∗} ∩ a∗b∗a∗b∗ = {a ib ja ib j : i, j ≥ 0}

is NOT context-free by Theorem 4

Contradiction

Context-Free / NOT Context - Free

Main Equivalency Theorem

The class of languages accepted by PD automata is exactly

the class of context-free languages

We have proved by constructing a PD automaton

and applying the Main Equivalency Theorem that we get

the language

L = {w ∈ {a, b}∗ : w has the same number of a’s and b’s }

is context- free

Context-free/ NOT Context-Free

We prove by Pumping Lemma that the languages

L = {w ∈ {a, b , c}∗ : w has the same number of a’s, b’s, and c’s }

L = {apbn : p ∈ Prime, n > p}

are NOT Context- Free

PUSH DOWN AUTOMATA
MAIN EQUIVALENCY THEOREMS

Pushdown Automata PDA

Computational Model of Pushdown Automata PDA

C1: Automata ”remembers” what it has already read

by putting it, one symbol at the time on stack, or

on pushdown store

C2: It always puts symbols on the top of the stack

Pushdown Automata PDA

Computational Model of Pushdown Automata PDA

C3: symbols could be removed from the top of the stack and

can be checked against the input

C4: Word is accepted when it has been read, stack is empty

and automaton is in a final state

Pushdown Automata PDA

Pushdown Automata for the context-free language
L == {wwR : w ∈ {a, b}∗}

Idea: Automata will read abbab putting its reverse babba
on the stack from down -to- up
It will stop nondeterministically and start to compare the
stack content with the rest of the input removing content
of the stack

PD Automata and CF Grammars

Goal

Our goal now is to prove a theorem similar to the theorem

for finite automata establishing equivalence of regular
languages

and finite automata, i.e. we want now to prove the following

Main Theorem

The class of languages accepted by pushdown automata

is exactly the class of Context-free languages

It means that we want to find best way to define pushdown

automaton order to achieve this goal

PD Automata and CF Grammars

Definition Idea

We have constructed, for any regular grammar G a

finite automaton M such that

L(G) = L(M)

by transforming any rule A → wB into a corresponding

transition (A ,w,B) ∈ ∆ of M that said:

” in state A read w and move to B ”

We extend this idea to non-regular rules and

pushdown automata as follows

Pushdown Automata PDA

Given a context-free grammar G and a rule

A → aBb for a, b ∈ Σ, A ,B ∈ V − Σ

We now translate it to a corresponding transition

(to be defined formally) of a PD automata M that says:

M in state A reads a, puts b on stack and goes to state B

Later, the symbols on the stack can be removed and

checked agains the input when needed

Word is accepted when it has been read, stack is empty and

automaton is in a final state

PDA - Mathematical Model

Definition

A Pushdown Automata is a sextuple

M = (K , Σ, Γ, ∆, s, F), where

K is a finite set of states

Σ is an alphabet of input symbols

Γ is an alphabet of stack symbols

s ∈ K is the initial state

F ⊆ K is the set of final states

∆ is a transition relation

∆ ⊆ (K × Σ∗ × Γ∗) × (K × Γ∗)

∆ is a finite set

Transition Relation

Given a PDA
M = (K , Σ, Γ, ∆, s, F)

We denote elements of stack alphabet by

α, β, γ, . . .

with indices if necessary

We usually use different symbols for K , Σ, i.e. we assume

that K ∩ Σ = ∅

Pushdown automata is nondeterministic,

∆ may be not a function

Transition Relation

Consider M = (K , Σ, Γ, ∆, s, F) with

∆ ⊆ (K × Σ∗ × Γ∗) × (K × Γ∗)

and let an element

((p, u, β), (q, γ)) ∈ ∆

This means that the automaton M in the state p with β to the

top of the stack,

reads u from the input,

replaces β by γ on the top of the stack, and

goes to state q

Special Transitions

Given a transition

((p, u, β), (q, γ)) ∈ ∆

Here are some spacial cases, i.e some special transitions

that operate on the stack

Push a - adds symbol a to the top of the stack

((p, u, e), (q, a)) push a

Pop a - removes symbol a from the top of the stack

((p, u, a), (q, e)) pop a

Configuration and Transition

In order to define a notion of computation of M on an

input string w ∈ Σ∗ we introduce, as always, a notion of a

configuration and transition relation

A configuration is any tuple

(q,w, γ) ∈ K × Σ∗ × Γ∗

where q ∈ K represents a current state of M and w ∈ Σ∗ is
unread part of the input, and γ is a content of the stack

read top-down

Configuration and Transition

The transition relation acts between two configurations

and hence `M is a certain binary relation

defined on K × Σ∗ × Γ∗, i.e.

`M ⊆ (K × Σ∗ × Γ∗)2

Formal definition follows

Transition Relation Definition

Definition

Given a push down automaton

M = (K , Σ, Γ, ∆, s, F))

A binary relation `M ⊆ (K × Σ∗ × Γ∗)2 is a

transition relation if and only if the following holds

For any p, q ∈ K , u, x ∈ Σ∗, α, β, γ ∈ Γ∗

(p, ux, βα) `M (q, x, γα)

if and only if

((p, u, β), (q, γ)) ∈ ∆

Language L(M)

We denote as usual, the reflexive, transitive closure of the

transition relation `M by `M
∗ and define, as usual the

language L(M) as follows

L(M) = {w ∈ Σ∗ : (s, w, e) `M
∗(p, e, , e) for certain p ∈ F}

and we say that

M accepts w ∈ Σ∗ if and only if w ∈ L(M)

Language L(M)

We say it In plain English:

M accepts w ∈ Σ∗ if and only if there is a computation

in M such that it starts with w and with empty stack

(i.e. it starts with (s, w, e))

and it ends in a final state after reading w and emptying all

of the stack

(it ends with (p, e, e) for certain p ∈ F)

Pushdown and Finite Automata)

Theorem
The class FA of finite automata is a proper subset of the
class PDA of pushdown automata, i.e.

FA ⊂ PDA

Proof
We show that every FA automaton is a PDA automaton that
operates on an empty stack
Given a FA automaton M = (K , Σ, δ, s, F)

We construct PDA automaton

M′ = (K , Σ, Γ, ∆′, s, F))

where Γ = ∅ and

∆′ = {((p, u, e), (q, e) : (p, u, q) ∈ ∆}

Obviously, L(M) = L(M’) and hence we proved that

M ≈ M′

Useful Transitions)

Useful transitions

((p, u, e), (q, a)) push a

((p, u, a), (q, e)) pop a

In particular we have the following compare transitions:

((p, a, a), (q, e)) compare and pop a

((p, a, b), (q, e)) compare a with b and pop b

compare transition compares a on the input with a or b on

the top of the stack and pops them from the stack

Example of PDA

Example

We construct M such that L = {wcwR : w ∈ {a, b}∗}

M = (K , Σ, Γ, ∆, s, F))

for K = {s, f }, Σ = {a, b , c} = Γ, F = {f } and ∆ has

the following transitions

Example

Let’s analyze the transitions of ∆

1. ((s, a, e), (s, a)) - pushes a remaining in state s

2. ((s, b, e), (s, b)) - pushes b remaining in state s

3. ((s, c, e), (f, e)) - switches from s to f when sees c

4. ((f, a, a), (f, e)) - compares and pops a remaining in
state f

5. ((f, b, b), (f, e)) - compares and pops b remaining in
state f

Operation of M

1. + 2. put what M reads from input on the stack bottom-up
until it reaches c

Example

Operation of M

3. M switches to the final state leaving the stack untouched

The stack is being build bottom-up so what is on the stack is
the reverse to the part read, it means to the word w

4. + 5. compare the input located after c with what is
located already on the stack and remove symbols when they
match with the input

M is hence checking whether w from the input before c is
equal to wR

All the last actions are done with M remaining with the final
state, so when the stack is empty it indicates that
wcwR ∈ L(M) and that

L(M) = {wcwR : w ∈ {a, b}∗}

Exercise

Exercise Trace a computation of of M accepting the word
abbcbba

Here it is (Book B2, p.133)

Observe that M is deterministic

