cse581 Computer Science Fundamentals: Theory

Professor Anita Wasilewska

TCB - LECTURE 6

CONTEXT FREE, NOT CONTEXT FREE LANGUAGES and PUSHDOWN AUTOMATA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

PDA Main Theorem

We are show that the Pushdown Automaton (PDA) is exactly what is needed to **accept** arbitrary context-free language, i.e. we prove the following

PDA Main Theorem

The class of languages **accepted** by PD Automata is exactly the class of Context-free Languages

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

PDA Main Theorem Proof

The PDA Main Theorem consists of two parts

PDA Theorem 1

Each context free language is accepted by some PDA automaton

PDA Theorem 2

If a language is **accepted** by a PDA automaton, it is a context free language

We prove only the PDA **Theorem 1**. The proof of and the PDA **Theorem 2** is included in the Book B2 on pages 139 - 142

Establishing Context-freeness of Languages

The PDA Main Theorem establishes an equivalency of the following two views of context -free languages

A language L is context-free if it is generated by a context-free grammar (definition)
A language L is context-free if it is accepted by a push-down automaton

These characterizations enrich our **understanding** of the context-free languages since they provide two different methods for **recognizing** when a language is context free

・ロト・日本・モト・モト・ ヨー のへぐ

Establishing Context-freeness of Languages

We examine and provide further **tools** for establishing context-freeness of languages

We prove some important **Closure Properties** of the context free languages **under** certain language **operations**, as we have done in a case of the regular languages.

(ロ)、(同)、(E)、(E)、(E)、(O)((C)

Establishing Context-Freeness of Languages

We present a version of the **Pumping Lemma** for the Context Free Languages

(ロ)、(同)、(E)、(E)、(E)、(O)((C)

The **Pumping Lemma** enables us to **show** that certain languages **are not** context-free and we examine some of these languages.

Closure Theorems

We **prove** the following Closure Theorems by a direct construction of proper Context- Free Grammars

Closure Theorem 1

The context-free languages are **closed** under union, concatenation, and Kleene star

Closure Theorem 2

The **intersection** of a context-free language with a regular language is a context-free language

Closure Theorem 3

The context-free languages are **not closed** under intersection and complementation

Closure Theorem 1

The context-free languages are **closed** under union, concatenation, and Kleene star

Proof

Let $G_1 = (V_1 \Sigma_1, R_1, S_1)$ and $G_2 = (V_2 \Sigma_2, R_2, S_2)$

be two CF Grammars

We assume that they have two disjoint sets of nonterminals, i.e. that $(V_1 - \Sigma_1) \cap (V_2 - \Sigma_2) = \emptyset$

Union Closure $G = G_1 \cup G_2$

We construct a grammar $G = G_1 \cup G_2$ as follows

Let S be a new symbol and let

 $G = \begin{pmatrix} V_1 \cup V_2 \cup \{S\}, \ \Sigma_1, \ \cup \Sigma_2, \ R, \ S \end{pmatrix}$

We define

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$$

For the only rules involving S are $S \to S_1, S \to S_2$ we have that

$$S \stackrel{*}{\underset{G}{\to}} w$$
 if and only if $S_1 \stackrel{*}{\underset{G}{\to}} w$ or $S_2 \stackrel{*}{\underset{G}{\to}} w$

Since G_1 and G_1 have two disjoint sets of nonterminals this is equivalent to saying that

 $w \in L(G)$ if and only if $w \in L(G_1)$ or $w \in L(G_1)$

and it proves that

 $L(G) = L(G_1) \cup L(G_2)$

- コン・1日・1日・1日・1日・1日・

Concatenation $G = G_1 \circ G_2$ We construct a grammar $G = G_1 \circ G_2$ as follows

 $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$

where

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$$

For the only rule involving S is $S \rightarrow S_1 S_2$ and G_1 and G_1 have two disjoint sets of nonterminals this is saying that

 $w \in L(G)$ if and only if $w = w_1 w_2$ for $w_1 \in L(G_1), w_2 \in L(G_2)$

It proves that

 $L(G) = L(G_1) \circ L(G_2)$

Kleene star $G = G_1^*$

We construct a grammar $G = G = G_1^*$ as follows

 $G = (V_1 \cup \{S\}, \Sigma_1, R, S)$

where

$$R = R_1 \cup R_2 \cup \{S \rightarrow e, S \rightarrow SS_1\}$$

Observe that we need the rule $S \rightarrow e$ to make sure that $L(G) \neq set$ Obviouly,

$$L(G) = L(G_1)^*$$

Closure Theorem 2

We use FA Main Theorem and PDA Main Theorem to prove the following

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Closure Theorem 2

The intersection of a context-free language with

a regular language is a context-free language

Pumping Lemma for Context Free Languages

Pumping Lemma

Pumping Lemma

Let G be a context-free grammar Then there is a number K, depending on G, such that any word $w \in L(G)$ of length greater than K can be re-written as

w = uvxyz for $v \neq e$ or $y \neq e$

and for any $n \ge 0$

 $uv^n xy^n z \in L(G)$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Not Context-free Languages

We use the **Pumping Lemma** to prove the following **Theorem**

The language

 $L = \{a^n b^n c^n : n \ge 0\}$

is NOT context-free

Proof

We carry the proof by contradiction.

Assume that L is context-free, i.e. that L = L(G) for some

context-free grammar G. Let K be a constant for G as specified by the **Pumping Lemma** and let n > K/3

Not Context-free Languages

Then $w = a^n b^n c^n \in L(G)$ has a representation w = uvxyzsuch that $v \neq e$ or $y \neq e$ and $uv^n xy^n z \in L(G)$ for i = 0, 1, 2, 3, ...

But this is impossible

for $a^n b^n c^n = uvxyz$ and either v or y contains two symbols from $\{a, b, c\}$, then uv^2xy^2z contains a b before an a or a c before a.

If v and y each contains only a's only b's, or only c's, then uv^2xy^2z cannot contain equal number of a's, b's, and c's This contradiction **ends** the proof.

Closure Theorems

Now we are ready to prove that the context-free languagaes

are not closed under certain operations

Closure Theorem 3

The context-free languages are **not closed** under intersection and complementation

Proof

We divide the proof into proving the following two parts

Part 1

The context-free languages are not closed under intersection

Part 2

The context-free languages are **not closed** under complementation

Part 1

The context-free languages are not closed under intersection

Proof

Assume that the context-free languages are **are closed** under intersection

Observe that both languages

 $L_1 = \{a^n b^n c^m : m, n \ge 0\}$ and $L_2 = \{a^m b^n c^n : m, n \ge 0\}$

are **context-free**, so the language $L_1 \cap L_2$ must be **context-free**, but

$$L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\}$$

and we have proved that $L = \{a^n b^n c^n : n \ge 0\}$ is NOT context-free. Contradiction

Closure Properties

Part 2

The context-free languages are **not closed** under complementation

Proof

Assume that the context-free languages are **are closed** under complementation

Take any two context-free languages L_1, L_2

Then the language

$$L_1 \cap L_2 = \Sigma^* - ((\Sigma^* - L_1) \cup (\Sigma^* - L_2))$$

would be context-free, what **contradicts** just proved that fact that the context-free languages are **not closed** under intersection Not Context-free Languages

Theorem 4

The following languages are NOT context-free

 $L_{1} = \{a^{i}b^{j}a^{i}b^{j}: i, j \ge 0\}$ $L_{2} = \{a^{p}: p \text{ is prime}\}$ $L_{3} = \{a^{n^{2}}: n \ge 0\}$ $L_{4} = \{www: w \in \{a, b\}^{*}\}$

Proof

By the Pumping Lemma

Power of Pumping Lemma

We use the **Pumping Lemma** to prove that many languages are not context-free

Unfortunately, there are some very simple non-context-free languages which cannot be shown **not to be** context-free by a direct application of the **Pumping Lemma** One such example is

 $L = \{a^m b^n : \text{ either } m > n, \text{ or } m \text{ is prime and } n \ge m\}$

We prove L to be not context-free using the following Parikh Theorem

Parikh Theorem

Parikh Theorem

If *L* is context-free, then $\Psi(L)$ is semilinear, where $\Psi(L)$ is a certain well defined set of of n-tuples of natural numbers associated with *L*

Hence to prove a language to be not context -free we use **Parikh Theorem** in a following equivalent form

Parikh Theorem

If $\Psi(L)$ is not semilinear, then L is not context-free

Parikh Theorem

We also use **Parikh Theorem** to show the following interesting **property** of **contex-free** languages

Theorem 5

Every contex-free language over a one symbol alphabet is **regular**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Context-free/ NOT Context-free

Exercise

Prove that the language

 $L = \{ww : w \in \{a, b\}^*\}$

is NOT context-free

Hint

We know that

 $L_1 = \{a^i b^j a^i b^j : \quad i, j \ge 0\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is NOT context-free

Context-Free/ NOT Context-Free

Solution

Assume that $L = \{ww : w \in \{a, b\}^*\}$ is context-free Then the language

 $L \cap a^*b^*a^*b^*$

is context-free by Closure Theorem 2 that says:

"The **intersection** of a context-free language with a regular language is a context-free language ". But the language

{ww : $w \in \{a, b\}^*\} \cap a^* b^* a^* b^* = \{a^i b^j a^i b^j : i, j \ge 0\}$

is NOT context-free by Theorem 4 Contradiction

Context-Free / NOT Context - Free

Main Equivalency Theorem

The class of languages **accepted** by PD automata is exactly the class of context-free languages

We have proved by constructing a PD automaton and applying the **Main Equivalency Theorem** that we get the language

 $L = \{w \in \{a, b\}^* : w \text{ has the same number of } a's and b's \}$

is context- free

Context-free/ NOT Context-Free

We prove by Pumping Lemma that the languages

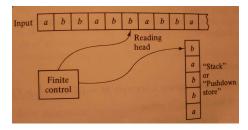
 $L = \{w \in \{a, b, c\}^* : w \text{ has the same number of a's, b's, and c's } \}$ $L = \{a^p b^n : p \in Prime, n > p\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

are NOT Context- Free

PUSH DOWN AUTOMATA MAIN EQUIVALENCY THEOREMS

Computational Model of Pushdown Automata PDA

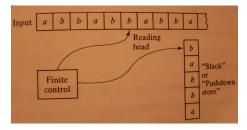


C1: Automata "**remembers**" what it has already read by putting it, one symbol at the time on **stack**, or on **pushdown store**

C2: It always puts symbols on the top of the stack

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Computational Model of Pushdown Automata PDA

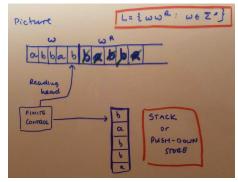


C3: symbols could be **removed** from the **top** of the stack and can be **checked** against the input

C4: Word is accepted when it has been read, stack is empty and automaton is in a final state

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Pushdown Automata for the context-free language $L == \{ww^R : w \in \{a, b\}^*\}$



Idea: Automata will read abbab putting its reverse babba on the stack from down -to- up It will stop nondeterministically and start to compare the stack content with the rest of the input removing content of the stack

PD Automata and CF Grammars

Goal

Our goal now is to **prove** a theorem similar to the theorem for finite automata establishing **equivalence** of regular languages

and finite automata, i.e. we want now to prove the following

Main Theorem

The class of languages **accepted** by **pushdown** automata **is exactly** the class of **Context-free** languages

It means that we want to find best way to **define** pushdown automaton order to achieve this goal

PD Automata and CF Grammars

Definition Idea

We have constructed, for any regular grammar G a finite automaton M such that

L(G)=L(M)

by **transforming** any rule $A \rightarrow wB$ into a corresponding transition $(A, w, B) \in \Delta$ of M that said:

" in state A read w and move to B"

We extend this idea to non-regular **rules** and **pushdown** automata as follows

Given a context-free grammar G and a rule

 $A \rightarrow aBb$ for $a, b \in \Sigma$, $A, B \in V - \Sigma$

We now **translate** it to a corresponding transition (to be defined formally) of a PD automata M that says:

M in state A reads a, puts b on stack and goes to state B Later, the symbols on the stack can be removed and checked agains the input when needed

Word is **accepted** when it has been read, **stack** is empty and automaton is in a final state

PDA - Mathematical Model

Definition

A Pushdown Automata is a sextuple

 $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

- K is a finite set of states
- Σ is an alphabet of **input symbols**
- is an alphabet of stack symbols
- $s \in K$ is the initial state
- $F \subseteq K$ is the set of final states
- △ is a transition relation

$$\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*)$$

∆ is a **finite** set

Transition Relation

Given a PDA

 $M = (K, \Sigma, \Gamma, \Delta, s, F)$

We denote elements of stack alphabet by

 $\alpha, \beta, \gamma, \ldots$

with indices if necessary

We usually use different symbols for K, Σ , i.e. we assume that $K \cap \Sigma = \emptyset$

Pushdown automata is **nondeterministic**, Δ may be **not** a function **Transition Relation**

Consider $M = (K, \Sigma, \Gamma, \Delta, s, F)$ with

 $\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*)$

and let an element

 $((p, u, \beta), (q, \gamma)) \in \Delta$

This means that the automaton M in the **state** p with β to the top of the stack,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

reads u from the input,

replaces β by γ on the top of the stack, and

goes to state q

Special Transitions

Given a transition

```
((p, u, \beta), (q, \gamma)) \in \Delta
```

Here are some spacial cases, i.e some **special transitions** that operate on the stack

Push a - adds symbol a to the top of the stack ((p, u, e), (q, a)) push a

Pop a - removes symbol a from the top of the stack

((p, u, a), (q, e)) pop a

・ロト・日本・モト・モト・ ヨー のへぐ

Configuration and Transition

In order to define a notion of **computation** of M on an input string $w \in \Sigma^*$ we introduce, as always, a notion of a **configuration** and **transition** relation

A configuration is any tuple

 $(q, w, \gamma) \in K \times \Sigma^* \times \Gamma^*$

where $q \in K$ represents a current state of M and $w \in \Sigma^*$ is unread part of the input, and γ is a content of the stack read top-down

Configuration and Transition

The **transition relation** acts between two **configurations** and hence \vdash_M is a certain binary relation defined on $K \times \Sigma^* \times \Gamma^*$, i.e.

 $\vdash_M \subseteq (K \times \Sigma^* \times \Gamma^*)^2$

Formal definition follows

Transition Relation Definition

Definition

Given a push down automaton

$$M = (K, \Sigma, \Gamma, \Delta, s, F))$$

A binary relation $\vdash_M \subseteq (K \times \Sigma^* \times \Gamma^*)^2$ is a **transition relation** if and only if the following holds For any $p, q \in K, u, x \in \Sigma^*, \alpha, \beta, \gamma \in \Gamma^*$

> $(p, ux, \beta\alpha) \vdash_M (q, x, \gamma\alpha)$ if and only if $((p, u, \beta), (q, \gamma)) \in \Delta$

Language L(M)

We **denote** as usual, the reflexive, transitive closure of the **transition relation** \vdash_M by \vdash_M^* and define, as usual the language L(M) as follows

 $L(M) = \{w \in \Sigma^* : (s, w, e) \vdash_M^* (p, e, , e) \text{ for certain } p \in F\}$

and we say that

M accepts $w \in \Sigma^*$ if and only if $w \in L(M)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Language L(M)

We say it In plain English:

M accepts $w \in \Sigma^*$ if and only if there is a computation in M such that it starts with w and with empty stack (i.e. it starts with (s, w, e)) and it ends in a final state after reading w and emptying all of the stack

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(it ends with (p, e, e) for certain $p \in F$)

Pushdown and Finite Automata)

Theorem

The class **FA** of finite automata is a proper subset of the class **PDA** of pushdown automata, i.e.

$\textbf{FA} \subset \textbf{PDA}$

Proof

We show that every FA automaton is a PDA automaton that operates on an empty stack Given a FA automaton $M = (K, \Sigma, \delta, s, F)$ We construct PDA automaton

 $M' = (K, \Sigma, \Gamma, \Delta', s, F))$

where $\Gamma = \emptyset$ and

 $\Delta' = \{((p, u, e), (q, e) : (p, u, q) \in \Delta\}$

Obviously, L(M) = L(M') and hence we proved that

 $M \approx M'$

Useful Transitions)

Useful transitions

((p, u, e), (q, a)) push a ((p, u, a), (q, e)) pop a

In particular we have the following **compare** transitions:

((p, a, a), (q, e)) compare and pop a

((p, a, b), (q, e)) compare a with b and pop b compare transition compares a on the input with a or b on the top of the stack and pops them from the stack

Example of PDA

Example

We construct M such that $L = \{wcw^R : w \in \{a, b\}^*\}$

$$M = (K, \Sigma, \Gamma, \Delta, s, F))$$

for $K = \{s, f\}, \Sigma = \{a, b, c\} = \Gamma, F = \{f\}$ and Δ has

the following transitions

Example

Let's analyze the transitions of Δ

- 1. ((s, a, e), (s, a)) pushes a remaining in state s
- 2. ((s, b, e), (s, b)) pushes b remaining in state s
- 3. ((s, c, e), (f, e)) switches from s to f when sees c

4. ((f, a, a), (f, e)) - **compares** and **pops** a remaining in state f

5. ((f, b, b), (f, e)) - compares and pops b remaining in state f

Operation of M

1. + **2.** put what M reads from input on the **stack** bottom-up until it reaches c

Example

Operation of M

3. M switches to the final state leaving the stack untouched

The stack is being build bottom-up so what is on the stack is the **reverse** to the part read, it means to the word w

4. + **5. compare** the input located after **c** with what is located already on the stack and **remove** symbols when they match with the input

M is hence checking whether w from the input before c is equal to w^R

All the last actions are done with M remaining with the final state, so when the **stack is empty** it indicates that $wcw^R \in L(M)$ and that

$$L(M) = \{wcw^R : w \in \{a, b\}^*\}$$

Exercise

Exercise Trace a computation of of M accepting the word abbcbba

Here it is (Book B2, p.133)

State	Ungead Input	Stack	Transition Used
s	abbcbba	е	rgenade la <u>10</u> tas on
S	bbcbba	а	na no sa na
S	bcbba	ba	2
S	cbba	bba	2
f	bba	bba	3
f	ba	ba	5
f	а	а	5
f	е	е	4

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Observe that M is deterministic