cse581 Computer Science Fundamentals: Theory

Professor Anita Wasilewska

TCB - LECTURE 5

CONTEXT -FREE GRAMMARS and LANGUAGES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

Context-free Grammars

Finite Automata are formal language recognizers

- they are devises that accept valid strings

Context-free Grammars are a certain type of formal

language generators

- they are devises that produce valid strings

Context-free Grammars

Such a language generator **devise** begins, when given a start symbol, to **construct** a string

Its operation is not completely determined from he beginning but is nevertheless limited by a **finite** set of rules

The process stops,

and the devise outputs a completed string

The language defined by the **devise** is the set of all strings it can **produce**

Definition

A Context-Free Grammar is a quadruple

 $G = (V, \Sigma, R, S)$

where

- V is an alphabet
- $\Sigma \subseteq V$ is a set of **terminals**
- $V \Sigma$ is the set of **nonterminals**
- R is a finite set of rules

 $R \subseteq (V - \Sigma) \times V^*$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $S \in V - \Sigma$ is the start symbol

The alphabet V consists of two disjoint parts: **nonterminals** $V - \Sigma$ and **terminals** Σ , i.e.

 $V = (V - \Sigma) \cup \Sigma$

Notations

We use symbols of capital letters, with indices if necessary for **nonterminals** $V - \Sigma$, i.e.

 $A, B, C, S, T, X, Y, \ldots A_i, \cdots \in V - \Sigma$

The **terminal** alphabet Σ is as in case of the finite automata, the alphabet the words of the language are made from and we denote its elenets, as before by small letters, or symbol σ , with indices if necessary, i.e.

a, b, c,
$$\sigma$$
, ... a_i , ... σ_i , $\cdots \in \Sigma$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Notations

By definition, the set of **rules** R of a context-free grammar G is a **finite** set such that

 $R \subseteq (V - \Sigma) \times V^*$

It means that $R = \{(A, u) : A \in (V - \Sigma) \text{ and } u \in V^*\}$ where A is a **nonterminal** and $u \in V^*$ is a string that contains some **terminals** and **nonterminals**

We write

 $A \rightarrow_G u$ or $A \rightarrow u$ for any $(A, u) \in R$

Given a context-free grammar

 $G = (V, \Sigma, R, S)$

Definition

For any $u, v \in V^*$, we define a **one step derivation**

 $U \Rightarrow V$ _G

of v from u as follows \Rightarrow_G if and only if there are $A, x, y, v' \in V^*$ such that 1. $A \in V - \Sigma$ 2. u = xAy and v = xv'y2. $A \rightarrow v'$ for certain $r \in R$

One step derivation in plain words:

 $u \Rightarrow_G v$ if and only if we obtain v from u by a **direct** application of one rule $r \in R$

Definition of the language L(G) generated by G

$$L(G) = \{ w \in \Sigma^* : S \stackrel{*}{\Rightarrow}_{G} w \}$$

where \Rightarrow_{G}^{*} is a transitive, reflexive closure of \Rightarrow_{G}

Given a **derivation** of $w \in \Sigma^*$ in G

$$S \stackrel{*}{\Rightarrow}_{G} w$$

We write is in detail (by definition of \Rightarrow_G^*) as

$$S \underset{G}{\Rightarrow} w_1 \underset{G}{\Rightarrow} w_2 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} w$$
 for $w_i \in V^*$, $w \in \Sigma$

or when G is known as

 $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \ldots \Rightarrow w$

or just as a sequence of words

S, w_1 , w_2 , ... w for $w_i \in V^*$, $w \in \Sigma^*$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Context-free Grammar Example

Example

Consider a grammar $G = (V, \Sigma, R, S)$ for $V = \{S, a, b\}$, $\Sigma = \{a, b\}$ and $R = \{r1 : S \rightarrow aSb, r2 : S \rightarrow e\}$ Here are some **derivations** in G **D1** $S \Rightarrow e$ so we have that $e \in L(G)$

D2 $S \Rightarrow^{r1} aSb \Rightarrow^{r1} aaSbb \Rightarrow^{r2} aabb$ or we just write the derivation as

S, aSb, aaSbb, aabb

and we have that

aabb $\in L(G)$

- コン・1日・1日・1日・1日・1日・

Context-free Languages

D3 $S \Rightarrow^{r1} aSb \Rightarrow^{r1} aaSbb \Rightarrow^{r1} aaaSbbb \Rightarrow^{r2} aaabbb$ or we also write the derivation as

S, aSb, aaSbb, aaaSbbb, aaabbb

and we have that

 $a^3b^3 \in L(G)$

We prove, by induction on the length of derivation that

 $L(G) = \{a^n b^n : n \ge 0\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

A language L is a context-free language if and only if there is

a context-free grammar G such that

L = L(G)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We have just proved

Fact 1 The language $L = \{a^n b^n : n \ge 0\}$ is context-free

Observe that we also proved that the language

 $L = \{a^n b^n : n \ge 0\}$

is not regular

Denote by RL the class of all regular languages and by CFL the class of all contex-free languages

Hence we have proved

Fact 2 $RL \neq CFL$

Our next GOAL will be to prove the following

Theorem

The the class of all regular languages is a proper subset of the class of all contex-free languages, i.e.

$\textit{RL} \subset \textit{CFL}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Exercise 1

Show that the regular language $L = \{a^* : a \in \Sigma\}$ is context-free

Proof By definition of **context-free** language we have to construct a CF grammar G such that

L = L(G) i.e $L(G) = \{a^*: a \in \Sigma\}$

Here is the grammar $G = (V, \Sigma, R, S)$ for $V = \{S, a\}, \Sigma = \{a\}$ and $R = \{S \rightarrow aS, S \rightarrow e\}$ We write rules of R in a shorter way as

$$R = \{ S \rightarrow aS \mid e \}$$

Here is a formal **derivation** in **G**:

 $S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaa$

or written as a sequence of words

S, aS, aaS, aaaS, aa

and we have

aaaa $\in L(G)$

We prove, by induction on the length of derivation that

 $L(G) = \{a^*: a \in \Sigma\}$

Exercise 2

Show that the NOT regular language

$$L = \{ww^R : w \in \{a, b\}^*\}$$

is context-free

We construct a context-free grammar G such that $L(G) = \{ww^{R} : w \in \{a, b\}^{*}\}$ as $G = (V, \Sigma, R, S)$ where $V = \{a, b, S\}, \Sigma = \{a, b\}$

 $R = \{S \rightarrow aSa \mid bSb \mid e\}$

Derivation example:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abbSbba \Rightarrow abbbba$ or written as *S*, *aSa*, *abSba*, *abbSbba*, *abbbba* We prove, by induction on the length of derivation that

 $ww^R \in L(G)$ for any $w \in \Sigma^*$

(日本本語を本書を本書を、日本の(へ)

Remark

The set of rules

 $R = \{S \rightarrow aSa \mid aSb \mid c\}$

defines a grammar G with the language

$$L(G) = \{wcw^R : w \in \{a, b\}^*\}$$

Exercise 3

Show that the NOT regular language

$$L = \{w \in \{a, b\}^* : w = w^R\}$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

is context-free

We construct a context-free grammar G such that

 $L(G) = \{w \in \{a, b\}^* : w = w^R\}$

as follows

 $G = (V, \Sigma, R, S)$, where $V = \{a, b, S\}$, $\Sigma = \{a, b\}$ $R = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid e\}$

Derivation example: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$ We check

 $(ababa)^{R} = ((aba)(ba))^{R} = (ba)^{R}((ab)a)^{R} = aba(ab)^{R} = ababa$

We used **Property**: for any $x, y \in \Sigma^*$, $(xy)^R = y^R x^R$ and **Definition**: for any $x \in \Sigma^*$, $a \in \Sigma$, $e^R = e$, $(xa)^R = ax^R$

Grammar correctness justification **Observe** that the rules

 $S \rightarrow aSa \mid bSb \mid e$

generate the language (as was proved in Example 2)

$$L_1 = \{ww^R : w \in \Sigma^*\}$$

Adding additional rules $S \rightarrow a \mid b$ we get that

 $L(G) = L_1 \cup \{waw^R : w \in \Sigma^*\} \cup \{wbw^R : w \in \Sigma^*\}$

Hence

$$w \in L(G)$$
 iff $w = xx^R$ or $w = xax^R$ or $w = xbx^R$

Hence

 $w \in L(G)$ iff $w = xx^R$ or $w = xax^R$ or $w = xbx^R$ We show now that in each case $w = w^R$, i.e. we **prove** that

$$L(G) = \{w \in \{a, b\}^* : w = w^R\}$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

as follows

Case 1: $w = xx^R$

We evaluate

 $w^R = (xx^R)^R = (x^R)^R x^R = xx^R = w$ We used property: $(x^R)^R = x$

Case 2: $w = xax^R$

We evaluate

 $w^R = (xax^R)^R = ((xa)x^R)^R = (x^R)^R (xa)^R = xax^R = w$ We used properties $(x^R)^R = x$ and $(xy)^R = y^R x^R$

Case 3: $w = xbx^R$

We evaluate

 $w^R = (xbx^R)^R = ((xb)x^R)^R = (x^R)^R (xb)^R = xbx^R = w$ This ends the proof

ション 小田 マイビット ビックタン

Regular Grammars

Definition

A context-free grammar

 $G = (V, \Sigma, R, S)$

is called regular, or right-linear if and only if

 $R \subseteq (V - \Sigma) \times \Sigma^*((V - \Sigma) \cup \{e\})$

Regular Grammars

That is, a regular (right-linear) grammar is a context-free grammar such that the right-hand side of every **rule** contains at most one **nonterminal**, which if present, must be the last symbol in the string

The rules must have a form

 $A \rightarrow wB$, $A \rightarrow w$ for any $A, B \in V - \Sigma$, $w \in \Sigma^*$

Remark

We didn't say $A \neq B!$

Exercise 4

Given a **regular grammar** $G = (V, \Sigma, R, S)$, where $V = \{a, b, S, A\}, \Sigma = \{a, b\}$

 $R = \{S \rightarrow aS \mid A \mid e, A \rightarrow abA \mid a \mid b\}$

1. Construct a finite automaton M, such that L(G) = L(M)Solution

We construct a non-deterministic finite automaton

$$M = (K, \Sigma, \Delta, s, F)$$
 for

 $K = (V - \Sigma) \cup \{f\}, \ \Sigma = \Sigma, s = S, \ F = \{f\}$

 $\Delta = \{ (S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f) \}$

Exercise 4

2. Write a computation of M that leads to the **acceptance** of the string **aaaababa**

Compare it with a derivation of the same string in G

Solution

The accepting computation of M is:

 $(S, aaaababa) \vdash_{M} (S, aaababa) \vdash_{M} (S, aababa) \vdash_{M} (S, ababa)$

 $\vdash_{M} (A, ababa) \vdash_{M} (A, aba) \vdash_{M} (A, a) \vdash_{M} (f, e)$

Corresponding **derivation** in **G** is:

 $S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaabA$

 \Rightarrow aaaababA \Rightarrow aaaababa

We are going to prove the following **theorem** that establishes the **relationship** between the Regular Languages and Regular Grammars

L-G Theorem

Language L is **regular** if and only if there exists a **regular grammar** G such that

L = L(G)

By definition, any regular grammar is context free and hence generates a context-free language and we get that

R - CF Theorem

The the class RL of all regular languages is a proper subset of the class CFL of all context-free languages, i.e.

$\textit{RL} \subset \textit{CFL}$

L-G Theorem

Language L is **regular** if and only if there exists a **regular** grammar G such that

L = L(G)

Proof part 1

Suppose that L is **regular**; then L is accepted by a **deterministic** finite automaton

 $M = (K, \Sigma, \delta, s, F)$

We construct a regular grammar G as follows

 $G = (V, \Sigma, R, S)$

for $V = \Sigma \cup K$, S = s

 $R = \{q \rightarrow ap: \delta(q, a) = p\} \cup \{q \rightarrow e: q \in F\}$

We need now to show that L(M) = L(G)

Observe that the rules of G are designed to mimic exactly the moves of M

For any $\sigma_1, \ldots, \sigma_n \in \Sigma$ and $p_0, \ldots, p_n \in K$

 $(p_0, \sigma_1, \ldots, \sigma_n) \vdash_{\mathbf{M}} (p_1, \sigma_2, \ldots, \sigma_n) \vdash_{\mathbf{M}} \ldots \vdash_{\mathbf{M}} (p_n, e)$

if and only if $p_0 \stackrel{*}{\Rightarrow} \sigma_1 p_1 \stackrel{*}{\Rightarrow} \sigma_1 \sigma_2 p_2 \dots \stackrel{*}{\Rightarrow} \sigma_1 \sigma_2 \dots \sigma_n p_n$

This is because

 $\delta(q, a) = p$ if and only if $q \rightarrow ap$

We **prove** now that $L(M) \subseteq L(G)$ Suppose that $w \in L(M)$ Then for some $p \in F$,

 $(s, w) \vdash_{M}^{*} (p, e)$

but

is

 $\delta(q, a) = p \quad \text{if and only if} \quad q \to ap$ $S \stackrel{*}{\underset{G}{\Rightarrow}} w$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

so $w \in L(G)$

We **prove** now that $L(G) \subseteq L(M)$ Suppose that $w \in L(G)$ Then $S \stackrel{*}{\Rightarrow} w$ that is $s \stackrel{*}{\Rightarrow} w$

and so

The rule **used** at the last step of the derivation must have been of the form

 $p \rightarrow e$ for some $p \in F$ $s \stackrel{*}{\Rightarrow} wp \Rightarrow w$ But then $(s, w) \vdash_{M}^{*} (p, e)$ and so $w \in L(M)$ and

L(M) = L(G)

- コン・1日・1日・1日・1日・1日・

Proof part 2 Let now G be any regular grammar

 $G = (V, \Sigma, R, S)$

We define a nondeterministic automaton M such that

L(M)=L(G)

as follows

 $M = (K, \Sigma, \Delta, s, F)$ $K = (V - \Sigma) \cup \{f\} \text{ where f is a new element}$ $s = S, \quad F = \{f\}$

The set Δ of transitions is

 $\Delta = \{ (A, w, B) : A \to wB \in R; A, B \in V - \Sigma, w \in \Sigma^* \}$

 $\cup\{(A, w, f): A \to w \in R; A, B \in V - \Sigma, w \in \Sigma^*\}$

Once again, derivations are mimicked by the moves, i.e, for any

 $A_1,\ldots,A_n\in V-\Sigma, w_1,\ldots w_n\in \Sigma^*$

 $A_1 \Rightarrow_G w_1 A_2 \Rightarrow_G \cdots \Rightarrow_G w_1 \dots w_{n-1} A_n \Rightarrow_G w_1 \dots w_n$

if and only if

 $(A_1, w_1 \dots w_n) \vdash_M (A_2, w_2 \dots w_n) \vdash_M \dots \vdash_M (A_n, w_n) \vdash_M (f, e)$

Justify if True or False

Q1 The set of terminals in a context free grammar **G** is a subset of the alphabet of **G**

Q2 The set of terminals and non- terminals in a context free grammar G form the alphabet of G

- Q3 The set of non-terminals is always non- empty
- Q4 The set of terminals is always non- empty

Justify if True or False

Q1 The set of terminals in a context free grammar **G** is a subset of the alphabet of **G**

True By definition: $\Sigma \subseteq V$

Q2 The set of terminals and non- terminals in a context free grammar G form the alphabet of G

True By definition: $V = \Sigma \cup (V - \Sigma)$

Justify if True or False

Q3 The set of non-terminals is always non- empty **True** By definition: $S \in V$

Q4 The set of terminals is always non- empty **False** $\Sigma = \emptyset$ is a finite set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Justify if True or False

Q5 Let G be a context-free grammar

$$L(G) = \{ w \in V : S \stackrel{*}{\underset{G}{\Rightarrow}} w \}$$

Q6 The language $L \subseteq \Sigma^*$ is context-free if and only if L = L(G)

Q7 A language is context-free if and only if it is accepted by a context-free grammar

Justify if True or False

Q5 Let G be a context-free grammar

$$L(G) = \{ w \in V : S \stackrel{*}{\Rightarrow}_{G} w \}$$

False Should be $w \in \Sigma^*$

Q6 The language $L \subseteq \Sigma^*$ is context-free if and only if L = L(G)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

False Holds only when G is a context -free grammar

Justify if True or False

- **Q7** A language is context-free if and only if it is accepted by a context-free grammar
- False Language is generated, not accepted by a grammar

Q8 Any regular language is context-freeTrue: Regular languages are generated by regular grammars, that are special case of CF grammars

Q9 Language is regular if and only if is generated by a regular grammar (right- linear)

True : Theorem proved in class

Justify if True or False

Q10 $L = \{w \in \{a, b\}^* : w = w^R\}$ is context-free **True**: *G* with the rules: $S \rightarrow aSa|bSb|a|b||e$ is the required grammar

Q11 A regular language is a CF languageTrue: Regular grammar is a special case of a context-free grammar