
cse581
Computer Science Fundamentals: Theory

Professor Anita Wasilewska

TCB - LECTURE 4

FINITE AUTOMATA and REGULAR LANGUAGES

TCB - Finite Automata and Languages

General Problem

Given a language L over Σ and a word w ∈ Σ∗,

HOW to RECOGNIZE whether

w ∈ L or w < L

SOLUTION

Automata as LANGUAGE RECOGNITION device

TCB - Finite Automata and Languages

We consider three classes of AUTOMATA

1. Deterministic Finite Automata DFA

2. Nondeterministic Finite Automata NDFA

3. Push Down Automata PDA

We examine relationships between them and between

two Classes of Languages

L1. Regular Languages

L1.Context - Free Languages

to be RECOGNIZED by them, respectively

TCB - Finite Automata and Languages

We first prezent Theorems describing EQUIVALENCE of

Deterministic Finite Automata DFA and Nondeterministic

Finite Automata NDFA which defines the notion of

Finite Automata as any of them.

Next, we present Theorems describing relationship between

Finite Automata and Regular Languages and discuss

methods of proving that a language is or is not Regular

TCB - Finite Automata and Languages

Similar Theorems describing relationship between

Push Down Automata and Context -Free Languages and

and particular methods of proving that a given

language is or is not Context -Free will be covered in

Lectures 5 , 6

B2 Chapter 2

PART 1: Finite Automata and Regular Languages

Deterministic and Non Deterministic Automata, Automata
Equivalency THEOREMS, Closure THEOREMS, Finite
Automata and Regular Languages MAIN THEOREM

PART 2: Regular Languages and non-Regular Languages

PART 3: PUMPING LEMMA for Regular Languages

Finite Automata and Regular Languages

PART 1: Finite Automata and Regular Languages

Deterministic and Non Deterministic Automata, Automata
Equivalency THEOREMS, Closure THEOREMS, Finite
Automata and Regular Languages MAIN THEOREM

Finite Automata and Regular Languages

PART 1: Deterministic Finite Automata DFA

Deterministic Finite Automata DFA

Simple Computational Model

Here is a picture

Here are the components of the model

C1: Input string on an input tape written at the beginning of
the tape

The input tape is divided into squares, with one symbol
inscribed in each tape square

DFA - A Simple Computational Model

Here is a picture

C2: ”Black Box” - called Finite Control

It can be in any specific time in one of the finite number of
states {q1, . . . , qn}

C3: A movable Reading Head can sense what symbol is

written in any position on the input tape and moves only

one square to the right

DFA - A Simple Computational Model

Here are the assumptions for the model

A1: There is no output at all;

A2: DFA indicates whether the input is acceptable

or not acceptable

A3: DFA is a language recognition device

DFA - A Simple Computational Model

Operation of DFA

O1 Initially the reading head is placed at left most square

at the beginning of the tape and

O2 finite control is set on the initial state

O3 After reading on the input symbol the reading head

moves one square to the right and enters a new state

O4 The process is repeated

O5 The process ends when the reading head reaches

the end of the tape

DFA - A Simple Computational Model

The general rules of the operation of DFA are

R1 At regular intervals DFA reads only one symbol at the

time from the input tape and enters a new state

R2: The move of DFA depends only on the current state
and the symbol just read

DFA - A Simple Computational Model

Operation of DFA

O6 When the process stops the DFA indicates its approval
or disapproval of the string by means of the final state

O7 If the process stops while being in the final state, the
string is accepted

O8 If the process stops while not being in the final state,
the string is not accepted

Language Accepted by DFA

Informal Definition

Language accepted by a Deterministic Finite Automata is
equal to the set of strings accepted by it

DFA - Mathematical Model

To build a mathematical model for DFA we need to include
and define the following components

FINITE set of STATES

ALPHABET Σ

INITIAL state

FINAL state

Description of the MOVE of the reading head is as follows

R1 At regular intervals DFA reads only one symbol at the
time from the input tape and enters a new state

R2: The MOVE of DFA depends only on the current state
and the symbol just read

DFA - Mathematical Model

Definition

A Deterministic Finite Automata is a quintuple

M = (K , Σ, δ, s, F)

where

K is a finite set of states

Σ as an alphabet

s ∈ K is the initial state

F ⊆ K is the set of final states

δ is a function
δ : K × Σ −→ K

called the transition function

We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅

DFA Definition

Definition revisited
A Deterministic Finite Automata is a quintuple

M = (K , Σ, δ, s, F)

where
K is a finite set of states
K , ∅ because s ∈ K
Σ as an alphabet
Σ can be ∅ - case to consider
s ∈ K is the initial state
F ⊆ K is the set of final states
F can be ∅ - case to consider
δ is a function

δ : K × Σ −→ K

called the transition function

Transition Function

Given DFA

M = (K , Σ, δ, s, F)

where
δ : K × Σ −→ K

Let
δ(q, σ) = q′ for q, q′ ∈ K , σ ∈ Σ

means: the automaton M in the state q reads σ ∈ Σ and

moves to a state q′ ∈ K , which is uniquely determined by

state q and σ just read

Configuration

In order to define a notion of computation of M on
an input string w ∈ Σ∗ we introduce first a notion of
a configuration
Definition
A configuration is any tuple

(q,w) ∈ K × Σ∗

where q ∈ K represents a current state of M
and w ∈ Σ∗ is unread part of the input
Picture

Transition Relation

Definition

The set of all possible configurations of M = (K , Σ, δ, s, F)

is just
K × Σ∗ = {(q,w) : q ∈ K , w ∈ Σ∗}

We define move of an automaton M i in terms of a transition
relation

⊢M

The transition relation acts between two configurations
and hence ⊢M is a certain binary relation defined on K × Σ∗,
i.e.

⊢M ⊆ (K × Σ∗)2

Formal definition follows

Transition Relation

Definition (Transition relation)

Given M = (K , Σ, δ, s, F)

For any q, q′ ∈ K , σ ∈ Σ, w ∈ Σ∗

(q, σw) ⊢M (q′,w)

if and only if

δ(q, σ) = q′

Idea of Computation

We use the transition relation to define a move of M along a
given input, i.e. a given w ∈ Σ∗

Such a move is called a computation

Example

Given M such that K = {s, q} and let ⊢M be a transition
relation such that

(s, aab)⊢M(q, ab)⊢M(s, b)⊢M(q, e)

We call a sequence of configurations

(s, aab), (q, ab), (s, b), (q, e)

a computation from (s, aab) to (q, e) in automaton M

Idea of Computation

Given a a computation

(s, aab), (q, ab), (s, b), (q, e)

We write this computation in a more general form as

(q1, aab), (q2, ab), (q3, b), (q4, e)

for q1, q2, q3, q4 being a specific sequence of states from
K = {s, q}, namely q1 = s, q2 =, q3 = s, q4 = q and say
that the length of this computation is 4

In general we write any computation of length 4 as

(q1,w1), (q2,w2), (q3,w3), (q4,w4)

for any sequence q1, q2, q3, q4 of states from K and

words wi ∈ Σ
∗

Idea of the Computation

Example

Given M and the computation

(s, aab), (q, ab), (s, b), (q, e)

We say that the word w= aab is accepted by M if and only if

1. the computation starts when M is in the initial state

- true here as s denotes the initial state

2. the whole word w has been read, i.e. the last configuration
of the computation is (q, e) for certain state in K,

- true as K = {s, q}

3. the computation ends when M is in the final state

- true only if we have that q ∈ F

Otherwise the word w is not accepted by M

Definition of the Computation

Definition
Given M = (K , Σ, δ, s, F)
A sequence of configurations

(q1,w1), (q2,w2), . . . , (qn,wn), n ≥ 1

is a computation of the length n in M from (q,w) to (q′,w′)

if and only if

(q1,w1) = (q,w), (qn,wn) = (q′,w′) and

(qi ,wi) ⊢M (qi+1,wi+1) for i = 1, 2, . . . n − 1

Observe that when n = 1 the computation (q1,w1)

always exists . It is a computation of the length 1, called also
a trivial computation
We also write sometimes the computations as
(q1,w1) ⊢M (q2,w2) ⊢M . . . ⊢M (qn,wn) for n ≥ 1

Words Accepted by M

In Plain Words:

A word w ∈ Σ∗ is accepted by M = (K , Σ, δ, s, F)

if and only if

there is a computation such that

1. starts with the word w and M in the initial state ,

2. ends when M is in a final state, and

3. the whole word w has been read

Language Accepted by M

Definition

We define the language accepted by M as follows

L(M) = {w ∈ Σ∗ : w is accepted by M}

i.e. we write

L(M) = {w ∈ Σ∗ : (s,w) ⊢M . . . ⊢M (q, e) for some q ∈ F}

Language Accepted by M
DEFINITIOIN

The question: how to write the definition of the L(M) in a
more concise and elegant way

Answer: we use the notion (TCB- Lecture 1) of reflexive,
transitive closure of ⊢M denoted by ⊢M

∗ and write

DEFINITION

L(M) = {w ∈ Σ∗ : (s,w) ⊢M
∗(q, e) for some q ∈ F}

Example

Example

Let M = (K , Σ, δ, s, F), where

K = {q0, q1}, Σ = {a, b}, s = q0, F = {q0}

and the transition function δ : K × Σ −→ K

is defined as follows

Question Determine whether ababb ∈ L(M) or
ababb < L(M)

Examples

Solution

We must evaluate computation that starts with the
configuration (q0, ababb) as q0 = s

(q0, ababb) ⊢M use δ(q0, a) = q0

(q0, babb) ⊢M use δ(q0, b) = q1

(q1, abb) ⊢M use δ(q1, a) = q1

(q1, bb) ⊢M use δ(q1, b) = q0

(q0, b) ⊢M use δ(q0, b) = q1

(q1, e) ⊢M end of computation and q1 < F = {q0}

We proved that ababb < L(M)

Observe that we always get unique computations, as δ is a
function, hence he name Deterministic Finite Automaton
(DFA)

Finite Automata and Regular Languages

PART 1: NON Deterministic Finite Automata NDFA

NDFA: Nondeterministic Finite Automata

Now we add a new powerful feature to the finite automata

This feature is called nondeterminism

Nondeterminism is essentially the ability to change states

in a way that is only partially determined by the current

state and input symbol, or a string of symbols, empty string

included

The automaton, as it reads the input string, may choose at
each step to go to any of its states

The choice is not determined by anything in our model , and
therefore it is said to be nondeterministic

At each step there is always a finite number of choices,
hence it is still a finite automaton

NDFA - Mathematical Model

Definition
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where
K is a finite set of states
Σ as an alphabet
s ∈ K is the initial state
F ⊆ K is the set of final states
∆ is a finite set and

∆ ⊆ K × Σ∗ × K

∆ is called the transition relation
We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅

NDFA Definition

Definition revisited
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where
K is a finite set of states
K , ∅ because s ∈ K
Σ as an alphabet
Σ can be ∅ - case to consider
s ∈ K is the initial state
F ⊆ K is the set of final states
F can be ∅ - case to consider
∆ is a finite set and ∆ ⊆ K × Σ∗ × K
∆ is called the transition relation
∆ can be ∅ - case to consider

Some Remarks

R1 We must say that ∆ is a finite set because the set
K × Σ∗ × K is countably infinite, i.e. |K × Σ∗ × K | = ℵ0) and
we want to have a finite automata and we defined it as

∆ ⊆ K × Σ∗ × K

R2 The DFA transition function δ : K × Σ −→ K is (as
any function!) a relation

δ ⊆ K × Σ × K

R3 The set δ is always finite as the set K × Σ × K is finite

R4 The DFA transition function δ is a particular case of the

NDFA transition relation ∆, hence similarity of notation

Configuration and Transition Relation

Given a NDFA automaton

M = (K , Σ, ∆, s, F)

We define as we did in the case of DFA the notions of

a configuration, and a transition relation

Definition

A configuration in a NDFA is any tuple

(q,w) ∈ K × Σ∗

Configuration and Transition Relation

Definition

A transition relation in M = (K , Σ, ∆, s, F)

defined by the Class Definition is a binary relation

⊢M ⊆ (K × Σ∗) × (K × Σ∗)

such that q, q′ ∈ K , u, w ∈ Σ∗

(q, uw) ⊢M (q′,w)

if and only if

(q, u, q′) ∈ ∆

Language Accepted by M

We define, as in the case of the deterministic DFA , the
language accepted by the nondeterministic M as follows

Definition

L(M) = {w ∈ Σ∗ : (s,w) ⊢M
∗(q, e) for q ∈ F}

where ⊢M∗ is the reflexive, transitive closure of ⊢M

Finite Automata and Regular Languages

PART 1: Finite Automata and Regular Languages

Automata Equivalency THEOREMS,

Equivalency of Automata

We define now formally an equivalency of automata as follows

Definition

For any two automata M1,M2 (deterministic or
nondeterministic)

M1 ≈ M2 if and only if L(M1) = L(M2)

Now we are going to formulate and prove the main theorem of

this part of the Chapter 2, informally stated as

Equivalency Theorem

The notions of a deterministic and a non-dederteministic

automata are equivalent

Equivalency of Automata Theorems

The automata Equivalency Theorem consists of two
Equivalency Theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Equivalency Theorem 2

For any NDFA M, there is is a DFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Equivalency of Automata Theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Proof

Any DFA M is a particular case of a DFA M’ because any
function δ is a relation

Moreover δ and its a particular case of the relation ∆ as
Σ ⊆ Σ ∪ {e} (for the Book Definition) and Σ ⊆ Σ∗ (for the
Class Definition)

This ends the proof

Equivalency of Automata Theorems

Equivalency Theorem 2

For any NDFA M, there is is a DFA M’, such that
M ≈ M′, i.e. such that

L(M) = L(M′)

Proof

The proof is far from trivial. It is a constructive proof;

It describes, given a NDFA M, a general method of

construction step by step of an DFA M’ that accepts

the came language as M.

Finite Automata

Hence by the automata Equivalency Theorems the
deterministic and non deterministic automata ways are
equivalent and we use a name

FINITE AUTOMATA

when we talk about deterministic or non deterministic

automata

Finite Automata and Regular Languages

PART 1: Finite Automata and Regular Languages Closure
THEOREMS, Finite Automata and Regular Languages MAIN
THEOREM

Automata Closure Theorem

In order to prove the MAIN THEOREM that establishes a
relationship between Finite Automata and Regular languages
prove and use the following

Automata CLOSURE THEOREM
The class of languages accepted by Finite Automata (FA) is

closed under the following operations

1. union

2. concatenation

3. Kleene’s Star

4. complementation

5. intersection

Observe that we used the term Finite Automata (FA) so in

the proof we can choose a DFA or a NDFA, as we have
already proved their equivalency

Automata - Languages Main Theorem

Automata - Languages MAIN THEOREM

A language L is regular if and only if it is accepted by a

finite automaton, i.e.

A language L is regular if and only if there is a

finite automaton M, such that

L = L(M)

Regular Languages Closure Theorem

Directly from the the Automata - Languages Main Theorem
and Automata Closure Theorem we get the following

Regular Languages Closure Theorem

The class of REGULAR languages

is closed under the following operations

1. union

2. concatenation

3. Kleene’s Star

4. complementation

5. intersection

Regular Languages

PART 2: Regular Languages and non-Regular Languages

Languages that are Not Regular

We know that there are uncountably many and exactly C

of all languages over any alphabet Σ , ∅

We also know that there are only ℵ0, i.e. infinitely countably

many regular languages

It means that we have uncountably many and . exactly C
languages that are not regular

Reminder

A language L ⊆ Σ∗ is regular if and only if there is a regular

expression r ∈ R that represents L, i.e. such that

L = L(r)

Regular or not Regular Languages

We look now at some simple examples of languages that

might be, or not be regular

E1 The language L1 = a∗b∗ is regular because is

defined by a regular expression

E2 The language

L2 = {anbn : n ≥ 0} ⊆ L1

is not regular

We will prove prove it using a very important theorem to be

proved that is called Pumping Lemma

Regular or not Regular Languages

Intuitively we can see that

L2 = {anbn : n ≥ 0}

can’t be regular as we can’t construct a finite automaton

accepting it

Such automaton would need to have something like a

memory to store, count and compare the number of a’s with

the number of b’s

Regular or not Regular Languages

We will define and study in Chapter 3 a new class of

automata that would accommodate the ”memory” problem

They are called Push Down Automata

We will prove that they accept a larger class of languages,

called context free languages

Regular or not Regular Languages

E3 The language L3 = a∗ is regular because is defined

by a regular expression

E4 The language L4 = {an : n ≥ 0} is regular because

in fact L3 = L4

E5 The language L4 = {an : n ∈ Prime} is not regular

We will prove it using Pumping Lemma

Regular or not Regular Languages

E6 The language L6 = {an : n ∈ EVEN} is regular

because in fact L6 = (aa)∗

E7 The language

L7 = {w ∈ {a, b}∗ : w has an equal number of a’ s and b’s }

is not regular

Proof Assume that L7 is regular

We know that L1 = a∗b∗ is regular, hence the language

L = L7 ∩ L1 is regular, by the Closure Theorem: the class
of regular languages is closed under intersection

But obviously, L = {anbn : n ∈ N} and was proved in E2 to
be not regular

This contradiction proves that L7 is not regular

Regular and not Regular Languages

E8 The language L8 = {wwR : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

E9 The language L9 = {ww : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

Regular or not Regular Languages

E10 The language L10 = {wcw : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

E11 The language L11 = {ww : w ∈ {a, b}∗}

where w stands for w with each occurrence of a is
replaced by b, and vice versa

is not regular

We prove it using Pumping Lemma

Regular or not Regular Languages

E12 The language

L12 = {xy ∈ Σ∗ : x ∈ L and y < L for any regular L ⊆ Σ∗}

is regular

Proof Observe that L12 = L ◦ L where L denotes

a complement of L, i.e.

L = {w ∈ Σ∗ : w ∈ Σ∗ − L}

L is regular, and so is L , and L12 = L ◦ L is regular by the

following, already already proved theorem

Closure Theorem The class of Regular Languages is closed
under ∪,∩,−, ◦,∗

Regular or not Regular Languages

E13 The language

L13 = {wR : w ∈ L and L is regular }

is regular

Definition For any language L we call the language

LR = {wR : w ∈ L}

the reverse language of L

The E13 says that the following holds

Fact

For any regular language L, its reverse language LR

is regular

Regular or not Regular Languages

Fact

For any regular language L, its reverse language LR is
regular

Proof Let M = (K , Σ, ∆, s, F) be such that L = L(M)

The reverse language LR is accepted by a finite automata

MR = (K ∪ s′, Σ, ∆′, s′, F = {s})

where s′ < K and

∆′ = {(r ,w, p) : (p,w, r) ∈ ∆, w ∈ Σ∗} ∪ {(s′, e, q) : q ∈ F}

We used the Lecture Definition of M

Regular and NOT Regular Languages

E14

Any finite language is regular

Proof Let L ⊆ Σ∗ be a finite language , i.e.

L = ∅ or L = {w1,w2, . . .wn} for n > 0}

We construct the finite automata M such that

L(M) = L = {w1} ∪ {w2} ∪ . . . {wn} = Lw1 ∪ · · · ∪ Lwn

as M = Mw1 ∪ · · · ∪Mwn ∪M∅

Exercises

Exercise 1

Show that the language

L = {xyxR : x, y ∈ Σ}

is regular for any Σ

Exercises

Exercise 1

Show that the language

L = {xyxR : x, y ∈ Σ}

is regular for any Σ

Proof

For any x ∈ Σ, xR = x

Σ is a finite set, hence

L = {xyx : x, y ∈ Σ}

is also finite and we just proved that any finite language is
regular

Exercises

Exercise 2

Show that the class of regular languages is not closed with
respect to subset relation.

Exercise 3

Given L1, L2 regular languages, is L1 ∩ L2 also a regular
language?

Exercises

Exercise 2

Show that the class of regular languages is not closed with
respect to subset relation.

Solution

Consider two languages

L1 = {anbn : n ∈ N} and L2 = a∗b∗

Obviously, L1 ⊆ L2 and L1 is a non-regular subset of a
regular L2

Exercise 3

Given L1, L2 regular languages, is L1 ∩ L2 also a regular
language?

Solution

YES, it is because the class of regular languages is closed
under ∩

Exercises

Exercise 4

Given L1, L2 , such that L1 ∩ L2 is a regular language

Does it imply that both languages L1, L2 must be regular?

Exercises

Exercise 4

Given L1, L2 , such that L1 ∩ L2 is a regular language

Does it imply that both languages L1, L2 must be regular?

Solution

NO, it doesn’t. Take the following L1, L2

L1 = {anbn : n ∈ N} and L2 = {an : n ∈ Prime}

The language L1 ∩ L2 = ∅ is a regular language none of
L1, L2 is regular

Exercises

Exercise 5

Show that the language

L = {xyxR : x, y ∈ Σ∗}

is regular for any Σ

Exercises

Exercise 5

Show that the language

L = {xyxR : x, y ∈ Σ∗}

is regular for any Σ

Solution

Take a case of x = e ∈ Σ∗

We get a language

L1 = {eyeR : e, y ∈ Σ∗} ⊆ L

and of course L1 = Σ∗ and so Σ∗ ⊆ L ⊆ Σ∗

Hence L = Σ∗ and Σ∗ is regular

This proves that L is regular

Exercises

Exercise 6

Given a regular language L ⊆ Σ∗

Show that the language

L1 = {xy ∈ Σ∗ : x ∈ L and y < L}

is also regular

Exercises

Exercise 6

Given a regular language L ⊆ Σ∗

Show that the language

L1 = {xy ∈ Σ∗ : x ∈ L and y < L}

is also regular

Solution

Observe that L1 = L ◦ (Σ∗ − L)

L is regular, hence (Σ∗ − L) is regular (closure under
complement), and so is L1 by closure under concatenation

PUMPING LEMMA

PART 3: PUMPING THEOREM for Regular Languages

PUMPING LEMMA

Pumping Lemma

Pumping Lemma is one of a general class of Theorems
called pumping theorems

They are called pumping theorems because they assert the
existence of certain points in certain strings where a substring
can be repeatedly inserted (pumping) without affecting the
acceptability of the string

We present here two versions of the Pumping Lemma

First is the Lecture Notes version from the first edition of the
Book and the second is the Book version (page 88) from the
new edition

The Book version is a slight generalization of the Lecture
version

Pumping Lemma 1

Pumping Lemma 1

Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all n ≥ 0

Observe that the Pumping Lemma 1 says that in an infinite
regular language L, there is a word w ∈ L that can be
re-written as w = xyz in such a way that y , e and we
”pump” the part y any number of times and still have that
such obtained word is still in L, i.e. that xynz ∈ L for all n ≥ 0

Hence the name Pumping Lemma

Role of Pumping Lemma

We use the Pumping Lemma as a tool to carry proofs that
some languages are not regular

Proof METHOD

Given an infinite language L we want to PROVE it to be NOT
REGULAR

We proceed as follows

1. We assume that L is REGULAR

2.Hence by Pumping Lemma we get that there is a word
w ∈ L that can be re-written as w = xyz, y , e, and
xynz ∈ L for all n ≥ 0

3. We examine the fact xynz ∈ L for all n ≥ 0

4. If we get a CONTRADICTION we have proved that the
language L is not regular

Proof of Pumping Lemma 1

Pumping Lemma 1
Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all natural number n ≥ 0

Proof
Since L is regular, L is accepted by a deterministic finite
automaton

M = (K , Σ, δ, s, F)

Suppose that M has n states, i.e. |K | = n for n ≥ 1
Since L is infinite, M accepts some string w ∈ L of length
n or greater, i.e.
there is w ∈ L such that lw | = k > n and

w = σ1σ2 . . . σk for σi ∈ Σ, 1 = 1, 2, . . . , k

Proof of Pumping Lemma 1

Consider a computation of w = σ1σ2 . . . σk ∈ L :

(q0, σ1σ2 . . . σk) ⊢M (q1, σ2 . . . σk), ⊢M

. ⊢M (qk−1, σk), ⊢M (qk , e)

where q0 is the initial state s of M and qk is a final state of M

Since lw | = k > n and M has only n states, by Pigeon Hole
Principle we have that

there exist i and j, 0 ≤ i < j ≤ k , such that qi = qj

That is, the string σi+1 . . . σj is nonempty since i + 1 ≤ j
and drives M from state qi back to state qi

But then this string σi+1 . . . σj could be removed from w, or
we could insert any number of its repetitions just after just
after σj and M would still accept such string

Proof of Pumping Lemma 1

We just showed by Pigeon Hole Principle we have that M
that accepts w = σ1σ2 . . . σk ∈ L also accepts the string

σ1σ2 . . . σi(σi+1 . . . σj)
nσj+1 . . . σk for each n ≥ 0

Observe that σi+1 . . . σj is non-empty string since i + 1 ≤ j

That means that there exist strings

x = σ1σ2 . . . σi, y = σi+1 . . . σj, z = σj+1 . . . σk for y , e

such that

y , e and xynz ∈ L for all n ≥ 0

Proof of Pumping Lemma 1

The computation of M that accepts xynz is as follows

(qo , xynz) ⊢M∗ (qi , ynz)⊢M
∗ (qi , yn−1z)

⊢M
∗ . . . ⊢M

∗ (qi , yn−1z)⊢M
∗(qk , e)

This ends the proof

Observe that the proof holds for any word w ∈ L with
|w | ≥ n , where n is the number of states of deterministic M
that accepts L

We get hence another version of the Pumping Lemma 1

Pumping Lemma 2

Pumping Lemma 2

Let L be an infinite regular language over Σ , ∅

Then there is an integer n ≥ 1 such that for any word
w ∈ L with lengths greater then n, i.e. |w | ≥ n there are
x, y, z ∈ Σ∗ such that w can be re-written as w = xyz and

y , e and xy iz ∈ L for all i ≥ 0

Proof

Since L is regular, it is accepted by a deterministic finite
automaton M that has n ≥ 1 states

This is our integer n ≥ 1

Let w be any word in L such that |w | ≥ n

Such words exist as L is infinite

The rest of the proof exactly the same as in case of Pumping
Lemma 1

Pumping Lemma

We write the Pumping Lemma 2 symbolically using
quantifiers symbols as follows

Pumping Lemma 2

Let L be an infinite regular language over Σ , ∅

Then the following holds

∃n≥1∀w∈L(|w | ≥ n ⇒

∃x,y,z∈Σ∗ (w = xyz ∩ y , e ∩ ∀i≥0(xy i iz ∈ L)))

Book Pumping Lemma

Book Pumping Lemma is a STRONGER version of the
Pumping Lemma 2

It applies to any any regular language, not to an infinite
regular language, as the Pumping Lemmas 1, 2

Book Pumping Lemma

Book Pumping Lemma

Let L be a regular language over Σ , ∅

Then there is an integer n ≥ 1 such that any word w ∈ L
with |w | ≥ n can be re-written as w = xyz such that

y , e, |xy | ≤ n, x, y, z ∈ Σ∗ and xy iz ∈ L for all i ≥ 0

Proof The proof goes exactly as in the case of Pumping
Lemmas 1, 2

Notice that from the proof of Pumping Lemma 1

x = σ1σ2 . . . σi , z = σj+1 . . . σk } for 0 ≤ i < j ≤ n

and so by definition |xy | ≤ n for n being the number of
states of the deterministic M that accepts L

Pumping Lemma Applications

Use Pumping Lemma to prove the following

Fact 1

The language L ⊆ {a, b}∗ defined as follows

L = {anbn : n > 0}

IS NOT regular

Obviously, L is infinite and we use the Lecture version

Pumping Lemma 1

Let L be an infinite regular language over Σ , ∅

Then for there is a word w ∈ L and there are x, y, z ∈ Σ∗

such that w can be re-written as w = xyz and

y , e and xynz ∈ L for all n ≥ 0

Pumping Lemma Applications

Reminder: we proceed as follows

1. We assume that L is REGULAR

2. Hence by Pumping Lemma 1 we get that there is a word
w ∈ L that can be re-written as w = xyz for y , e and
xynz ∈ L for all n ≥ 0

3. We examine the fact xynz ∈ L for all n ≥ 0

4. If we get a CONTRADICTION we have proved that L is
NOT REGULAR

Pumping Lemma Applications

Assume that L = {ambm : m ≥ 0} is REGULAR

L is infinite, hence Pumping Lemma 1 applies and we know

that there is a word w ∈ L and there are x, y, z ∈ Σ∗ such

that w can be re-written as w = xyz and y , e and

xynz ∈ L for all n ≥ 0

Let w ∈ L be such word, i.e. xyz = ambm for some m ≥ 0

We will show that xynz ∈ L for all n ≥ 0 is impossible

and this contradiction proves that L is NOT REGULAR

Pumping Lemma Applications

Consider w = xyz ∈ L , i.e. xyz = ambm for some m ≥ 0

We have to consider the following cases

Case 1

y consists entirely of a’s

Case 2

y consists entirely of b’s

Case 3

y contains both some a’s followed by some b’s

We will show that in each case assumption that xynz ∈ L for
all n leads to CONTRADICTION

Pumping Lemma Applications

Consider w = xyz ∈ L , i.e. xyz = ambm for some m ≥ 0

Case 1: y consists entirely of a’s

So x must consists entirely of a’s only and z must consists
of some a’s followed by some b’s

Remember that only we must have that y , e

We have the following situation

x = ap for p ≥ 0 as x can be empty

y = aq for q > 0 as y must be nonempty

z = arbs for r ≥ 0, s > 0 as we must have some b’s

Pumping Lemma Applications

The condition xynz ∈ L for all n ≥ 0 becomes as follows

ap(aq)narbs = ap+nq+rbs ∈ L

for all p, q, n, r, s such that the following conditions hold

C1: p ≥ 0, q > 0, n ≥ 0, r ≥ 0, s > 0

By definition of L

ap+nq+rbs ∈ L ifand only if p + nq + r = s

Take case: p = 0, r = 0, q > 0, n = 0

We get s = 0 CONTRADICTION with C1: s > 0

Pumping Lemma Applications

Consider xyz = ambm for some m ≥ 0

Case 2: y consists of b’s only

So x must consists of some a’s followed by some b’s and z
must have only b’s, possibly none

We have the following situation

x = apb r for p > 0 as y has at least one b and r ≥ 0

y = bq for q > 0 as y must be nonempty

z = bs for s ≥ 0

Pumping Lemma Applications

The condition xynz ∈ L for all n ≥ 0 becomes as follows

apb r(bq)nbs = apb r+nq+r ∈ L

for all p, q, n, r, s such that the following conditions hold

C2: p > 0, r ≥ 0 q > 0, n ≥ 0, s ≥ 0

By definition of L

apb r+nq+r ∈ L if and only if p = r + qn + s

Take case: r = 0, n = 0, q > 0

We get p = 0 CONTRADICTION with C2: p > 0

Pumping Lemma Applications

Consider xyz = ambm for some m ≥ 0

Case 3: y contains both a’s and a’s

So y = apb r for p > 0 and r > 0

Case y = b rap is impossible

Take case: y = ab , x = e, z = e and n = 2

By Pumping Lemma we get that y2 ∈ L

But this is a CONTRADICTION with y2 = abab < L

We covered all cases and it ends the proof

Pumping Lemma Applications

Use Pumping Lemma to prove the following

Fact 2

The language L ⊆ {a}∗ defined as follows

L = {an : n ∈ Prime}

IS NOT regular

Obviously, L is infinite and we use the Lecture version

Proof

Assume that L is regular, hence as L is infinite, so there is a
word w ∈ L that can be re-written as w = xyz for y , e
and xynz ∈ L for all n ≥ 0

Consider w = xyz ∈ L , i.e. xyz = am for some m > 0 and
m ∈ Prime

