cse581 Computer Science Fundamentals: Theory

Professor Anita Wasilewska

TCB - LECTURE 3

TCB - THEORY OF COMPUTATION BASICS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

DM and TCB

イロト (母) (ヨ) (ヨ) (ヨ) () ()

PART 3: Special types of Binary Relations PART 4: Finite and Infinite Sets PART 5: Some Fundamental Proof Techniques

Theory of Computation BASICS

PART 6: Closures and Algorithms PART 7: Alphabets and languages PART 8: Finite Representation of Languages

TCB - LECTURE 3

・ロト・日本・日本・日本・日本・日本

PART 8: Finite Representation of Languages Regular Languages

Finite Representation of Languages Introduction

We can **represent** a finite language by **finite means** for example listing all its elements

Languages are often infinite and so a natural question arises if a **finite representation** is possible and when it is possible when a language is infinite

The representation of languages by **finite specifications** is a central issue of the theory of computation

Of course we have to define first formally what do we mean by representation by finite specifications, or more precisely by a finite representation

Idea of Finite Representation

We start with an example: let

 $L = \{a\}^* \cup (\{b\} \circ \{a\}^*) = \{a\}^* \cup (\{b\}\{a\}^*)$

Observe that by definition of Kleene's star

 $\{a\}^* = \{e, a, aa, aaa \dots\}$

and L is an infinite set

 $L = \{e, a, aa, aaa ...\} \cup \{b\}\{e, a, aa, aaa ...\}$

 $L = \{e, a, aa, aaa \dots\} \cup \{b, ba, baa, baaa \dots\}$

 $L = \{e, a, b, aa, ba, aaa baa, \ldots\}$

Idea of Finite Representation

The expression $\{a\}^* \cup (\{b\}\{a\}^*)$ is built out of a finite number of **symbols**:

 $\{, \}, (,), *, \cup$

and describe an infinite set

 $L = \{e, a, b, aa, ba, aaa baa, \ldots\}$

We write it in a **simplified form** - we skip the set symbols {, } as we know that languages are **sets** and we have

 $a^* \cup (ba^*)$

Idea of Finite Representation

We will call such expressions as

 $a^* \cup (ba^*)$

a finite representation of a language L

The idea of the finite representation is to use symbols

(,), *, \cup , \emptyset , and symbols $\sigma \in \Sigma$

to write expressions that describe the language L

Example of a Finite Representation

Let L be a language defined as follows

 $L = \{w \in \{0, 1\}^* : w \text{ has two or three occurrences of } 1$ the first and the second of which are not consecutive }

The language L can be expressed as

 $L = \{0\}^*\{1\}\{0\}^*\{0\} \circ \{1\}\{0\}^*(\{1\}\{0\}^* \cup \emptyset^*)$

We will define and write the finite representation of L as

 $L = 0^* 10^* 010^* (10^* \cup \emptyset^*)$

We call expression above (and others alike) a **regular** expression

Question

Can we **finitely represent** all languages over an alphabet $\Sigma \neq \emptyset$?

Observation

O1. Different languages must have different representations

O2. Finite representations are finite strings over a finite set, so we have that

there are \aleph_0 possible finite representations

(日)

O3. There are **uncountably** many, precisely exactly C = |R|) of possible languages over any alphabet $\Sigma \neq \emptyset$ **Proof**

For any $\Sigma \neq \emptyset$ we have proved that

 $|\Sigma^*| = \aleph_0$

By definition of language

$L \subseteq \Sigma^*$

so there are as many languages as subsets of Σ^* that is as many as

$$|2^{\Sigma^*}| = 2^{\aleph_0} = C$$

Question

Can we **finitely represent** all languages over an alphabet $\Sigma \neq \emptyset$?

Answer

No, we can't

By **O2** and **O3** there are countably many (exactly \aleph_0) possible finite representations and there are uncountably many (exactly *C*) possible languages over any $\Sigma \neq \emptyset$

This proves that

NOT ALL LANGUAGES CAN BE FINITELY REPRESENTED

Moreover

There are **uncountably** many and exactly as many as Real numbers, i.e. *C* languages that **can not** be finitely represented

We can **finitely represent** only a small, **countable** portion of languages

We define and study here only two classes of languages:

REGULAR and **CONTEXT FREE** languages

Regular Expressions Definition

Definition

We define a ${\mathcal R}$ of regular expressions over an alphabet Σ as follows

 $\mathcal{R} \subseteq (\Sigma \cup \{(,), \emptyset, \cup, *\})^*$ and \mathcal{R} is the smallest set such that **1.** $\emptyset \in \mathcal{R}$ and $\Sigma \subseteq \mathcal{R}$, i.e. we have that

 $\emptyset \in \mathcal{R}$ and $\forall_{\sigma \in \Sigma} (\sigma \in \mathcal{R})$

2. If $\alpha, \beta \in \mathcal{R}$, then

 $(\alpha\beta) \in \mathcal{R}$ concatenation

 $(\alpha \cup \beta) \in \mathcal{R}$ union

 $\alpha^* \in \mathcal{R}$ Kleene's Star

- コン・1日・1日・1日・1日・1日・

Regular Expressions Theorem

Theorem

The set \mathcal{R} of **regular expressions** over an alphabet Σ is countably infinite

Proof

Observe that the set $\Sigma \cup \{(,), \emptyset, \cup, *\}$ is non-empty and finite, so the set $(\Sigma \cup \{(,), \emptyset, \cup, *\})^*$ is countably infinite, and by definition

$\mathcal{R} \subseteq (\Sigma \cup \{(,), \emptyset, \cup, *\})^*$

hence we $|\mathcal{R}| \leq \aleph_0$

The set \mathcal{R} obviously includes an infinitely countable set

 $\emptyset, \ \emptyset \emptyset, \ \emptyset \emptyset \emptyset, \ \dots, \dots,$

what proves that $|\mathcal{R}| = \aleph_0$

Regular Expressions

Example

Given $\Sigma = \{0, 1\}$, we have that

- **1.** $\emptyset \in \mathcal{R}, 1 \in \mathcal{R}, 0 \in \mathcal{R}$
- **2.** $(01) \in \mathcal{R}$ $1^* \in \mathcal{R}$, $0^* \in \mathcal{R}$, $\emptyset^* \in \mathcal{R}$, $(\emptyset \cup 1) \in \mathcal{R}, \ldots$, \ldots , $(((0^* \cup 1^*) \cup \emptyset)1)^* \in \mathcal{R}$

Shorthand Notation when writing regular expressions we will keep only essential parenthesis

For example, we will write

 $((0^* \cup 1^* \cup \emptyset)1)^* \text{ instead of } (((0^* \cup 1^*) \cup \emptyset)1)^*$ $1^*01^* \cup (01)^* \text{ instead of } ((((1^*0)1^*) \cup (01)^*)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Regular Expressions and Regular Languages

We use the regular expressions from the set \mathcal{R} as a **representation** of languages

Languages **represented** by regular expressions are called **regular languages**

Regular Expressions and Regular Languages

The idea of the representation is explained in the following

Example

The regular expression (written in a shorthand notion)

 $1^*01^* \cup (01)^*$

represents a language

 $L = \{1\}^* \{0\} \{1\}^* \cup \{01\}^*$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition of Representation

Definition

The **representation relation** between regular expressions and languages they **represent** is establish by a **function** \mathcal{L} such that if $\alpha \in \mathcal{R}$ is any regular expression, then $\mathcal{L}(\alpha)$ is the **language represented** by α

(日)

Definition of Representation

Formal Definition

The function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^*}$ is defined recursively as follows

- **1.** $\mathcal{L}(\emptyset) = \emptyset$, $\mathcal{L}(\sigma) = \{\sigma\}$ for all $\sigma \in \Sigma$
- **2.** If $\alpha, \beta \in \mathcal{R}$, then

 $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha) \circ \mathcal{L}(\beta)$ concatenation $\mathcal{L}(\alpha \cup \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$ union $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$ Kleene's Star

Regular Language Definition

Definition

A language $L \subseteq \Sigma^*$ is regular

if and only if

L is represented by a regular expression, i.e.

when there is $\alpha \in \mathcal{R}$ such that $L = \mathcal{L}(\alpha)$

where $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^*}$ is the **representation function**

We use a shorthand notation

$$L = \alpha$$
 for $L = \mathcal{L}(\alpha)$

E1

Given $\alpha \in \mathcal{R}$, for $\alpha = ((a \cup b)^*a)$

Evaluate *L* over an alphabet $\Sigma = \{a, b\}$, such that $L = \mathcal{L}(\alpha)$ We write

 $\alpha = ((a \cup b)^*a)$

in the shorthand notation as

 $\alpha = (a \cup b)^* a$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We evaluate $L = (a \cup b)^* a$ as follows

 $\mathcal{L}((a \cup b)^*a) = \mathcal{L}((a \cup b)^*) \circ \mathcal{L}(a) = \mathcal{L}((a \cup b)^*) \circ \{a\} =$

$$(\mathcal{L}(a \cup b))^* \{a\} = (\mathcal{L}(a) \cup \mathcal{L}(b))^* \{a\} = (\{a\} \cup \{b\})^* \{a\}$$

Observe that

$$({a} \cup {b})^{*}{a} = {a, b}^{*}{a} = \Sigma^{*}{a}$$

so we get

$$\mathsf{L} = \mathcal{L}((\mathsf{a} \cup \mathsf{b})^*\mathsf{a}) = \mathsf{\Sigma}^*\{\mathsf{a}\}$$

 $L = \{w \in \{a, b\}^* : w \text{ ends with } a\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

E2 Given $\alpha \in \mathcal{R}$, for $\alpha = ((c^*a) \cup (bc^*)^*)$ **Evaluate** $L = \mathcal{L}(\alpha)$, i.e describe $L = \alpha$

We write α in the shorthand notation as

 $\alpha = \mathbf{c}^* \mathbf{a} \cup (\mathbf{b} \mathbf{c}^*)^*$

and evaluate $L = c^* a \cup (bc^*)^*$ as follows

 $\mathcal{L}((c^*a \cup (bc^*)^*) = \mathcal{L}(c^*a) \cup (\mathcal{L}(bc^*))^* = \{c\}^*\{a\} \cup (\{b\}\{c\}^*)^*$

and we get that

 $L = \{c\}^* \{a\} \cup (\{b\} \{c\}^*)^*$

E3 Given $\alpha \in \mathcal{R}$, for

 $\alpha = (0^* \cup (((0^*(1 \cup (11)))((00^*)(1 \cup (11)))^*)0^*))$ Evaluate $L = \mathcal{L}(\alpha)$, i.e describe the language $L = \alpha$ We write α in the shorthand notation as

 $\alpha = 0^* \cup 0^* (1 \cup 11) ((00^* (1 \cup 11))^*) 0^*$

and evaluate

 $L = \mathcal{L}(\alpha) = 0^* \cup 0^* \{1, 11\} (00^* \{1, 11\})^* 0^*$

Observe that 00^* contains at least one 0 that separates $0^{\{1,11\}}$ on the left with $(00^*(\{1,11\})^*$ that follows it, so we get that

 $L = \{w \in \{0, 1\}^* : w \text{ does not contain a substring } 111\}$

Class RL of Regular Languages

Definition

Class **RL** of regular languages over an alphabet Σ contains all L such that $L = \mathcal{L}(\alpha)$ for certain $\alpha \in \mathcal{R}$, i.e.

 $\mathbf{RL} = \{ L \subseteq \Sigma^* : L = \mathcal{L}(\alpha) \text{ for certain } \alpha \in \mathcal{R} \}$

Theorem

There \aleph_0 regular languages over $\Sigma \neq \emptyset$ i.e.

 $|\mathbf{RL}| = \aleph_0$

Proof

By definition that each regular language is $L = \mathcal{L}(\alpha)$ for certain $\alpha \in \mathcal{R}$ and the interpretation function $\mathcal{L} : \mathcal{R} \longrightarrow 2^{\Sigma^*}$ has an infinitely countable domain, hence $|\mathbf{RL}| = \aleph_0$

Class **RL** of Regular Languages

We can also think about languages in terms of **closure** and get immediately from definitions the following

Theorem

Class **RL** of regular languages is the **closure** of the set of languages

 $\{\{\sigma\}: \quad \sigma \in \Sigma\} \cup \{\emptyset\}$

with respect to union, concatenation and Kleene Star

Languages that are NOT Regular

Given an alphabet $\Sigma \neq \emptyset$

We have just proved that there are \aleph_0 regular languages, and we have also there are *C* of all languages over $\Sigma \neq \emptyset$, so we have the following

Fact

There is C languages that are not regular

Natural Questions

Q1 How to prove that a given language is regular?

A1 Find a regular expression α , such that $L = \alpha$, i.e. $L = \mathcal{L}(\alpha)$

Languages that are NOT Regular

Q2 How to prove that a given language is not regular?

A2 Not easy!

There is a Theorem, called Pumping Lemma which provides a criterium for proving that a given language

is not regular

E1 A language

$$L = 0^* 1^*$$

is **is regular** as it is given by a regular expression $\alpha = 0^*1^*$ **E2** We will prove, using the Pumping Lemma that the language

 $L = \{0^n 1^n : n \ge 1, n \in N\}$

is not regular

PROBLEMS

Some REGULAR LANGUAGES Problems

Problem 1

Consider the following languages over $\Sigma = \{a, b\}$

$$L_1 = \{ w \in \Sigma^{\star} : \exists u \in \Sigma\Sigma(w = uu^R u) \}$$

$$L_2 = \{ w \in \Sigma^{\star} : ww = www \}$$

Part 1: Prove that L_1 is a finite set

Give example of 3 words $w \in L_1$

Solution

We evaluate first the set $\Sigma\Sigma = \{a, b\}\{a, b\} = \{aa, bb, ab, ba\}$

 $\Sigma\Sigma$ is a **finite set**, hence the set $B = \{uyu : u, y \in \Sigma\Sigma\}$

is also a **finite set** and by definition $L_1 \subseteq B$

This proves that L₁ must be a finite set

We evaluated that $\Sigma\Sigma = \{a, b\}\{a, b\} = \{aa, bb, ab, ba\}$ We defined $L_1 = \{w \in \Sigma^* : \exists u \in \Sigma\Sigma(w = uu^R u)\}$ By evaluation we have that

$L_1 = \{aaaaaa, abbaab, baabba, bbbbbb\}$

Part 2: Give examples of 2 words over Σ such that $w \notin L_1$ **Solution** $a \notin L_1$, $bba \notin L_1$ There are countably infinitely many words that **are not** in L_1

Part 3 Consider now the following language

 $L_2 = \{w \in \{a, b\}^* : ww = www\}$

Show that $L_2 \neq \emptyset$

Solution $e \in L_2$, as ee = eee

In fact, *e* is the only word with this property, hence

 $L_2 = \{e\}$

Part 4 Show that the set $(\Sigma^* - L_2)$ is infinite **Solution** Σ^* is countably infinite, L_2 is finite, so (basic theorem) $(\Sigma^* - L_2)$ is countably infinite

Any $w \in \Sigma^*$, such that $w \neq e$ is in $(\Sigma^* - L_2)$

Problem 2

Given expressions (written in a short hand notation)

 $\alpha_1 = \emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^*$

 $\alpha_2 = (a \cup b)^* b(a \cup b)^*$

Part 1 Re-write α_1 as a **simpler** expression representing the same language

▲□▶▲□▶▲□▶▲□▶ □ のQ@

List properties you used in your solution

Describe the language $L = \mathcal{L}(\alpha_1)$

Solution We first evaluate

 $\mathcal{L}(\alpha_1) = \mathcal{L}(\emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^*)$ $= e \cup \{a\}^* \cup \{b\}^* \cup \{a\} \cup \{b\} \cup (\{a\} \cup \{b\})^* = \Sigma^*$

This is true because of the properties:

 $({a} \cup {b})^* = {a, b}^* = \Sigma^*$ and

 $\{a\} \subseteq \{a\}^{\star}, \ \{b\} \subseteq \{b\}^{\star}, \ \{a\}^{\star} \subseteq \Sigma^{\star}, \ \{b\}^{\star} \subseteq \Sigma^{\star}$ and we know that for any sets *A*, *B*, if $A \subseteq B$, then $A \cup B = B$ $\mathcal{L}(\alpha_1) = \Sigma^{\star} = (\{a\} \cup \{b\})^{\star} = \mathcal{L}((a \cup b)^{\star})$ We hence simplify α_1 as follows

 $\alpha_1 = \emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^* = (a \cup b)^*$

Part 2 Given

$$\alpha_2 = (a \cup b)^* b (a \cup b)^*$$

Re-write α_2 as a **simpler** expression representing the same language

Describe the language $L = \mathcal{L}(\alpha_2)$

Solution α_2 can not be simplified, but we can use property $(\{a\} \cup \{b\})^* = \Sigma^*$ to describe informally the language determined by α_2 as

$$L = \mathcal{L}(\alpha_2) = \Sigma^{\star} b \Sigma^{\star}$$

Remember that informal description $\Sigma^* b \Sigma^*$ is not a regular expression - but just an **useful notation**

Problem 3

Let $\Sigma = \{a, b\}$ and a language $L \subseteq \Sigma^*$ be defined as follows:

 $L = \{w \in \Sigma^{\star} : w \text{ contains no more then two } a's\}$

Write a regular expression α , such that $\mathcal{L}(\alpha) = L$. Use shorthand notation. **Explain** shortly your answer.

Solution

 $\alpha = b^* \cup b^* a b^* \cup b^* a b^* a b^*$

Explanation

b* contains 0 of a's (case n=0)
b*ab* contains 1 occurrence of a (case n=1)
b*ab*ab* contains 2 occurrence of a (case n=2)

Problem 4

Let $\Sigma = \{a, b\}$ The language $L \subseteq \Sigma^*$ is defined as follows: $L = \{w \in \Sigma^* : \text{ the number of } b \text{ 's in } w \text{ is divisible by 4 } \}$ Write a regular expression α , such that $\mathcal{L}(\alpha) = L$

You can use **shorthand notation**. Explain shortly your answer

Solution

 $\alpha = a^*(a^*ba^*ba^*ba^*ba^*)^*$

Observe that the regular expression $a^*ba^*ba^*ba^*ba^*$ describes a string $w \in \Sigma^*$ with **exactly four** b 's

The regular expression

```
(a*ba*ba*ba*ba*)*
```

represents multiples of $w \in \Sigma^*$ with **exactly four** *b* is and hence words in which a number of *b* is is **divisible by** 4

Observe that 0 is divisible by 4, so we need to add the case of 0 number of *b* is, i.e. we need to include words

e, a, aa, aaa, , ...

We do so by concatenating $(a^*ba^*ba^*ba^*ba^*)^*$ with a^* and get

 $L = a^*(a^*ba^*ba^*ba^*ba^*)^*$

Problem 5

Let L be a language defines as follows

 $L = \{w \in \{a, b\}^* : P(w)\}$

for the property P(w) defined as follows

P(w): between any two a's in $w \in \{a, b\}^*$ there is an **even** number of **consecutive** b's

1. **Describe** a regular expression *r* such that $\mathcal{L}(r) = L$ Remark that 0 is an even number, hence $a^* \in L$ and

 $r = b^* \cup b^* a^* b^* \cup b^* (a(bb)^* a)^* b^* = b^* a^* b^* \cup b^* (a(bb)^* a)^* b^*$

Problem 6

Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$

Show that

 $(L_1\Sigma^{\star}L_2)^{\star}=\Sigma^{\star}$

Solution

By definition, $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$

Hence

 $(L_1\Sigma^*L_2)\subseteq\Sigma^*$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Now we use the following property:

Property

For any languages $L_1.L_2$, if $L_1 \subseteq L_2$, then $L_1^* \subseteq L_2^*$ and obtain that $(L_1 \Sigma^* L_2)^* \subseteq \Sigma^{**} = \Sigma^*$, i.e. we proved that

 $(L_1\Sigma^{\star}L_2)^{\star} \subseteq \Sigma^{\star}$

We have to show now that also

 $\Sigma^{\star} \subseteq (L_1 \Sigma^{\star} L_2)^{\star}$

Let $w \in \Sigma^*$, we have that also $w \in (L_1 \Sigma^* L_2)^*$ because w = ewe and $e \in L_1$ and $e \in L_2$. We have hence **proved** that

 $(L_1\Sigma^{\star}L_2)^{\star}=\Sigma^{\star}$

Problem 7

Let \mathcal{L} be a function that associates with any regular expression α the regular language $L = \mathcal{L}(\alpha)$

1. Evaluate $L = \mathcal{L}(\alpha)$ for $\alpha = (a \cup b)^* a$

Solution

2 Describe a property that defines the language $L = \mathcal{L}((a \cup b)^* a)$

Solution

 $L = \{a, b\}^* \{a\} = \Sigma^* \{a\} = \{w \in \{a, b\}^* : w \text{ ends with } a \}$

General Problem

General Problem

Given a language L over Σ and a word $w \in \Sigma^*$, HOW to RECOGNIZE whether

 $w \in L$ or $w \notin L$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Next SUBJECT

Automata - LANGUAGE RECOGNITION devices