cse581 Computer Science Fundamentals: Theory

Professor Anita Wasilewska

TCB - LECTURE 2

TCB - THEORY OF COMPUTATION BASICS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

DM and TCB

PART 3: Special types of Binary Relations PART 4: Finite and Infinite Sets PART 5: Some Fundamental Proof Techniques

Theory of Computation BASICS

PART 6: Closures and Algorithms PART 7: Alphabets and languages PART 8: Finite Representation of Languages - Regular Languages

(日)

TCB - LECTURE 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

PART 7: Alphabets and languages

Alphabets and languages Introduction

Data are **encoded** in the computers' memory as strings of bits or other symbols appropriate for **manipulation**

The mathematical study of the **Theory of Computation** begins with understanding of mathematics of **manipulation** of strings of symbols

(日)

We first introduce two basic notions: Alphabet and Language

Alphabet

Definition

Any finite set is called an alphabet

Elements of the alphabet are called symbols of the alphabet

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

This is why we also say:

Alphabet is any finite set of symbols

Alphabet

Alphabet Notation

We use a symbol Σ to denote the **alphabet**

Remember

 Σ can be \emptyset as empty set is a finite set

When we want to study **non-empty alphabets** we have to say so, i.e to write:

 $\Sigma \neq \emptyset$

Alphabet Examples

E1 $\Sigma = \{\ddagger, \emptyset, \partial, \phi, \bigotimes, \vec{a}, \nabla\}$

E2
$$\Sigma = \{a, b, c\}$$

E3
$$\Sigma = \{n \in N : n \le 10^5\}$$

E4 $\Sigma = \{0, 1\}$ is called a binary alphabet

Alphabet Examples

For simplicity and consistence we will use only as **symbols** of the alphabet letters (with indices if necessary) or other common characters when needed and specified

We also write $\sigma \in \Sigma$ for a **general** form of an element in Σ

Σ is a finite set and we will write

 $\Sigma = \{a_1, a_2, \dots, a_n\}$ for $n \ge 0$

Finite Sequences Revisited

Definition

A finite sequence of elements of a set A is any function $f: \{1, 2, ..., n\} \longrightarrow A$ for $n \in N$

We call $f(n) = a_n$ the n-th element of the sequence f We call n the length of the sequence

 a_1, a_2, \ldots, a_n

Case n=0

In this case the function f is empty and we call it an **empty** sequence and denote by e

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Words over $\boldsymbol{\Sigma}$

Let Σ be an **alphabet**

We call finite sequences of the alphabet Σ words or strings over Σ

We denote by e the empty word over Σ

Some books use symbol λ for the **empty word**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Words over $\boldsymbol{\Sigma}$

E5 Let $\Sigma = \{a, b\}$

We will write some words (strings) over Σ in a **shorthand** notaiton as for example

aaa, ab, bbb

instead using the formal definition:

 $f: \{1,2,3\} \longrightarrow \Sigma$

such that f(1) = a, f(2) = a, f(3) = a for the word aaa or $g: \{1, 2\} \longrightarrow \Sigma$ such that g(1) = b, g(2) = bfor the word bb.. etc..

Words in Σ^*

Let Σ be an **alphabet**. We denote by

Σ*

the set of **all finite** sequences over Σ Elements of Σ^* are called **words** over Σ We write $w \in \Sigma^*$ to express that w is a **word** over Σ

Symbols for words are

$$w, z, v, x, y, z, \alpha, \beta, \gamma \in \Sigma^*$$
$$x_1, x_2, \ldots \in \Sigma^* \quad y_1, y_2, \ldots \in \Sigma^*$$

Words in Σ^\ast

Observe that the set of all finite sequences include the empty sequence i.e. $e \in \Sigma^*$ and we hence have the following

Fact

For any **alphabet** Σ ,

 $\Sigma^* \neq \emptyset$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Some Short Questions and Answers

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Short Questions

Q1 Let $\Sigma = \{a, b\}$

How many are there all possible words of length 5 over Σ ?

A1 By definition, words over Σ are finite sequences; Hence words of a length 5 are functions

 $f: \{1, 2, \ldots, 5\} \longrightarrow \{a, b\}$

So we have by the **Counting Functions Theorem** that there are 2^5 words of a length **5** over $\Sigma = \{a, b\}$

Counting Functions Theorem

Counting Functions Theorem

For any finite, non empty sets A, B, there are

 $|B|^{|A|}$

functions that map A into B

The proof is in Part 5, i.e. in DMB - Lecture 4

Short Questions

Q2

Let $\Sigma = \{a_1, \ldots, a_k\}$ where $k \ge 1$

How many are there possible **words** of length $\leq n$ for $n \geq 0$ in Σ^* ?

A2

By the Counting Functions Theorem there are

 $k^0 + k^1 + \cdots + k^n$

words of length $\leq n$ over Σ because for each m there are k^m words of length m over $\Sigma = \{a_1, \dots, a_k\}$ and $m = 0, 1 \dots n$

Short Questions

Q3 Given an alphabet $\Sigma \neq \emptyset$

How many are there **words** in the set Σ^* ?

A3

We proved the following

Theorem

For any alphabet $\Sigma \neq \emptyset$, the set Σ^* of all words over Σ is **countably infinite**, i.e. $|A^*| = \aleph_0$

Language Definition

Given an alphabet Σ , any set L such that

$L \subseteq \Sigma^*$

is called a language over Σ

Fact 1

For any alphabet Σ , any language over Σ is **countable**

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are uncountably many languages over Σ

More precisely, there are exactly C = |R| of **languages** over any non - empty alphabet Σ

(日)

Fact 1

For any alphabet Σ , any language over Σ is **countable Proof**

By definition, a set is **countable** if and only if is finite or countably infinite

1. Let $\Sigma = \emptyset$, hence $\Sigma^* = \{e\}$ and we have two languages

 $(0, \{e\})$ over Σ , both finite, so **countable**

2. Let $\Sigma \neq \emptyset$, then Σ^* is countably infinite, so obviously any

 $L \subseteq \Sigma^*$ is finite or countably infinite, hence **countable**

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are exactly C = |R| of **languages**

```
over any non - empty alphabet \Sigma
```

Proof

We proved that $|\Sigma^*| = \aleph_0$

By definition $L \subseteq \Sigma^*$, so there is as many languages over Σ as all subsets of a set of cardinality \aleph_0 that is as many as $2^{\aleph_0} = C$

Q4 Let $\Sigma = \{a\}$

There is \aleph_0 languages over Σ

NO

We just proved that that there is uncountably many, more precisely, exactly *C* languages over $\Sigma \neq \emptyset$ and we know that

 $\aleph_0 < C$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

Given an alphabet Σ and a word $w \in \Sigma^*$ We say that w has a **length** n = |w| when

 $w: \{1, 2, ...n\} \longrightarrow \Sigma$

We re-write w as

 $w: \{1, 2, |w|\} \longrightarrow \Sigma$

Definition

Given $\sigma \in \Sigma$ and $w \in \Sigma^*$, we say $\sigma \in \Sigma$ occurs in the **j-th position** in $w \in \Sigma^*$ if and only if $w(j) = \sigma$ for $1 \le j \le |w|$

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Some Examples

E6 Consider a word w written in a shorthand as

w = anita

By formal definition we have

w(1) = a, w(2) = n, w(3) = i, w(4) = t, w(5) = aand a occurs in the 1st and 5th position **E7** Let $\Sigma = \{0, 1\}$ and w = 01101101 (shorthand) Formally $w: \{1, 2, 8\} \longrightarrow \{0, 1\}$ is such that w(1) = 0, w(2) = 1, w(3) = 1, w(4) = 0, w(5) = 1,w(6) = 1, w(7) = 0, w(8) = 1

1 occurs in the positions 2, 3, 5, 6 and 8 0 occurs in the positions 1, 4, 7

Informal Concatenation

Informal Definition

Given an alphabet Σ and any words $x, y \in \Sigma^*$

We define informally a **concatenation** \circ of words x, y as a word w obtained from x, y by writing the word x followed by the word y

We write the concatenation of words x, y as

 $w = x \circ y$

We use the symbol \circ of concatenation when it is needed formally, otherwise we will write simply

$$w = xy$$

Formal Concatenation

Definition

Given an alphabet Σ and any words $x, y \in \Sigma^*$ We define:

 $w = x \circ y$

if and only if

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- **1.** |w| = |x| + |y|
- **2.** w(j) = x(j) for j = 1, 2, ..., |x|
- **2.** w(|x|+j) = j(j) for j = 1, 2, ..., |y|

Formal Concatenation

Properties

Directly from definition we have that

 $w \circ e = e \circ w = w$

$$(x \circ y) \circ z = x \circ (y \circ z) = x \circ y \circ z$$

Remark: we need to define a concatenation of two words and then we define

$$x_1 \circ x_2 \circ \cdots \circ x_n = (x_1 \circ x_2 \circ \cdots \circ x_{n-1}) \circ x_n$$

and prove by Mathematical Induction that

 $w = x_1 \circ x_2 \circ \cdots \circ x_n$ is well defined for all $n \ge 2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Substring

Definition

A word $v \in \Sigma^*$ is a **substring** (sub-word) of w iff there are $x, y \in \Sigma^*$ such that

w = x v y

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Remark: the words $x, y \in \Sigma^*$, i.e. they can also be empty

P1 w is a substring of w

P2 e is a substring of any string (any word w) as we have that ew = we = w

Definition Let w = xy

x is called a prefix and y is called a suffix of w

Power wⁱ

Definition

We define a **power** w^i of w by Mathematical Induction as follows

$$w^0 = e$$

 $w^{i+1} = w^i \circ w$

E8

 $w^0 = e, w^1 = w^0 \circ w = e \circ w = w, w^2 = w^1 \circ w = w \circ w$ E9 anita² = anita¹ \circ anita = e \circ anita \circ anita = anita \circ anita

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Reversal w^R

Definition

Reversal w^R of w is defined by induction over length |w| of w as follows

1. If |w| = 0, then $w^R = w = e$

2. If |w| = n + 1 > 0, then w = ua for some $a \in \Sigma$, and $u \in \Sigma^*$ and we define

$$w^R = au^R$$
 for $|u| < n+1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Short Definition of w^R

- **1.** $e^{R} = e$
- **2.** $(ua)^{R} = au^{R}$

Reversal Proof

We prove now as an example of Inductive proof the following simple fact

Fact

For any $w, x \in \Sigma^*$

$$(wx)^R = x^R w^R$$

Proof by Mathematical Induction over the length |x| of x with |w| = constant

Base case n=0

|x| = 0, i.e. x=e and by definition

 $(we)^R = ew^R = e^R w^R$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Reversal Proof

Inductive Assumption

$$(wx)^R = x^R w^R$$
 for all $|x| \le n$

Let now |x| = n + 1, so x = ua for certain $a \in \Sigma$ and |u| = nWe evaluate

$$(wx)^{R} = (w(ua))^{R} = ((wu)a)^{R}$$
$$=^{def} a(wu)^{R} =^{ind} au^{R}w^{R} =^{def} (ua)^{R} = x^{R}w^{R}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Definition

Given an alphabet Σ , any set L such that $L \subseteq \Sigma^*$ is called a **language** over Σ

Observe that \emptyset , Σ , Σ^* are all languages over Σ We have proved

Theorem

Any language L over Σ , is finite or infinitely countable

Languages are **sets** so we can define them in ways we did for sets, by listing elements (for small finite sets) or by giving a **property** P(w) **defining** L, i.e. by setting

 $L = \{w \in \Sigma^* : P(w)\}$

E1

 $L_1 = \{ w \in \{0, 1\}^* : w \text{ has an even number of } 0's \}$

E2

 $L_2 = \{w \in \{a, b\}^* : w \text{ has ab as a sub-string} \}$

Languages Examples

Languages Examples

Languages are **sets** so we can define set operations of union, intersection, generalized union, generalized intersection, complement, Cartesian product, ... etc ... of languages as we did for any sets

For example, given L, L_1 , $L_2 \subseteq \Sigma^*$, we consider

 $L_1 \cup L_2, \quad L_1 \cap L_2, \quad L_1 - L_2,$

 $-L = \Sigma^* - L$, $L_1 \times L_2$,... etc

and we have that all properties of **algebra of sets** hold for any languages over a given alphabet Σ

Special Operations on Languages

We define now a special operation on languages, different from any of the **set** operation

Concatenation Definition

Given L_1 , $L_2 \subseteq \Sigma^*$, a language

 $L_1 \circ L_2 = \{ w \in \Sigma^* : w = xy \text{ for some } x \in L_1, y \in L_2 \}$

is called a **concatenation** of the languages L_1 and L_2

Concatenation of Languages

The concatenation $L_1 \circ L_2$ domain issue

We can have that the languages L_1 , L_2 are defined over different domains, i.e they have two alphabets $\Sigma_1 \neq \Sigma_2$ for

$$L_1 \subseteq {\Sigma_1}^*$$
 and $L_2 \subseteq {\Sigma_2}^*$

In this case we always take

 $\Sigma = \Sigma_1 \cup \Sigma_2$ and get $L_1, L_2 \subseteq \Sigma^*$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

E5

Let L_1 , L_2 be languages defined below

$$L_1 = \{ w \in \{a, b\}^* : |w| \le 1 \}$$

 $L_2 = \{ w \in \{0, 1\}^* : |w| \le 2 \}$

Describe the concatenation $L_1 \circ L_2$ of L_1 and L_2

Domain Σ of $L_1 \circ L_2$ We have that $\Sigma_1 = \{a, b\}$ and $\Sigma_2 = \{0, 1\}$ so we take $\Sigma = \Sigma_1 \cup \Sigma_2 = \{a, b, 0, 1\}$ and

$L_1 \circ L_2 \subseteq \Sigma$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let L_1 , L_2 be languages defined below

 $L_1 = \{ w \in \{a, b\}^* : |w| \le 1 \}$

 $L_2 = \{ w \in \{0, 1\}^* : |w| \le 2 \}$

We write now a **general formula** for $L_1 \circ L_2$ as follows

 $L_1 \circ L_2 = \{ w \in \Sigma^* : w = xy \}$

where

 $x \in \{a, b\}^*$, $y \in \{0, 1\}^*$ and $|x| \le 1$, $|y| \le 2$

E5 revisited

Describe the concatenation of $L_1 = \{w \in \{a, b\}^* : |w| \le 1\}$ and $L_2 = \{w \in \{0, 1\}^* : |w| \le 2\}$

As both languages are finite, we list their elements and get

 $L_1 = \{e, a, b\}, L_2 = \{e, 0, 1, 01, 00, 11, 10\}$

We describe their concatenation as

 $L_1 \circ L_2 = \{ey : y \in L_2\} \cup \{ay : y \in L_2\} \cup \{by : y \in L_2\}$

Here is another **general formula** for $L_1 \circ L_2$

$$L_1 \circ L_2 = e \circ L_2 \cup (\{a\} \circ L_2) \cup (\{b\} \circ L_2)$$

E6

Describe concatenations $L_1 \circ L_2$ and $L_2 \circ L_1$ of

 $L_1 = \{ w \in \{0, 1\}^* : w \text{ has an even number of } 0's \}$

and

$$L_2 = \{w \in \{0, 1\}^* : w = 0xx, x \in \Sigma^*\}$$

Here the are

 $L_1 \circ L_2 = \{ w \in \Sigma^* : w \text{ has an odd number of } 0's \}$

 $L_2 \circ L_1 = \{ w \in \Sigma^* : w \text{ starts with } 0 \}$

We have that

 $L_1 \circ L_2 = \{ w \in \Sigma^* : w \text{ has an odd number of 0's} \}$ $L_2 \circ L_1 = \{ w \in \Sigma^* : w \text{ starts with 0} \}$ **Observe** that

 $1000 \in L_1 \circ L_2$ and $1000 \notin L_2 \circ L_1$

This proves that

 $L_1 \circ L_2 \neq L_2 \circ L_1$

We hence proved the following

Fact

Concatenation of languages is not commutative

E8

Let L_1 , L_2 be languages defined below for $\Sigma = \{0, 1\}$ $L_1 = \{w \in \Sigma^* : w = x1, x \in \Sigma^*\}$ $L_2 = \{w \in \Sigma^* : w = 0x, x \in \Sigma^*\}$ **Describe** the language $L_2 \circ L_1$ Here it is

$$L_2 \circ L_1 = \{ w \in \Sigma^* : w = 0xy1, x, y \in \Sigma^* \}$$

Observe that $L_2 \circ L_1$ can be also defined by a property as follows

 $L_2 \circ L_1 = \{ w \in \Sigma^* : w \text{ starts with } 0 \text{ and ends with } 1 \}$

Distributivity of Concatenation

Theorem

Concatenation is **distributive** over union of languages

More precisely, given languages L, L_1 , L_2 ,..., L_n , the following holds for any $n \ge 2$

 $(L_1 \cup L_2 \cup \cdots \cup L_n) \circ L = (L_1 \circ L) \cup \cdots \cup (L_n \circ L)$ $L \circ (L_1 \cup L_2 \cup \cdots \cup L_n) = (L \circ L_1) \cup \cdots \cup (L \circ L_n)$

Proof by Mathematical Induction over $n \in N$, $n \ge 2$

We prove the **base case** for the first equation and leave the Inductive argument and a similar proof of the second equation as an exercise

Base Case n = 2

We have to prove that

 $(L_1 \cup L_2) \circ L = (L_1 \circ L) \cup (L_2 \circ L)$

 $w \in (L_1 \cup L_2) \circ L \quad \text{iff} \quad (by \text{ definition of } \circ)$ $(w \in L_1 \text{ or } w \in L_2) \text{ and } w \in L \quad \text{iff} \quad (by \text{ distributivity of and} over \text{ or})$ $(w \in L_1 \text{ and } w \in L) \text{ or } (w \in L_2 \text{ and } w \in L) \quad \text{iff} \quad (by \text{ definition} \text{ of } \circ)$ $(w \in L_1 \circ L) \text{ or } (w \in L_2 \circ L) \quad \text{iff} \quad (by \text{ definition of } \cup)$ $w \in (L_1 \circ L) \cup (L_2 \circ L)$

Kleene Star - L*

Kleene Star *L*^{*} of a language L is yet another operation **specific** to languages

It is named after Stephen Cole Kleene (1909 -1994), an American mathematician and world famous logician who also helped lay the foundations for theoretical computer science

We define L^* as the set of all strings obtained by concatenating zero or more strings from L

Remember that concatenation of zero strings is e, and concatenation of one string is the string itself

Kleene Star - L*

We define L* formally as

 $L^* = \{w_1 w_2 \dots w_k : \text{for some } k \ge 0 \text{ and } w_1, \dots, w_k \in L\}$

We also write as

 $L^* = \{w_1 w_2 \dots w_k : k \ge 0, w_i \in L, i = 1, 2, \dots, k\}$

or in a form of Generalized Union

$$L^* = \bigcup_{k\geq 0} \{w_1 w_2 \dots w_k : w_1, \dots, w_k \in L\}$$

Remark we write xyz for $x \circ y \circ z$. We use the concatenation symbol \circ when we want to stress that we talk about some properties of the concatenation

Kleene Star Properties

Here are some Kleene Star basic properties

P1 $e \in L^*$, for all L

Follows directly from the definition as we have case k = 0

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

P2 $L^* \neq \emptyset$, for all L Follows directly from **P1**, as $e \in L^*$

P3 $\emptyset^* \neq \emptyset$

Because $L^* = \emptyset^* = \{e\} \neq \emptyset$

Kleene Star Properties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some more Kleene Star basic properties

P4 $L^* = \Sigma^*$ for some L

Take $L = \Sigma$

P6 $L^* \neq \Sigma^*$ for some L Take $L = \{00, 11\}$ over $\Sigma = \{0, 1\}$ We have that $01 \notin L^*$ and $01 \in \Sigma^*$

Example

Observation

The property **P4** provides a quite trivial example of a language L over an alphabet Σ such that $L^* = \Sigma^*$, namely just $L = \Sigma$

A natural question arises: is there any language $L \neq \Sigma$ such that nevertheless $L^* = \Sigma^*$?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

Example

Take $\Sigma = \{0, 1\}$ and take

 $L = \{w \in \Sigma^* : w \text{ has an unequal number of } 0 \text{ and } 1\}$

Some words in and out of L are

 $100 \in L$, $00111 \in L$ $100011 \notin L$

We now prove that

 $L^* = \{0, 1\}^* = \Sigma^*$

うせん 同一人 出す 不可す 不可す ふせき

Example Proof

Given

 $L = \{w \in \{0, 1\}^* : w \text{ has an unequal number of } 0 \text{ and } 1\}$ We now **prove** that

 $L^* = \{0, 1\}^* = \Sigma^*$

Proof

By definition we have that $L \subseteq \{0, 1\}^*$ and $\{0, 1\}^{**} = \{0, 1\}^*$ By the the following property of languages:

P: If
$$L_1 \subseteq L_2$$
, then $L_1^* \subseteq L_2^*$

and get that

 $L^* \subseteq \{0, 1\}^{**} = \{0, 1\}^*$ i.e. $L^* \subseteq \Sigma^*$

Example Proof

Now we have to show that $\Sigma^* \subseteq L^*$, i.e.

 $\{0, 1\}^* \subseteq \{w \in 0, 1^* : w \text{ has an unequal number of } 0 \text{ and } 1\}$

Observe that

 $0 \in L$ because 0 regarded as a string over Σ has an unequal number appearances of 0 and 1

The number of appearances of 1 is zero and the number of appearances of 0 is one

 $1 \in L$ for the same reason a $0 \in L$

So we proved that $\{0, 1\} \subseteq L$

We now use the property P and get

 $\{0, 1\}^* \subseteq L^*$ i.e $\Sigma^* \subseteq L^*$

・ロト・日本・モト・モト・ ヨー のへぐ

what ends the proof that $\Sigma^* = L^*$

 L^* and L^+

We define

 $L^+ = \{w_1 w_2 \dots w_k : \text{for some } k \ge 1 \text{ and some } w_1, \dots, w_k \in L\}$

We write it also as follows

 $L^+ = \{w_1 w_2 \dots w_k : k \ge 1 \ w_i \in L, i = 1, 2, \dots, k\}$

Properties

P1: $L^+ = L \circ L^*$ **P2**: $e \in L^+$ iff $e \in L$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 L^* and L^+

We know that

 $e \in L^*$ for all L

Show that

For some language L we have that $e \in L^+$ and

for some language L we can have that $e \notin L^+$

E1

Obviously, for any L such that $e \in L$ we have that $e \in L^+$

E2

If L is such that $e \notin L$ we have that $e \notin L^+$ as L^+ does not have a case k=0