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PART 7: Alphabets and languages



Alphabets and languages
Introduction

Data are encoded in the computers’ memory as

strings of bits or other symbols appropriate for manipulation

The mathematical study of the Theory of Computation

begins with understanding of mathematics of manipulation

of strings of symbols

We first introduce two basic notions: Alphabet and

Language



Alphabet

Definition

Any finite set is called an alphabet

Elements of the alphabet are called symbols of the alphabet

This is why we also say:

Alphabet is any finite set of symbols



Alphabet

Alphabet Notation

We use a symbol Σ to denote the alphabet

Remember

Σ can be ∅ as empty set is a finite set

When we want to study non-empty alphabets we have to

say so, i.e to write:
Σ , ∅



Alphabet Examples

E1 Σ = {‡, ∅, ∂,
∮
,
⊗

, ~a, ∇}

E2 Σ = {a, b , c}

E3 Σ = {n ∈ N : n ≤ 105}

E4 Σ = {0, 1} is called a binary alphabet



Alphabet Examples

For simplicity and consistence we will use only as

symbols of the alphabet letters (with indices if necessary) or

other common characters when needed and specified

We also write σ ∈ Σ for a general form of an element in Σ

Σ is a finite set and we will write

Σ = {a1, a2, . . . , an} for n ≥ 0



Finite Sequences Revisited

Definition

A finite sequence of elements of a set A is any function

f : {1, 2, . . . , n} −→ A for n ∈ N

We call f(n) = an the n-th element of the sequence f

We call n the length of the sequence

a1, a2, . . . , an

Case n=0

In this case the function f is empty and we call it an empty
sequence and denote by e



Words over Σ

Let Σ be an alphabet

We call finite sequences of the alphabet Σ words

or strings over Σ

We denote by e the empty word over Σ

Some books use symbol λ for the empty word



Words over Σ

E5 Let Σ = {a, b}

We will write some words (strings) over Σ in a shorthand

notaiton as for example

aaa, ab , bbb

instead using the formal definition:

f : {1, 2, 3} −→ Σ

such that f(1) = a, f(2) = a, f(3) = a for the word aaa

or g : {1, 2} −→ Σ such that g(1) = b , g(2) = b

for the word bb .. etc..



Words in Σ∗

Let Σ be an alphabet. We denote by

Σ∗

the set of all finite sequences over Σ

Elements of Σ∗ are called words over Σ

We write w ∈ Σ∗ to express that w is a word over Σ

Symbols for words are

w, z, v , x, y, z, α, β, γ ∈ Σ∗

x1, x2, . . . ∈ Σ∗ y1, y2, . . . ∈ Σ∗



Words in Σ∗

Observe that the set of all finite sequences include

the empty sequence i.e. e ∈ Σ∗ and we hence

have the following

Fact

For any alphabet Σ ,
Σ∗ , ∅



Some Short Questions and Answers



Short Questions

Q1 Let Σ = {a, b}

How many are there all possible words of length 5 over Σ ?

A1 By definition, words over Σ are finite sequences;

Hence words of a length 5 are functions

f : {1, 2, . . . , 5} −→ {a, b}

So we have by the Counting Functions Theorem that

there are 25 words of a length 5 over Σ = {a, b}



Counting Functions Theorem

Counting Functions Theorem

For any finite, non empty sets A , B, there are

|B ||A |

functions that map A into B

The proof is in Part 5, i.e. in DMB - Lecture 4



Short Questions

Q2

Let Σ = {a1, . . . , ak } where k ≥ 1

How many are there possible words of length ≤ n for n ≥ 0
in Σ∗?

A2

By the Counting Functions Theorem there are

k 0 + k 1 + · · ·+ k n

words of length ≤ n over Σ because for each m

there are k m words of length m over Σ = {a1, . . . , ak }

and m = 0, 1 . . . n



Short Questions

Q3 Given an alphabet Σ , ∅

How many are there words in the set Σ∗?

A3

We proved the following

Theorem

For any alphabet Σ , ∅, the set Σ∗ of all words over Σ

is countably infinite, i.e. |A∗| = ℵ0



Languages over Σ

Language Definition

Given an alphabet Σ, any set L such that

L ⊆ Σ∗

is called a language over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable



Languages over Σ

Fact 2

For any alphabet Σ , ∅, there are uncountably many

languages over Σ

More precisely, there are exactly C = |R | of languages

over any non - empty alphabet Σ



Languages over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable

Proof

By definition, a set is countable if and only if is finite or

countably infinite

1. Let Σ = ∅, hence Σ∗ = {e} and we have two languages

∅, {e} over Σ, both finite, so countable

2. Let Σ , ∅, then Σ∗ is countably infinite, so obviously any
L ⊆ Σ∗ is finite or countably infinite, hence countable



Languages over Σ

Fact 2

For any alphabet Σ , ∅, there are exactly C = |R | of
languages

over any non - empty alphabet Σ

Proof

We proved that |Σ∗| = ℵ0

By definition L ⊆ Σ∗, so there is as many languages over Σ

as all subsets of a set of cardinality ℵ0 that is as many as

2ℵ0 = C



Languages over Σ

Q4 Let Σ = {a}

There is ℵ0 languages over Σ

NO

We just proved that that there is uncountably many,

more precisely, exactly C languages over Σ , ∅ and

we know that
ℵ0 < C



Languages over Σ

Definition

Given an alphabet Σ and a word w ∈ Σ∗

We say that w has a length n = |w | when

w : {1, 2, ...n} −→ Σ

We re-write w as

w : {1, 2, |w |} −→ Σ

Definition

Given σ ∈ Σ and w ∈ Σ∗, we say σ ∈ Σ occurs in the

j-th position in w ∈ Σ∗ if and only if w(j) = σ for

1 ≤ j ≤ |w |



Some Examples

E6 Consider a word w written in a shorthand as

w = anita

By formal definition we have

w(1) = a, w(2) = n, w(3) = i, w(4) = t , w(5) = a

and a occurs in the 1st and 5th position

E7 Let Σ = {0, 1} and w = 01101101 (shorthand)

Formally w : {1, 2, 8} −→ {0, 1} is such that

w(1) = 0, w(2) = 1, w(3) = 1, w(4) = 0, w(5) = 1,

w(6) = 1, w(7) = 0, w(8) = 1

1 occurs in the positions 2, 3, 5, 6 and 8

0 occurs in the positions 1, 4, 7



Informal Concatenation

Informal Definition

Given an alphabet Σ and any words x, y ∈ Σ∗

We define informally a concatenation ◦ of words x, y as a
word w obtained from x, y by writing the word x followed by
the word y

We write the concatenation of words x, y as

w = x ◦ y

We use the symbol ◦ of concatenation when it is needed
formally, otherwise we will write simply

w = xy



Formal Concatenation

Definition

Given an alphabet Σ and any words x, y ∈ Σ∗

We define:
w = x ◦ y

if and only if

1. |w | = |x |+ |y |

2 . w(j) = x(j) for j = 1, 2, . . . , |x |

2 . w(|x |+ j) = j(j) for j = 1, 2, . . . , |y |



Formal Concatenation

Properties

Directly from definition we have that

w ◦ e = e ◦ w = w

(x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

Remark: we need to define a concatenation of two words
and then we define

x1 ◦ x2 ◦ · · · ◦ xn = (x1 ◦ x2 ◦ · · · ◦ xn−1) ◦ xn

and prove by Mathematical Induction that

w = x1 ◦ x2 ◦ · · · ◦ xn is well defined for all n ≥ 2



Substring

Definition

A word v ∈ Σ∗ is a substring (sub-word) of w iff there are
x, y ∈ Σ∗ such that

w = xvy

Remark: the words x, y ∈ Σ∗, i.e. they can also be empty

P1 w is a substring of w

P2 e is a substring of any string ( any word w )

as we have that ew = we = w

Definition Let w = xy

x is called a prefix and y is called a suffix of w



Power w i

Definition

We define a power w i of w by Mathematical Induction as
follows

w0 = e

w i+1 = w i ◦ w

E8

w0 = e, w1 = w0 ◦ w = e ◦ w = w, w2 = w1 ◦ w = w ◦ w

E9

anita2 = anita1 ◦ anita = e ◦ anita ◦ anita = anita ◦ anita



Reversal wR

Definition

Reversal wR of w is defined by induction over length |w | of
w as follows

1. If |w | = 0, then wR = w = e

2. If |w | = n + 1 > 0, then w = ua for some a ∈ Σ, and
u ∈ Σ∗ and we define

wR = auR for |u| < n + 1

Short Definition of wR

1. eR = e

2. (ua)R = auR



Reversal Proof

We prove now as an example of Inductive proof the following
simple fact

Fact

For any w, x ∈ Σ∗

(wx)R = xRwR

Proof by Mathematical Induction over the length |x | of x with
|w | = constant

Base case n=0

|x | = 0, i.e. x=e and by definition

(we)R = ewR = eRwR



Reversal Proof

Inductive Assumption

(wx)R = xRwR for all |x | ≤ n

Let now |x | = n + 1, so x = ua for certain a ∈ Σ and |u| = n

We evaluate

(wx)R =(w(ua))R = ((wu)a)R

=def a(wu)R =ind auRwR =def (ua)R =xRwR



Languages over Σ

Definition

Given an alphabet Σ, any set L such that L ⊆ Σ∗

is called a language over Σ

Observe that ∅, Σ, Σ∗ are all languages over Σ

We have proved

Theorem

Any language L over Σ, is finite or infinitely countable



Languages over Σ

Languages are sets so we can define them in

ways we did for sets, by listing elements (for small finite sets)

or by giving a property P(w) defining L , i.e. by setting

L = {w ∈ Σ∗ : P(w)}

E1

L1 = {w ∈ {0, 1}∗ : w has an even number of 0’s }

E2

L2 = {w ∈ {a, b}∗ : w has ab as a sub-string }



Languages Examples

E3
L3 = {w ∈ {0, 1}∗ : |w | ≤ 2}

E4
L4 = {e, 0, 1, 00, 01, 11, 10}

Observe that L3 = L4



Languages Examples

Languages are sets so we can define set operations of

union, intersection, generalized union, generalized

intersection, complement, Cartesian product, ... etc ... of

languages as we did for any sets

For example, given L , L1, L2 ⊆ Σ∗, we consider

L1 ∪ L2, L1 ∩ L2, L1 − L2,

−L = Σ∗ − L , L1 × L2, , . . . etc

and we have that all properties of algebra of sets hold for any

languages over a given alphabet Σ



Special Operations on Languages

We define now a special operation on languages, different
from any of the set operation

Concatenation Definition

Given L1, L2 ⊆ Σ∗, a language

L1 ◦ L2 = {w ∈ Σ∗ : w = xy for some x ∈ L1, y ∈ L2}

is called a concatenation of the languages L1 and L2



Concatenation of Languages

The concatenation L1 ◦ L2 domain issue

We can have that the languages L1, L2 are defined over

different domains, i.e they have two alphabets Σ1 , Σ2 for

L1 ⊆ Σ1
∗ and L2 ⊆ Σ2

∗

In this case we always take

Σ = Σ1 ∪ Σ2 and get L1, L2 ⊆ Σ∗



Concatenation Examples

E5

Let L1, L2 be languages defined below

L1 = {w ∈ {a, b}∗ : |w | ≤ 1}

L2 = {w ∈ {0, 1}∗ : |w | ≤ 2}

Describe the concatenation L1 ◦ L2 of L1 and L2

Domain Σ of L1 ◦ L2

We have that Σ1 = {a, b} and Σ2 = {0, 1}

so we take Σ = Σ1 ∪ Σ2 = {a, b , 0, 1} and

L1 ◦ L2 ⊆ Σ



Concatenation Examples

Let L1, L2 be languages defined below

L1 = {w ∈ {a, b}∗ : |w | ≤ 1}

L2 = {w ∈ {0, 1}∗ : |w | ≤ 2}

We write now a general formula for L1 ◦ L2 as follows

L1 ◦ L2 = {w ∈ Σ∗ : w = xy }

where

x ∈ {a, b}∗, y ∈ {0, 1}∗ and |x | ≤ 1, |y | ≤ 2



Concatenation Examples

E5 revisited

Describe the concatenation of L1 = {w ∈ {a, b}∗ : |w | ≤ 1}

and L2 = {w ∈ {0, 1}∗ : |w | ≤ 2}

As both languages are finite, we list their elements and get

L1 = {e, a, b}, L2 = {e, 0, 1, 01, 00, 11, 10}

We describe their concatenation as

L1 ◦ L2 = {ey : y ∈ L2} ∪ {ay : y ∈ L2} ∪ {by : y ∈ L2}

Here is another general formula for L1 ◦ L2

L1 ◦ L2 = e ◦ L2 ∪ ({a} ◦ L2) ∪ ({b} ◦ L2)



Concatenation Examples

E6

Describe concatenations L1 ◦ L2 and L2 ◦ L1 of

L1 = {w ∈ {0, 1}∗ : w has an even number of 0’s}

and
L2 = {w ∈ {0, 1}∗ : w = 0xx, x ∈ Σ∗}

Here the are

L1 ◦ L2 = {w ∈ Σ∗ : w has an odd number of 0’s}

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0}



Concatenation Examples

We have that

L1 ◦ L2 = {w ∈ Σ∗ : w has an odd number of 0’s}

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0}

Observe that

1000 ∈ L1 ◦ L2 and 1000 < L2 ◦ L1

This proves that
L1 ◦ L2 , L2 ◦ L1

We hence proved the following

Fact

Concatenation of languages is not commutative



Concatenation Examples

E8

Let L1, L2 be languages defined below for Σ = {0, 1}

L1 = {w ∈ Σ∗ : w = x1, x ∈ Σ∗}

L2 = {w ∈ Σ∗ : w = 0x, x ∈ Σ∗}

Describe the language L2 ◦ L1

Here it is

L2 ◦ L1 = {w ∈ Σ∗ : w = 0xy1, x, y ∈ Σ∗}

Observe that L2 ◦ L1 can be also defined by a property as
follows

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0 and ends with1}



Distributivity of Concatenation

Theorem

Concatenation is distributive over union of languages

More precisely, given languages L , L1, L2, . . . , Ln, the
following holds for
any n ≥ 2

(L1 ∪ L2 ∪ · · · ∪ Ln)◦L = (L1◦L) ∪ · · · ∪ (Ln◦L)

L◦(L1 ∪ L2 ∪ · · · ∪ Ln) = (L◦L1) ∪ · · · ∪ (L◦Ln)

Proof by Mathematical Induction over n ∈ N, n ≥ 2



Distributivity of Concatenation Proof

We prove the base case for the first equation and leave the
Inductive argument and a similar proof of the second equation
as an exercise

Base Case n = 2

We have to prove that

(L1 ∪ L2)◦L = (L1◦L) ∪ (L2◦L)

w ∈ (L1 ∪ L2)◦L iff (by definition of ◦ )

(w ∈ L1 or w ∈ L2) and w ∈ L iff (by distributivity of and
over or)

(w ∈ L1and w ∈ L) or (w ∈ L2 and w ∈ L) iff (by definition
of ◦ )

(w ∈ L1◦L)or (w ∈ L2◦L) iff (by definition of ∪)

w ∈ (L1◦L) ∪ (L2◦L)



Kleene Star - L∗

Kleene Star L∗ of a language L is yet another operation
specific to languages

It is named after Stephen Cole Kleene (1909 -1994), an
American mathematician and world famous logician who also
helped lay the foundations for theoretical computer science

We define L∗ as the set of all strings obtained by
concatenating zero or more strings from L

Remember that concatenation of zero strings is e , and
concatenation of one string is the string itself



Kleene Star - L∗

We define L∗ formally as

L∗ = {w1w2 . . .wk : for some k ≥ 0 and w1, . . . ,wk ∈ L}

We also write as

L∗ = {w1w2 . . .wk : k ≥ 0, wi ∈ L , i = 1, 2, . . . , k }

or in a form of Generalized Union

L∗ =
⋃

k≥0
{w1w2 . . .wk : w1, . . . ,wk ∈ L}

Remark we write xyz for x ◦ y ◦ z. We use the concatenation

symbol ◦ when we want to stress that we talk about some

properties of the concatenation



Kleene Star Properties

Here are some Kleene Star basic properties

P1 e ∈ L∗, for all L

Follows directly from the definition as we have case k = 0

P2 L∗ , ∅, for all L

Follows directly from P1, as e ∈ L∗

P3 ∅∗ , ∅

Because L∗ = ∅∗ = {e} , ∅



Kleene Star Properties

Some more Kleene Star basic properties

P4 L∗ = Σ∗ for some L

Take L = Σ

P6 L∗ , Σ∗ for some L

Take L = {00, 11} over Σ = {0, 1}

We have that
01 < L∗ and 01 ∈ Σ∗



Example

Observation

The property P4 provides a quite trivial example of a
language L over an alphabet Σ such that L∗ = Σ∗, namely
just L = Σ

A natural question arises: is there any language L , Σ such
that nevertheless L∗ = Σ∗?



Example

Example

Take Σ = {0, 1} and take

L = {w ∈ Σ∗ : w has an unequal number of 0 and 1}

Some words in and out of L are

100 ∈ L , 00111 ∈ L 100011 < L

We now prove that

L∗ = {0, 1}∗ = Σ∗



Example Proof

Given

L = {w ∈ {0, 1}∗ : w has an unequal number of 0 and 1}

We now prove that

L∗ = {0, 1}∗ = Σ∗

Proof

By definition we have that L ⊆ {0, 1}∗ and {0, 1}∗∗ = {0, 1}∗

By the the following property of languages:

P: If L1 ⊆ L2, then L1
? ⊆ L2

?

and get that

L∗ ⊆ {0, 1}∗∗ = {0, 1}∗ i.e. L∗ ⊆ Σ∗



Example Proof

Now we have to show that Σ∗ ⊆ L∗, i.e.

{0, 1}∗ ⊆ {w ∈ 0, 1∗ : w has an unequal number of 0 and 1}

Observe that

0 ∈ L because 0 regarded as a string over Σ has an
unequal number appearances of 0 and 1

The number of appearances of 1 is zero and the number of
appearances of 0 is one

1 ∈ L for the same reason a 0 ∈ L

So we proved that {0, 1} ⊆ L

We now use the property P and get

{0, 1}∗ ⊆ L∗ i.e Σ∗ ⊆ L∗

what ends the proof that Σ∗ = L∗



L∗ and L+

We define

L+ = {w1w2 . . .wk : for some k ≥ 1 and some w1, . . . ,wk ∈ L}

We write it also as follows

L+ = {w1w2 . . .wk : k ≥ 1 wi ∈ L , i = 1, 2, . . . , k }

Properties

P1 : L+ = L ◦ L∗ P2 : e ∈ L+ iff e ∈ L



L∗ and L+

We know that
e ∈ L∗ for all L

Show that

For some language L we have that e ∈ L+ and

for some language L we can have that e < L+

E1

Obviously, for any L such that e ∈ L we have that e ∈ L+

E2

If L is such that e < L we have that e < L+ as L+ does not
have a case k=0


