cse581
Computer Science Fundamentals: Theory

Professor Anita Wasilewska
TCB - LECTURE 1

TCB - THEORY OF COMPUTATION BASICS
PART 3: Special types of Binary Relations
PART 4: Finite and Infinite Sets
PART 5: Some Fundamental Proof Techniques

Theory of Computation BASICS
PART 6: Closures and Algorithms
PART 7: Alphabets and languages
PART 8: Finite Representation of Languages
Theory of Computation Basics

PART 6: Closures and Algorithms
Closures - Intuitive

Idea

Natural numbers \mathbb{N} are closed under $+$, i.e. for given two natural numbers n, m we always have that $n + m \in \mathbb{N}$

Natural numbers \mathbb{N} are not closed under subtraction $-$, i.e. there are two natural numbers n, m such that $n - m \notin \mathbb{N}$, for example $1, 2 \in \mathbb{N}$ and $1 - 2 \notin \mathbb{N}$

Integers \mathbb{Z} are closed under $-$, moreover \mathbb{Z} is the smallest set containing \mathbb{N} and closed under subtraction $-$

The set \mathbb{Z} is called a closure of \mathbb{N} under subtraction $-$
Consider the two directed graphs R (a) and R^* (b) as shown below.

Observe that $R^* = R \cup \{(a_i, a_i) : i = 1, 2, 3, 4\} \cup \{(a_2, a_4)\}$, $R \subseteq R^*$ and is R^* is reflexive and transitive whereas R is neither, moreover R^* is also the smallest set containing R that is reflexive and transitive.

We call such relation R^* the reflexive, transitive closure of R.

We define this concept formally in two ways and prove the equivalence of the two definitions.
Two Definitions of R^*

Definition 1 of R^*

R^* is called a reflexive, transitive closure of R iff $R \subseteq R^*$ and is reflexive and transitive and is the smallest set with these properties.

This definition is based on a notion of a **closure property** which is any property of the form ”the set B is closed under relations R_1, R_2, \ldots, R_m”

We define it formally and prove that **reflexivity** and **transitivity** are closures properties.

Hence we **justify** the name: reflexive, transitive closure of R for R^*.
Two Definitions of R^*

Definition 2 of R^*
Let R be a binary relation on a set A
The reflexive, transitive closure of R is the relation

$$R^* = \{(a, b) \in A \times A : \text{there is a path from } a \text{ to } b \text{ in } R\}$$

This is a much simpler definition- and algorithmically more interesting as it uses a simple notion of a path
We hence start our investigations from it- and only later introduce all notions needed for the Definition 1 in order to prove that the R^* defined above is really what its name says: the reflexive, transitive closure of R
Definition 2 of R^*

We bring back the following

Path Definition

A **path** in the binary relation R is a finite sequence a_1, \ldots, a_n such that $(a_i, a_{i+1}) \in R$, for $i = 1, 2, \ldots n - 1$ and $n \geq 1$

The path a_1, \ldots, a_n is said to be from a_1 to a_n

The path a_1 (case when $n = 1$) always exist and is called a **trivial path** from a_1 to a_1

Definition 2

Let R be a binary relation on a set A

The **reflexive, transitive closure of R** is the relation

$$R^* = \{(a, b) \in A \times A : \text{ there is a path from } a \text{ to } b \text{ in } R \}$$
Algorithms

Definition 2 immediately suggests an following algorithm for computing the reflexive transitive closure R^* of any given binary relation R over some finite set $A = \{a_1, a_2, \ldots, a_n\}$

Algorithm 1
Initially $R^* := 0$
for $i = 1, 2, \ldots, n$ do
for each i-tuple $(b_1, \ldots, b_i) \in A^i$ do
if b_1, \ldots, b_i is a path in R then add (b_1, b_n) to R^*
Algorithms

We also have a following much faster algorithm

Algorithm 2
Initially \(R^* := R \cup \{(a_i, a_i) : a_i \in A\} \)
for \(j = 1, 2, \ldots, n \) do
for \(i = 1, 2, \ldots, n \) and \(k = 1, 2, \ldots, n \) do
if \((a_i, a_j), (a_j, a_k) \in R^* \) but \((a_i, a_k) \notin R^* \)
then add \((a_i, a_k) \) to \(R^* \)
Closure Property Formal

We introduce now formally a concept of a closure property of a given set

Definition

Let D be a set, let $n \geq 0$ and let $R \subseteq D^{n+1}$ be a $(n+1)$-ary relation on D

Then the subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever $(b_1, \ldots, b_n, b_{n+1}) \in R$

Any property of the form "the set B is closed under relations $R_1, R_2, \ldots, R_m"$ is called a **closure property** of B
Closure Property Examples

Observe that any function \(f : D^n \rightarrow D \) is a special relation \(f \subseteq D^{n+1} \) so we have also defined what does it mean that a set \(A \subseteq D \) is **closed under** the function \(f \).

E1: \(+ \) is a **closure property** of \(\mathbb{N} \).

Addition is a function \(+ : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) defined by a formula \(+ (n, m) = n + m \), i.e. it is a **relation** \(+ \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N} \) such that

\[
+ = \{(n, m, n + m) : \ n, m \in \mathbb{N}\}
\]

Obviously the set \(\mathbb{N} \subseteq \mathbb{N} \) is (formally) **closed under** \(+ \) because for any \(n, m \in \mathbb{N} \) we have that \((n, m, n + m) \in + \).
Closures Property Examples

E2: \(\cap\) is a closure property of \(2^N\)

\(\cap \subseteq 2^N \times 2^N \times 2^N\) is defined as

\[(A, B, C) \in \cap \iff A \cap B = C\]

and the following is true for all \(A, B, C \in 2^N\)

if \(A, B \in 2^N\) and \((A, B, C) \in \cap\) then \(C \in 2^N\)
Closure Property Fact 1

Since relations are sets, we can speak of one relation as being closed under one or more others. We show now the following:

CP Fact 1

Transitivity is a closure property.

Proof

Let D be a set, let Q be a ternary relation on $D \times D$, i.e. $Q \subseteq (D \times D)^3$ be such that

$$Q = \{(((a, b), (b, c), (a, c)) : a, b, c \in D\}$$

Observe that for any binary relation $R \subseteq D \times D$, R is closed under Q if and only if R is transitive.
CP Fact1 Proof

The definition of closure of R under Q says: for any $x, y, z \in D \times D$,

$\text{if } x, y \in R \text{ and } (x, y, z) \in Q \text{ then } z \in R$

But $(x, y, z) \in Q \iff x = (a, b), y = (b, c), z = (a, c)$ and

$(a, b), (b, c) \in R \text{ implies } (a, c) \in R$

is a true statement for all $a, b, c \in D \iff R$ is transitive
Closure Property Fact 2

We show now the following

CP Fact 2

Reflexivity is a closure property

Proof

Let $D \neq \emptyset$, we define an unary relation Q' on $D \times D$, i.e. $Q' \subseteq D \times D$ as follows

$$Q' = \{(a,a) : a \in D\}$$

Observe that for any R binary relation on D, i.e. $R \subseteq D \times D$ we have that

R is closed under Q' if and only if R is reflexive
Problem 6

Definition

Let \(D \) be a set, let \(n \geq 0 \) and let \(R \subseteq D^{n+1} \) be a \((n+1)\)-ary relation on \(D \). Then the subset \(B \) of \(D \) is said to be **closed under** \(R \) if \(b_{n+1} \in B \) whenever \((b_1, \ldots, b_n, b_{n+1}) \in R\).

Any property of the form "the set \(B \) is closed under relations \(R_1, R_2, \ldots, R_m \)" is called a **Closure Property** of \(B \).
CP Theorem

Prove the following Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D, and let $A \subseteq D$.

Then there is a unique minimal set B such that $B \subseteq A$ and B has property P.

Proof Consider the set of all subsets of D that are closed under relations R_1, R_2, \ldots, R_m and that have A as a subset.

We call this set S.

CP Theorem Proof

Consider now

\[S = \{ X \in 2^D : A \subseteq X \text{ and } X \text{ is closed under } R_1, R_2, \ldots, R_m \} \]

We need to show that the poset \(S = (S, \subseteq) \) has a unique minimal element \(B \).

Observe that \(S \neq \emptyset \) as \(D \subseteq S \) and \(D \) is trivially closed under \(R_1, R_2, \ldots, R_m \) and by definition \(A \subseteq D \).

Consider then the set \(B \) which is the intersection of all sets in \(S \), i.e.

\[B = \bigcap S \]

Obviously \(A \subseteq B \) and we have to show now that \(B \) is closed under all \(R_i \).
CP Theorem Proof

Suppose that $a_1, a_2, \ldots a_{n-1} \in B$, and $a_1, a_2, \ldots a_{n-1}, a_n \in R_i$

Since B is the intersection of all sets in S, we have that $a_1, a_2, \ldots a_{n-1} \in X$, for all $X \in S$

But all sets in S are closed under all R_i, they also contain a_n

Therefore $a_n \in B$ and hence B is closed under all R_i

Moreover, B is minimal, because there can be no proper subset C of B, such that $A \subseteq C$ and C is closed under all R_i

Because then C would be a member of S and thus C would include B
Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D, and let $A \subseteq D$

Then there is a **unique minimal** set B such that $B \subseteq A$ and B has property P
Two Definition of R^* Revisited

Definition 1

R^* is called a reflexive, transitive closure of R iff $R \subseteq R^*$ and is R^* is reflexive and transitive and is the smallest set with these properties.

Definition 2

Let R be a binary relation on a set A.

The reflexive, transitive closure of R is the relation

$$R^* = \{(a, b) \in A \times A : \text{there is a path from } a \text{ to } b \text{ in } R\}$$

Equivalency Theorem

R^* of the Definition 2 is the same as R^* of the Definition 1 and hence richly deserves its name reflexive, transitive closure of R.
Equivalency of Two Definition of R^*

Proof Let

$$R^* = \{(a, b) \in A \times A : \text{ there is a path from } a \text{ to } b \text{ in } R\}$$

R^* is **reflexive** for there is a trivial path (case n=1) from a to a, for any $a \in A$

R^* is **transitive** as for any $a, b, c \in A$

if there is a path from a to b and a path from b to c, then there is a path from a to c

Clearly $R \subseteq R^*$ because there is a path from a to b whenever $(a, b) \in R$
Equivalency of Two Definition of R^*

Consider a set S of all binary relations on A that contain R and are reflexive and transitive, i.e.

$$S = \{ Q \subseteq A \times A : R \subseteq Q \text{ and } Q \text{ is reflexive and transitive} \}$$

We have just proved that $R^* \in S$

We prove now that R^* is the smallest set in the poset (S, \subseteq), i.e. that for any $Q \in S$ we have that $R^* \subseteq Q$
Equivalency of Two Definition of R^*

Assume that $(a, b) \in R^*$. By Definition 2 there is a path $a = a_1, \ldots, a_k = b$ from a to b and let $Q \in S$

We prove by Mathematical Induction over the length k of the path from a to b

Base case: $k=1$

We have that the path is $a = a_1 = b$, i.e. $(a, a) \in R^*$ and $(a, a) \in Q$ from reflexivity of Q

Inductive Assumption:

Assume that for any $(a, b) \in R^*$ such that there is a path of length k from a to b we have that $(a, b) \in Q$
Equivalency of Two Definition of R^*

Inductive Step:
Let $(a, b) \in R^*$ be now such that there is a path of length $k+1$ from a to b, i.e., there is a path $a = a_1, \ldots, a_k, a_{k+1} = b$

By inductive assumption $(a = a_1, a_k) \in Q$ and by definition of the path $(a_k, a_{k+1} = b) \in R$

But $R \subseteq Q$ hence $(a_k, a_{k+1} = b) \in Q$ and $(a, b) \in Q$ by transitivity

This **ends the proof** that Definition 2 of R^* implies the Definition 1

The inverse implication follows from the previously proven fact that reflexivity and transitivity are closure properties