cse581 Computer Science Fundamentals: Theory

Professor Anita Wasilewska

TCB - LECTURE 1

TCB - THEORY OF COMPUTATION BASICS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

DM and TCB

イロト (母) (ヨ) (ヨ) (ヨ) () ()

PART 3: Special types of Binary Relations PART 4: Finite and Infinite Sets PART 5: Some Fundamental Proof Techniques

Theory of Computation BASICS

PART 6: Closures and AlgorithmsPART 7: Alphabets and languagesPART 8: Finite Representation of Languages

Theory of Computation Basics

PART 6: Closures and Algorithms

Closures - Intuitive

Idea

Natural numbers N are **closed** under +, i.e. for given two natural numbers n, m we always have that $n + m \in N$

Natural numbers N are **not closed** under subtraction –, i.e there are two natural numbers n, m such that $n - m \notin N$, for example 1, 2 $\in N$ and 1 – 2 $\notin N$

Integers Z are **closed** under-, moreover Z is the smallest set containing N and closed under subtraction -

The set Z is called a closure of N under subtraction -

Closures - Intuitive

Consider the two directed graphs R (a) and R^* (b) as shown below

Observe that $R^* = R \cup \{(a_i, a_i) : i = 1, 2, 3, 4\} \cup \{(a_2, a_4)\}$,

 $R \subseteq R^*$ and is R^* is reflexive and transitive whereas R is neither, moreover R^* is also the smallest set containing R that is reflexive and transitive

We call such relation R^* the reflexive, transitive closure of R We define this concept formally in two ways and prove the equivalence of the two definitions

Definition 1 of R*

 R^* is called a reflexive, transitive closure of R iff $R \subseteq R^*$ and is R^* is reflexive and transitive and is the smallest set with these properties

This definition is based on a notion of a **closure property** which is any property of the form " the set B is closed under relations R_1, R_2, \ldots, R_m "

We define it formally and prove that reflexivity and transitivity are closures properties

Hence we **justify** the name: reflexive, transitive closure of R for R^*

Two Definitions of R*

Definition 2 of R*

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

 $R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in } R\}$

This is a much simpler definition- and algorithmically more interesting as it uses a simple notion of a path

We hence start our investigations from it- and only later introduce all notions needed for the **Definition 1** in order to prove that the R^* defined above is really what its name says: the **reflexive, transitive closure of** R

Definition 2 of R*

We bring back the following

Path Definition

A path in the binary relation R is a finite sequence

 a_1, \ldots, a_n such that $(a_i, a_{i+1}) \in \mathbb{R}$, for $i = 1, 2, \ldots n-1$ and $n \ge 1$

The path a_1, \ldots, a_n is said to be from a_1 to a_n The path a_1 (case when n = 1) always exist and is called a trivial path from a_1 to a_1

Definition 2

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

 $R^* = \{(a, b) \in A \times A : \text{ there is a path from } a \text{ to } b \text{ in } R \}$

- コン・1日・1日・1日・1日・1日・

Algorithms

Definition 2 immediately suggests an following algorithm for computing the reflexive transitive closure R^* of any given binary relation R over some finite set $A = \{a_1, a_2, ..., a_n\}$

Algorithm 1

Initially $R^* := 0$ for i = 1, 2, ..., n do for each i- tuple $(b_1, ..., b_i) \in A^i$ do if $b_1, ..., b_i$ is a **path in** R then add (b_1, b_n) to R^*

Algorithms

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We also have a following much faster algorithm **Algorithm 2** Initially $R^* := R \cup \{(a_i, a_i) : a_i \in A\}$ for j = 1, 2, ..., n do for i = 1, 2, ..., n and k = 1, 2, ..., n do if $(a_i, a_j), (a_j, a_k) \in R^*$ but $(a_i, a_k) \notin R^*$ then add (a_i, a_k) to R^* **Closure Property Formal**

We introduce now formally a concept of a closure property of a given set

Definition

Let D be a set, let $n \ge 0$ and let $R \subseteq D^{n+1}$ be a (n + 1)-ary relation on D Then the subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever $(b_1, \dots, b_n, b_{n+1}) \in R$

Any property of the form " the set B is closed under relations R_1, R_2, \ldots, R_m " is called a **closure property** of B

Closure Property Examples

Observe that any function $f : D^n \longrightarrow D$ is a special relation $f \subseteq D^{n+1}$ so we have also defined what does it mean that a set $A \subseteq D$ is **closed under** the function *f*

E1: + is a closure property of N

Adition is a function $+: N \times N \longrightarrow N$ defined by a formula +(n, m) = n + m, i.e. it is a **relation** $+ \subseteq N \times N \times N$ such that

 $+ = \{(n, m, n + m) : n, m \in N\}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Obviously the set $N \subseteq N$ is (formally) closed under + because

for any $n, m \in N$ we have that $(n, m, n + m) \in +$

Closures Property Examples

E2: \cap is a closure property of 2^N $\cap \subseteq 2^N \times 2^N \times 2^N$ is defined as

 $(A, B, C) \in \cap$ iff $A \cap B = C$

and the following is true for all $A, B, C \in 2^N$

if $A, B \in 2^N$ and $(A, B, C) \in \cap$ then $C \in 2^N$

Closure Property Fact1

Since relations are sets, we can speak of one relation as being closed under one or more others

We show now the following

CP Fact 1

Transitivity is a closure property

Proof

Let D be a set, let Q be a ternary relation on $D \times D$, i.e. $Q \subseteq (D \times D)^3$ be such that

 $Q = \{((a, b), (b, c), (a, c)) : a, b, c \in D\}$

Observe that for any binary relation $R \subseteq D \times D$,

R is closed under Q if and only if R is transitive

CP Fact1 Proof

The definition of closure of R under Q says: for any $x, y, z \in D \times D$,

if $x, y \in R$ and $(x, y, z) \in Q$ then $z \in R$ But $(x, y, z) \in Q$ iff x = (a, b), y = (b, c), z = (a, c) and $(a, b), (b, c) \in R$ implies $(a, c) \in R$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

is a true statement for all $a, b, c \in D$ iff R is transitive

Closure Property Fact2

We show now the following

CP Fact 2

Reflexivity is a closure property

Proof

Let $D \neq \emptyset$, we define an **unary** relation Q' on $D \times D$, i.e. $Q' \subseteq D \times D$ as follows

 $Q' = \{(a,a): a \in D\}$

Observe that for any *R* binary relation on D, i.e. $R \subseteq D \times D$ we have that

R is closed under Q' if and only if **R** is reflexive

Problem 6

Problem 6

Definition

Let D be a set, let $n \ge 0$ and let $R \subseteq D^{n+1}$ be a (n + 1)-ary relation on D Then the subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever $(b_1, \dots, b_n, b_{n+1}) \in R$

Any property of the form " the set B is closed under relations R_1, R_2, \ldots, R_m " is called a **Closure Property** of B

CP Theorem

Prove the following Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D, and let $A \subseteq D$

Then there is a **unique minimal** set B such that $B \subseteq A$ and B has property P

Proof Consider the set if all subsets of D that are **closed** under relations R_1, R_2, \ldots, R_m and that have A as a subset We call this set *S*

CP Theorem Proof

Consider now

 $S = \{X \in 2^D : A \subseteq X \text{ and } X \text{ is closed under } R_1, R_2, \dots, R_m\}$

We need to show that the poset $\mathbf{S} = (\mathcal{S}, \subseteq)$ has a **unique minimal** element **B**.

Observe that $S \neq \emptyset$ as $D \subseteq S$ and D is trivially closed under

 R_1, R_2, \ldots, R_m and by definition $A \subseteq D$.

Consider then the set B which is the intersection of all sets in S, i.e.

$$B = \bigcap S$$

Obviously $A \subseteq B$ and we have to show now that B is closed under all R_i

CP Theorem Proof

Suppose that $a_1, a_2, \ldots, a_{n-1} \in B$, and $a_1, a_2, \ldots, a_{n-1}, a_n \in R_i$ Since B is the intersection of all sets in S, we have that $a_1, a_2, \ldots, a_{n-1} \in X$, for all $X \in S$ But all sets in S are closed under all R_i , they also contain a_n Therefore $a_n \in B$ and hence B is closed under all R_i Moreover, B is **minimal**, because there can be **no proper** subset C of B, such that $A \subseteq C$ and C is closed under all R_i Because then C would be a member of S and thus C would include B

Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D, and let $A \subseteq D$

Then there is a **unique minimal** set B such that $B \subseteq A$ and B has property P

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Two Definition of R* Revisited

Definition 1

 R^* is called a reflexive, transitive closure of R iff $R \subseteq R^*$ and is R^* is reflexive and transitive and is the smallest set with these properties

Definition 2

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

 $R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in } R\}$

EquivalencyTheorem

 R^* of the **Definition 2** is the same as R^* of the **Definition 1** and hence richly deserves its name reflexive, transitive closure of R

Proof Let

 $R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in } R\}$

 R^* is reflexive for there is a trivial path (case n=1) from a to a, for any $a \in A$

 R^* is transitive as for any $a, b, c \in A$

if there is a path from a to b and a path from b to c, then there is a path from a to c

Clearly $R \subseteq R^*$ because there is a path from a to b whenever $(a, b) \in R$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consider a set S of all binary relations on A that contain R and are reflexive and transitive, i.e.

 $S = \{Q \subseteq A \times A : R \subseteq Q \text{ and } Q \text{ is reflexive and transitive } \}$

We have just proved that $R^* \in S$ We prove now that R^* is the smallest set in the poset (S, \subseteq) , i.e. that for any $Q \in S$ we have that $R^* \subseteq Q$

Assume that $(a, b) \in \mathbb{R}^*$. By Definition 2 there is a path $a = a_1, \ldots, a_k = b$ from a to b and let $Q \in S$

We prove by Mathematical Induction over the length ${\bf k}$ of the path from ${\bf a}$ to ${\bf b}$

Base case: k=1

We have that the path is $a = a_1 = b$, i.e. $(a, a) \in R^*$ and $(a, a) \in Q$ from reflexivity of Q

Inductive Assumption:

Assume that for any $(a, b) \in R^*$ such that there is a path of length k from a to b we have that $(a, b) \in Q$

Inductive Step:

Let $(a, b) \in R^*$ be now such that there is a path of length k+1 from a to b, i.e there is a path $a = a_1, \ldots, a_k, a_{k+1} = b$

By inductive assumption $(a = a_1, a_k) \in Q$ and by definition of the path $(a_k, a_{k+1} = b) \in R$

But $R \subseteq Q$ hence $(a_k, a_{k+1} = b) \in Q$ and $(a, b) \in Q$ by transitivity

This **ends the proof** that Definition 2 of R^* implies the Definition1

The inverse implication follows from the previously proven fact that reflexivity and transitivity are closure properties