ONE PROBLEM PART 1 (1pts)

Let \(L = L_{\{\neg, \sim, \Rightarrow, \rightarrow\}} \) be a language with one argument connectives \(\neg, \sim \) called strong negation and weak negation, and with two arguments connectives \(\Rightarrow, \rightarrow \) called strong implication and weak implication.

We define a 3 valued extensional semantics \(M \) for the language \(L_{\{\neg, \sim, \Rightarrow, \rightarrow\}} \) by defining the connectives \(\neg, \sim, \Rightarrow, \rightarrow \) as functions on the set \(\{F, \bot, T\} \) of 3 logical values as follows.

The functions \(\neg, \Rightarrow \) restricted to the set \(\{F, T\} \) are the same as in the classical case.

We extend them to the full set \(\{F, \bot, T\} \) for strong negation as \(\neg \bot = F \), and for strong implication as \(x \Rightarrow \bot = F \) for \(x = T, F \) and \(\bot \Rightarrow y = \begin{cases} \bot & \text{if } y = \bot \\ T & \text{otherwise} \end{cases} \) for \(x \in \{T, F\} \).

We define the weak negation \(\sim \) : \(\{T, \bot, F\} \to \{T, \bot, F\} \) as \(\sim x = \begin{cases} T & \text{if } x = \bot \\ x & \text{for } x \in \{T, F\} \end{cases} \)

The weak implication \(\rightarrow \) : \(\{T, \bot, F\} \times \{T, \bot, F\} \to \{T, \bot, F\} \) is defined for all \(x, y \in \{T, \bot, F\} \) as \(x \rightarrow y = \sim (x \Rightarrow y) \)

(1pts) Fill in the connectives tables. Remember that the \(M \) connectives \(\neg, \Rightarrow \) on set \(\{F, T\} \) are the same as classical \(\neg, \Rightarrow \).

\[
\begin{array}{c|ccc}
\neg & F & \bot & T \\
\hline
T & F & F & F
\end{array}
\quad
\begin{array}{c|ccc}
\sim & F & \bot & T \\
\hline
T & F & T & T
\end{array}
\quad
\begin{array}{c|ccc}
\Rightarrow & F & \bot & T \\
\hline
F & T & F & T \\
\bot & T & \bot & T \\
T & F & T & T
\end{array}
\quad
\begin{array}{c|ccc}
\rightarrow & F & \bot & T \\
\hline
F & T & F & T \\
\bot & T & T & T \\
T & F & T & T
\end{array}
\]

ONE PROBLEM PART 2 (1pts) Use shorthand notation.

(0.2pts) Prove that any truth assignment \(v \) such that \(v(a) = v(b) = \bot \) is a \(M \) model for the formula \((\neg a \rightarrow (\sim a \Rightarrow \neg b)) \).

Solution We evaluate our formula for. \(a = b = \bot \) i.e. we evaluate \(v'((\neg a \rightarrow (\sim a \Rightarrow \neg b))) = \neg \bot \rightarrow (\neg \bot \Rightarrow \neg \bot)) = F \rightarrow (T \Rightarrow F) = F \rightarrow F = T \).

We write it symbolically \(v \models M (\neg a \rightarrow (\sim a \Rightarrow \neg b)) \).

This is not the only model. Find, as an exercise other models.

(0.3pts) \(\not\models_M (a \Rightarrow a) \) and \(\models_M (a \Rightarrow \sim \neg a) \).

Solution To prove \(\not\models_M (a \Rightarrow a) \) we have to find a counter MODEL \(v \) for \((a \Rightarrow \sim \neg a) \).

Consider any \(v : VAR \to \{F, \bot, T\} \) such that \(v(a) = \bot \).

We evaluate \(\bot \Rightarrow \bot = F \) and so \((a \Rightarrow a) \) is not a \(M \) tautology.
To prove that $\models_M (a \Rightarrow \neg \neg a)$ we first observe that it is a classical tautology and the M connectives \neg, \Rightarrow on set $\{F, T\}$ are the same as classical \neg, \Rightarrow, so to prove $\models_M (a \Rightarrow \neg \neg a)$ we have to consider only the case $a = \bot$

and get $\bot \Rightarrow \neg \neg \bot = \bot \Rightarrow \neg F = \bot \Rightarrow T = T$.

This ends the proof.

(0.2pts) Let T be a set of classical tautologies, LT be a set of Lukasiewicz tautologies, and MT be a set of all M tautologies. Prove that $T \cap MT \neq \emptyset$ and $LT \neq MT$.

Solution We just proved that the formula $(a \Rightarrow \neg \neg a) \in T \cap MT$, hence $T \cap MT \neq \emptyset$.

As we have proved that $\not\models_M (a \Rightarrow a)$, and we know that $(a \Rightarrow a) \in LT$, we proved that $LT \neq MT$.

(0.3pts) Prove that the semantics M is well defined.

Solution By definition, semantics M is well defined if and only if $MT \neq \emptyset$.

This is true as we have already proved that $(a \Rightarrow \neg \neg a) \in MT$.