CSE581 Extra Q4 FALL 2024 (2pts extra credit)

DEFINITIONS and basic Facts

Here are 15 definitions with **Yes/No** answers about their correctness Some of provided answers **are correct** and some are **are wrong** Read carefully. **Circle** the **correct answer**

1. onto function $f: A \xrightarrow{onto} B$ if and only if $\forall b \in A \exists a \in B f(a) = b$	n
2. Generalized Intersection Given a sequence $\{A_n\}_{n \in N}$ of sets, $\bigcap_{n \in N} A_n = \{x : \exists n \in N \ x \in A_n\}$	n
3. Partition A family of sets $\mathbf{P} \subseteq \mathcal{P}(A)$ is called a partition of the set <i>A</i> if and only if	
1. $\forall X \in \mathbf{P} (X \neq \emptyset)$, 2. $\forall X, Y \in \mathbf{P} (X \cup Y = \emptyset)$, 3. $\bigcup \mathbf{P} = A$	n
4. Maximal $a_0 \in A$ is a maximal element in the poset (A, \leq) if and only if $\neg \forall a \in A \ (a_0 \leq a \cap a_0 \neq a)$	n
5. Smallest (least) $a_0 \in A$ is a smallest (least) element in the poset (A, \leq) if and only if $\exists a \in A \ (a_0 \leq a)$	у
6. Upper Bound Let $B \subseteq A$ and (A, \leq) is a poset. $a_0 \in A$ is an upper bound of a set <i>B</i> if and only if $\forall b \in B \ (b \leq a_0)$.	n
7. Least upper bound of B (lub B) Given a set $B \subseteq A$ and (A, \leq) a poset. $b_0 = lubB$ if and only if b_0 is the least (smallest) element in the set of all upper bounds of B, ordered by the poset order \leq .	n
8. Lattice A poset (A, \leq) is a lattice if and only if For all $a, b \in A$ lub $\{a, b\}$ or glb $\{a, b\}$ exist	У
9. Lattice intersection (joint) The element $glb\{a, b\} = a \cap b$ is called a lattice intersection (joint) of <i>a</i> and <i>b</i>	У
10. Lattice as an Algebra An algebra (A, \cup, \cap) , where \cup, \cap are two argument operations on A is called a lattice if and only if the following conditions hold (they are called lattice axioms) For any $a, b, c \in A$	
L1 $a \cup b = b \cup a$ and $a \cap b = b \cap a$ L2 $(a \cup b) \cup c = a \cup (b \cup c)$ and $(a \cap b) \cap c = a \cap (b \cap c)$ L3 $a \cap (a \cup b) = a$ and $a \cup (a \cap b) = a$	y
11. Lattice special elements	-
Given a lattice poset (A, \leq)	
The greatest element in (A, \leq) (if exists) is denoted by 1 and is called a lattice zero	v

12. Boolean Algebra A distributive lattice with zero and unit such that each element has a complement is called a Boolean Algebra

13. Finite Posets If (A, \leq) is a finite poset (i.e. *A* is a finite set), then a unique maximal (if exists) is the largest element and a unique minimal (if exists) is the least element.

14. Cardinality Aleph zero We say that a set A has a cardinality \aleph_0 ($|A| = \aleph_0$) if and only if |A| = |N|

n

у

у

15. Power (\mathcal{M}^N) $\mathcal{M}^N = card\{f : f : A \longrightarrow B\}$, where A, B are such that $|A| = \mathcal{M}, |B| = N$

2