CSE581 Extra Credit Q2 SOLUTIONS Fall 2024 (4pts)

Please take your time and write carefully your solutions. There is no NO PARTIAL CREDIT.

QUESTION 1 We define a 3 valued extensional semantics **M** for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by **defining the connectives** \neg, \cup, \Rightarrow on a set $\{F, \bot, T\}$ of logical values by the following truth tables.

F F								$\frac{\perp}{F}$		
F	T	$rac{\perp}{T}$	Т				F	F	\perp \perp T	Т
		F							Т	

P1 0.5pts Verify whether the set $\mathbf{G} = \{ \mathbf{L}a, (a \cup \neg \mathbf{L}b), (a \Rightarrow b), b, \neg \neg \mathbf{L}(c \cup b) \}$ is **M** - consistent.

Use shorthand notation.

Solution

Any *v*, such that v(a) = T, v(b) = T is a **M model** for **G** as

$$\mathbf{L}T = T, \quad (T \cup \neg \mathbf{L}T) = T, \quad (T \Rightarrow T) = T, \quad b = T, \quad \neg \neg \mathbf{L}(c \cup T) = \neg \neg \mathbf{L}T = \neg F = T$$

Observe that **G** has 3 restricted **M** models: $a = T, b = T, c = T, c = \bot, c = F$

P2 0.5pts Let S be the following proof system $S = (\mathcal{L}_{\{\neg, L, \cup, \Rightarrow\}}, \mathcal{F}, \{A1, A2\}, \{r1, r2\})$ where

A1 (LA
$$\cup \neg LA$$
), A2 (A $\Rightarrow LA$) and (r1) $\frac{A;B}{(A\cup B)}$ (r2) $\frac{A}{L(A\Rightarrow B)}$

Given a formula $A = (\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b))).$

Prove that $\vdash_S (\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$ by constructing its proper formal proof below.

Write comments how each step was obtained.

Solution

Here is the formal proof.

- B_1 : (L $a \cup \neg$ La) Axiom A_1 for A= a
- B_2 : L((L $a \cup \neg La$) $\Rightarrow b$) rule r2 for B=b applied to B_1
- B_3 : (**L** $b \cup \neg$ **L**Ab) Axiom A_1 for A=b
- B_4 : $((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b))$ r1 applied to B_3 and B_2
- **P3** 0.5pts Does the above $\vdash_S (Lb \cup \neg Lb) \cup L((La \cup \neg La) \Rightarrow b)))$ prove that $\models_M (Lb \cup \neg Lb) \cup L((La \cup \neg La) \Rightarrow b)))$? Justify your answer.

Solution No, it doesn't because the system S is not sound as the rule $(r^2) \frac{A}{L(A \Rightarrow B)}$ is not sound.

Assume A = T, we get $L(A \Rightarrow B) = L(T \Rightarrow B) = F$, for any $B \neq T$.

QUESTION 2

Consider the Hilbert system $H1 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \xrightarrow{A : (A \Rightarrow B)}{B})$ where for any $A, B \in \mathcal{F}$ $A1 : (A \Rightarrow (B \Rightarrow A)), A2 : ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$

P1 (0.5pts) Use the Deduction Theorem (we know that is holds for H1) to prove that

 $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H1} ((b \Rightarrow \neg a) \Rightarrow (\neg a \Rightarrow b))$

Hint First apply Deduction Theorem twice.

Solution

$$(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)) \vdash_{H1} ((b \Rightarrow \neg a) \Rightarrow (\neg a \Rightarrow b))$$
 if and only if
 $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)), (b \Rightarrow \neg a) \vdash_{H1} (\neg a \Rightarrow b))$ if and only if
 $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)), (b \Rightarrow \neg a), \neg a \vdash_{H1} b$
We now construct a proof of $(\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b)), (b \Rightarrow \neg a), \neg a \vdash_{H1} b$ as follows
 $B_1: (\neg a \Rightarrow ((b \Rightarrow \neg a) \Rightarrow b))$ hypothesis
 $B_2: (b \Rightarrow \neg a)$ hypothesis
 $B_3: \neg a$ hypothesis

 B_4 : $((b \Rightarrow \neg a) \Rightarrow b)) \quad B_1, B_3 \text{ and } (MP)$

$$B_5$$
: $b = B_2$, B_4 and (MP)

P2 (0.5pts) Let *H*2 be a complete the proof system obtained from the system *H*1 by extending the language to contain the negation \neg and adding one additional axiom:

A3
$$(B \Rightarrow ((\neg A \Rightarrow \neg B) \Rightarrow B))$$

Let H3 be the proof system obtained from the system H2 by adding additional axiom

A4
$$(B \Rightarrow ((\neg A \Rightarrow \neg B) \Rightarrow B))$$

Does Completeness Theorem hold for H3? Justify.

Solution

Yes, H3 is a complete proof system, as the added axiom A4 is a substitution of the axiom A1 of H2.