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Discrete Mathematics Basics

PART 5: Fundamental Proof Techniques

1. Mathematical Induction

2. The Pigeonhole Principle

3. The Diagonalization Principle



Mathematical Induction Applications
Examples

Counting Functions Theorem

For any finite, non empty sets A, B, there are

|B ||A |

functions that map A into B

Proof

We conduct the proof by Mathematical Induction over the

number of elements of the set A, i.e. over n ∈ N − {0},

where n = |A |



Counting Functions Theorem Proof

Base case n = 1

We have hence that |A | = 1 and let |B | = m, m ≥ 1, i.e.

A = {a} and B = {b1, ...bm}, m ≥ 1

We have to prove that there are

|B ||A | = m1

functions that map A into B

The base case holds as there are exactly m1 = m

functions f : {a} −→ {b1, ...bm} defined as follows

f1(a) = b1, f2(a) = b2, ...., fm(a) = bm



Counting Functions Theorem Proof

Inductive Step
Let A = A1 ∪ {a} for a < A1 and |A1| = n

By inductive assumption, there are mn functions

f : A −→ B = {b1, ...bm}

We group all functions that map A1 as follows

Group 1 contains all functions f1 such that

f1 : A −→ B

and they have the following property

f1(a) = b1, f1(x) = f(x) for all f : A −→ B and x ∈ A1

By inductive assumption there are mn functions in

the Group 1



Counting Functions Theorem Proof

Inductive Step
We define now a Group i, for 1 ≤ i ≤ m, m = |B | as follows
Each Group i contains all functions fi such that

fi : A −→ B

and they have the following property

fi(a) = b1, fi(x) = f(x) for all f : A −→ B and x ∈ A1

By inductive assumption there are mn functions in each of
the Group i
There are m = |B | groups and each of them has mn

elements, so all together there are

m(mn) = mn+1

functions, what ends the proof



Mathematical Induction Applications
Pigeonhole Principle

Pigeonhole Principle Theorem

If A and B are non-empy finite sets and |A | > |B |,

then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

n ∈ N − {0}, where n = |B | and B , ∅

Base case n = 1

Suppose |B | = 1, that is, B = {b}, and |A | > 1.

If f : A −→ {b},

then there are at least two distinct elements a1, a2 ∈ A , such
that f(a1) = f(a2) = {b}

Hence the function f is not one-to one



Pigeonhole Principle Proof

Inductive Assumption

We assume that any f : A −→ B is not one-to one provided

|A | > |B | and |B | ≤ n, where n ≥ 1

Inductive Step

Suppose that f : A −→ B is such that

|A | > |B | and |B | = n + 1

Choose some b ∈ B

Since |B | ≥ 2 we have that B − {b} , ∅



Pigeonhole Principle Proof

Consider the set f−1({b}) ⊆ A . We have two cases

1. |f−1({b})| ≥ 2

Then by definition there are a1, a2 ∈ A ,

such that a1 , a2 and f(a1) = f(a2) = b what proves that

the function f is not one-to one

2. |f−1({b})| ≤ 1

Then we consider a function

g : A − f−1({b}) −→ B − {b}

such that

g(x) = f(x) for all x ∈ A − f−1({b})



Pigeonhole Principle Proof

Observe that the inductive assumption applies to the

function g because |B − {b}| = n for |B | = n + 1 and

|A − f−1({b})| ≥ |A | − 1 for |f−1({b})| ≤ 1

We know that |A | > |B |, so

|A | − 1 > |B | − 1 = n = |B − {b}| and |A − f−1({b})| > |B − {b}|

By the inductive assumption applied to g we get that

g is not one -to one

Hence g(a1) = g(a2) for some distinct a1, a2 ∈ A − f−1({b}),

but then f(a1) = f(a2) and f is not one -to one either



Pigeonhole Principle Revisited

We now formulate a bit stronger version of the the pigeonhole

principle and present its slightly different proof

Pigeonhole Principle Theorem

If A and B are finite sets and |A | > |B |,

then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

n ∈ N, where n = |B |

Base case n = 0

Assume |B | = 0, that is, B = ∅. Then there is no function
f : A −→ B whatsoever; let alone a one-to one function



Pigeonhole Principle Revisited Proof

Inductive Assumption

Any function f : A −→ B is not one-to one provided

|A | > |B | and |B | ≤ n, n ≥ 0

Inductive Step

Suppose that f : A −→ B is such that

|A | > |B | and |B | = n + 1

We have to show that f is not one-to one under the
Inductive Assumption



Pigeonhole Principle Revisited Proof

We proceed as follows

We choose some element a ∈ A

Since |A | > |B |, and |B | = n + 1 ≥ 1 such choice is possible

Observe now that if there is another element a′ ∈ A such

that a′ , a and f(a) = f(a′), then obviously the function

f is not one-to one and we are done

So, suppose now that the chosen a ∈ A is the only

element mapped by f to f(a)



Pigeonhole Principle Revisited Proof

Consider then the sets A − {a} and B − {f(a)}

and a function

g : A − {a} −→ B − {f(a)}

such that
g(x) = f(x) for all x ∈ A − {a}

Observe that the inductive assumption applies to g because

|B − {f(a)}| = n and

|A − {a}| = |A | − 1 > |B | − 1 = |B − {f(a)}|



Pigeonhole Principle Revisited Proof

Hence by the inductive assumption the function

g is not one-to one

Therefore, there are two distinct elements elements of

A − {a} that are mapped by g to the same element of

B − {f(a)}

The function g is, by definition, such that

g(x) = f(x) for all x ∈ A − {a}

so the function f is not one-to one either

This ends the proof



Pigeonhole Principle Theorem Application

The Pigeonhole Principle Theorem is a quite simple fact but
is used in a large variety of proofs. We present here just one
simple application which we will use in later B2 Chapters

Path Definition

Let A , ∅ and R ⊆ A × A be a binary relation in the set A

A path in the binary relation R is a finite sequence

a1, . . . , an such that (ai , ai+1) ∈ R , for i = 1, 2, . . . n − 1and n ≥ 1

The path a1, . . . , an is said to be from a1 to an

The length of the path a1, . . . , an is n

The path a1, . . . , an is a cycle if ai are all distinct and also
(an, a1) ∈ R



Pigeonhole Principle Theorem Application

Path Theorem

Let R be a binary relation on a finite set A and let a, b ∈ A

If there is a path from a to b in R,

then there is a path of length at most |A |

Proof

Suppose that a1, . . . , an is the shortest path from a = a1

to b = an, that is, the path with the smallest length, and
suppose that n > |A |. By Pigeonhole Principle there is an
element in A that repeats on the path, say ai = aj for some
1 ≤ i < j ≤ n

But then a1, . . . , ai , aj+1, . . . , an is a shorter path from a to b,
contradicting a1, . . . , an being the shortest path



The Diagonalization Principle

Here is yet another Principle which justifies a new important

proof technique

Diagonalization Principle (Georg Cantor 1845-1918)

Let R be a binary relation on a set A , i.e.

R ⊆ A × A and let D, the diagonal set for R be as follows

D = {a ∈ A : (a, a) < R}

For each a ∈ A , let

Ra = {b ∈ A : (a, b) ∈ R}

Then D is distinct from each Ra



The Diagonalization Principle Applications

Here are two theorems whose proofs are the ”classic”
applications of the Diagonalization Principle

Cantor Theorem 2

Let N be the set on natural numbers

The set 2N is uncountable

Cantor Theorem 3

The set of real numbers in the interval [0, 1] is uncountable



Cantor Theorem 2 Proof

Cantor Theorem 2
Let N be the set on natural numbers

The set 2N is uncountable

Proof
We apply proof by contradiction method and the
Diagonalization Principle
Suppose that 2N is countably infinite. That is, we assume
that we can put sets of 2N in a one-to one sequence
{Rn}n∈N such that

2N = {R0, R1, R2, . . . }

We define a binary relation R ⊆ N × N as follows

R = {(i, j) : j ∈ Ri}

This means that for any i, j ∈ N we have that

(i, j) ∈ R if and only if j ∈ Ri



Cantor Theorem 2 Proof

In particular, for any i, j ∈ N we have that

(i, j) < R if and only if j < Ri

and the diagonal set D for R is

D = {n ∈ N : n < Rn}

By definition D ⊆ N, i.e.

D ∈ 2N = {R0, R1, R2, . . . }

and hence
D = Rk for some k ≥ 0



Cantor Theorem 2 Proof

We obtain contradiction by asking whether k ∈ Rk for

D = Rk

We have two cases to consider: k ∈ Rk or k < Rk

c1 Suppose that k ∈ Rk

Since D = {n ∈ N : n < Rn} we have that k < D

But D = Rk and we get k < Rk

Contradiction

c2 Suppose that k < Rk

Since D = {n ∈ N : n < Rn} we have that k ∈ D

But D = Rk and we get k ∈ Rk

Contradiction

This ends the proof



Cantor Theorem 3 Proof

Cantor Theorem 3
The set of real numbers in the interval [0, 1] is uncountable
Proof
We carry the proof by the contradiction method
We assume hat the set of real numbers in the interval
[0, 1] is infinitely countable
This means, by definition , that there is a function f such that

f : N
1−1,onto
−→ [01]

Let f be any such function. We write f(n) = dn and denote by

d0, d1, . . . , dn, . . . ,

a sequence of of all elements of [01] defined by f
We will get a contradiction by showing that one can always
find an element d ∈ [01] such that d , dn for all n ∈ N



Cantor Theorem 3 Proof

We use binary representation of real numbers

Hence we assume that all numbers in the interval [01] form a
one to one sequence

d0 = 0.a00 a01 a02 a03 a04 . . . . . .

d1 = 0.a10 a11 a12 a13 a04 . . . . . .

d2 = 0.a20 a21 a22 a23a0 . . . . . .

d3 = 0.a30 a31 a32 a33 a04 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

where all aij ∈ {0, 1}



Cantor Theorem 3 Proof

We use Cantor Diagonatization idea to define an element
d ∈ [01], such that d , dn for all n ∈ N as follows

For each element ann of the ”diagonal”

a00, a11, a22, . . . ann, . . . , . . .

of the sequence d0, d1, . . . , dn, . . . , of binary
representation of all elements of the interval [01] we define

an element bnn , ann as

bnn =

{
0 if ann = 1
1 if ann = 0



Cantor Theorem 3 Proof

Given such defined sequence

b00, b11, b22, b33, b44, . . . . . .

We now construct a real number d as

d = b00 b11 b22 b33 b44 . . . . . .

Obviously d ∈ [01] and by the Diagonatization Principle

d , dn for all n ∈ N

Contradiction

This ends the proof



Cantor Theorem 3 Proof

Here is another proof of the Cantor Theorem 3

It uses, after Cantor the decimal representation of real
numbers

In this case we assume that all numbers in the interval [01]
form a one to one sequence

d0 = 0.a00 a01 a02 a03 a04 . . . . . .

d1 = 0.a10 a11 a12 a13 a04 . . . . . .

d2 = 0.a20 a21 a22 a23a0 . . . . . .

d3 = 0.a30 a31 a32 a33 a04 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

where all aij ∈ {0, 1, 2 . . . 9}



Cantor Theorem 3 Proof

For each element ann of the ”diagonal”

a00, a11, a22, . . . ann, . . . , . . .

we define now an element (this is not the only possible
definition) bnn , ann as

bnn =

{
2 if ann = 1
1 if ann , 1

We construct a real number d ∈ [01] as

d = b00 b11 b22 b33 b44 . . . . . .


