cse581 COMPUTER SCIENCE FOUNDAMENTALS: THEORY

Professor Anita Wasilewska

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Lecture 4

DISCRETE MATHEMATICS BASICS

Discrete Mathematics Basics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

PART 5: Some Fundamental Proof Techniques

Theory of Computation BASICS

PART 6: Closures and Algorithms PART 7: Alphabets and languages PART 8: Finite Representation of Languages **Discrete Mathematics Basics**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PART 5: Fundamental Proof Techniques

- 1. Mathematical Induction
- 2. The Pigeonhole Principle
- 3. The Diagonalization Principle

Mathematical Induction Applications Examples

Counting Functions Theorem

For any finite, non empty sets A, B, there are $|B|^{|A|}$

functions that map A into B

Proof

We conduct the proof by Mathematical Induction over the **number of elements** of the set A, i.e. over $n \in N - \{0\}$, where n = |A|

Counting Functions Theorem Proof

Base case n = 1

We have hence that |A| = 1 and let |B| = m, $m \ge 1$, i.e.

 $A = \{a\}$ and $B = \{b_1, ..., b_m\}, m \ge 1$

We have to prove that there are

 $|B|^{|A|} = m^1$

functions that map A into B

The **base case** holds as there are exactly $m^1 = m$ functions $f : \{a\} \longrightarrow \{b_1, ..., b_m\}$ defined as follows

$$f_1(a) = b_1, f_2(a) = b_2, ..., f_m(a) = b_m$$

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Counting Functions Theorem Proof

Inductive Step

Let $A = A_1 \cup \{a\}$ for $a \notin A_1$ and $|A_1| = n$ By inductive assumption, there are m^n functions

 $f: A \longrightarrow B = \{b_1, ..., b_m\}$

We **group** all functions that map A_1 as follows **Group** 1 contains all functions f_1 such that

 $f_1: A \longrightarrow B$

and they have the following property

 $f_1(a) = b_1, f_1(x) = f(x)$ for all $f: A \longrightarrow B$ and $x \in A_1$

By inductive assumption there are *mⁿ* functions in the **Group** 1

Counting Functions Theorem Proof

Inductive Step

We define now a **Group** *i*, for $1 \le i \le m$, m = |B| as follows Each **Group** *i* contains all functions f_i such that

 $f_i: A \longrightarrow B$

and they have the following property

 $f_i(a) = b_1, f_i(x) = f(x)$ for all $f : A \longrightarrow B$ and $x \in A_1$

By inductive assumption there are m^n functions in each of the **Group** *i*

There are m = |B| groups and each of them has m^n elements, so all together there are

 $m(m^n)=m^{n+1}$

functions, what ends the proof

Mathematical Induction Applications Pigeonhole Principle

Pigeonhole Principle Theorem

If A and B are non-empy finite sets and |A| > |B|, then there is no one-to one function from A to B **Proof**

We conduct the proof by by Mathematical Induction over

```
n \in N - \{0\}, where n = |B| and B \neq \emptyset
```

Base case n = 1

Suppose |B| = 1, that is, $B = \{b\}$, and |A| > 1.

If $f: A \longrightarrow \{b\}$,

then there are at least two distinct elements $a_1, a_2 \in A$, such that $f(a_1) = f(a_2) = \{b\}$

Hence the function f is not one-to one

Pigeonhole Principle Proof

Inductive Assumption

We assume that any $f : A \longrightarrow B$ is **not one-to one** provided

|A| > |B| and $|B| \le n$, where $n \ge 1$

Inductive Step

Suppose that $f: A \longrightarrow B$ is such that

|A| > |B| and |B| = n + 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Choose some $b \in B$

Since $|B| \ge 2$ we have that $B - \{b\} \neq \emptyset$

Pigeonhole Principle Proof

Consider the set $f^{-1}(\{b\}) \subseteq A$. We have two cases

1. $|f^{-1}(\{b\})| \ge 2$

Then by definition there are $a_1, a_2 \in A$,

such that $a_1 \neq a_2$ and $f(a_1) = f(a_2) = b$ what proves that the function f **is not** one-to one

2. $|f^{-1}(\{b\})| \le 1$

Then we consider a function

$$g: A - f^{-1}(\{b\}) \longrightarrow B - \{b\}$$

such that

$$g(x) = f(x)$$
 for all $x \in A - f^{-1}(\{b\})$

Pigeonhole Principle Proof

Observe that the inductive assumption **applies** to the function g because $|B - \{b\}| = n$ for |B| = n + 1 and

$$|A - f^{-1}(\{b\})| \ge |A| - 1$$
 for $|f^{-1}(\{b\})| \le 1$

We know that |A| > |B|, so

 $|A| - 1 > |B| - 1 = n = |B - \{b\}|$ and $|A - f^{-1}(\{b\})| > |B - \{b\}|$

By the inductive assumption applied to g we get that

g is not one -to one

Hence $g(a_1) = g(a_2)$ for some distinct $a_1, a_2 \in A - f^{-1}(\{b\})$, but then $f(a_1) = f(a_2)$ and f is not one -to one either

We now formulate a bit stronger version of the the pigeonhole principle and present its slightly different proof

Pigeonhole Principle Theorem

If A and B are finite sets and |A| > |B|, then **there is no** one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

 $n \in N$, where n = |B|

Base case n = 0

Assume |B| = 0, that is, $B = \emptyset$. Then **there is no** function $f : A \longrightarrow B$ whatsoever; let alone a one-to one function

Inductive Assumption Any function $f: A \longrightarrow B$ is **not one-to one** provided |A| > |B| and $|B| \le n$, $n \ge 0$ Inductive Step Suppose that $f: A \longrightarrow B$ is such that |A| > |B| and |B| = n + 1

We have to show that f is **not one-to one** under the Inductive Assumption

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We proceed as follows We **choose** some element $a \in A$ Since |A| > |B|, and $|B| = n + 1 \ge 1$ such choice is possible

Observe now that if there is another element $a' \in A$ such that $a' \neq a$ and f(a) = f(a'), then obviously the function

f is not one-to one and we are done

So, **suppose now** that the chosen $a \in A$ is **the only** element mapped by **f** to **f**(a)

Consider then the sets $A - \{a\}$ and $B - \{f(a)\}$ and a function

$$g: A - \{a\} \longrightarrow B - \{f(a)\}$$

such that

$$g(x) = f(x)$$
 for all $x \in A - \{a\}$

Observe that the inductive assumption applies to g because

 $|B - \{f(a)\}| = n$ and

 $|A - \{a\}| = |A| - 1 > |B| - 1 = |B - \{f(a)\}|$

Hence by the inductive assumption the function

g is not one-to one

Therefore, there are two distinct elements elements of

 $A - \{a\}$ that are mapped by g to the same element of $B - \{f(a)\}$

The function g is, by definition, such that

g(x) = f(x) for all $x \in A - \{a\}$

so the function f is **not one-to one** either This **ends** the proof **Pigeonhole Principle Theorem Application**

The **Pigeonhole Principle Theorem** is a quite simple fact but is used in a large variety of proofs. We present here just one simple application which we will use in later **B2** Chapters

Path Definition

Let $A \neq \emptyset$ and $R \subseteq A \times A$ be a binary relation in the set A A **path** in the binary relation R is a finite sequence

 a_1, \ldots, a_n such that $(a_i, a_{i+1}) \in R$, for $i = 1, 2, \ldots, n-1$ and $n \ge 1$

The path a_1, \ldots, a_n is said to be from a_1 to a_n The **length** of the path a_1, \ldots, a_n is n The path a_1, \ldots, a_n is a **cycle** if a_i are all distinct and also $(a_n, a_1) \in R$ **Pigeonhole Principle Theorem Application**

Path Theorem

Let R be a binary relation on a finite set A and let $a, b \in A$ If there is a **path** from a to b in R, then there is a **path** of length at most |A|

Proof

Suppose that $a_1, ..., a_n$ is the **shortest path** from $a = a_1$ to $b = a_n$, that is, the path with the smallest length, and suppose that n > |A|. By **Pigeonhole Principle** there is an element in A that repeats on the path, say $a_i = a_j$ for some $1 \le i < j \le n$

But then $a_1, \ldots, a_i, a_{j+1}, \ldots, a_n$ is a shorter path from a to b, contradicting a_1, \ldots, a_n being the **shortest path**

The Diagonalization Principle

Here is yet another Principle which justifies a new important proof technique

Diagonalization Principle (Georg Cantor 1845-1918)

Let R be a binary relation on a set A, i.e.

 $R \subseteq A \times A$ and let D, the diagonal set for R be as follows

 $D = \{a \in A : (a, a) \notin R\}$

For each $a \in A$, let

 $R_a = \{b \in A : (a, b) \in R\}$

Then D is **distinct** from each R_a

The Diagonalization Principle Applications

Here are two theorems whose proofs are the "classic" applications of the Diagonalization Principle

Cantor Theorem 2

Let N be the set on natural numbers

The set 2^{*N*} is uncountable

Cantor Theorem 3

The set of real numbers in the interval [0, 1] is **uncountable**

Cantor Theorem 2

Let N be the set on natural numbers

The set 2^N is uncountable

Proof

We apply proof by contradiction method and the Diagonalization Principle Suppose that 2^N is **countably infinite**. That is, we assume that we can put sets of 2^N in a one-to one sequence $\{R_n\}_{n \in N}$ such that

 $2^N = \{R_0, R_1, R_2, \ldots\}$

We define a binary relation $R \subseteq N \times N$ as follows

 $R = \{(i,j) : j \in R_i\}$

This means that for any $i, j \in N$ we have that

 $(i, j) \in \mathbb{R}$ if and only if $j \in \mathbb{R}_i$

In particular, for any $i, j \in N$ we have that

 $(i, j) \notin R$ if and only if $j \notin R_i$

and the **diagonal set** D for R is

 $D = \{n \in N : n \notin R_n\}$

By definition $D \subseteq N$, i.e.

$$D \in 2^N = \{R_0, R_1, R_2, \ldots\}$$

and hence

 $D = R_k$ for some $k \ge 0$

We obtain **contradiction** by asking whether $k \in R_k$ for

 $D = R_k$

We have two cases to consider: $k \in R_k$ or $k \notin R_k$

c1 Suppose that $k \in R_k$

Since $D = \{n \in N : n \notin R_n\}$ we have that $k \notin D$

But $D = R_k$ and we get $k \notin R_k$

Contradiction

c2 Suppose that $k \notin R_k$

Since $D = \{n \in N : n \notin R_n\}$ we have that $k \in D$

But $D = R_k$ and we get $k \in R_k$

Contradiction

This ends the proof

Cantor Theorem 3

The set of real numbers in the interval [0, 1] is **uncountable**

Proof

We carry the proof by the contradiction method

We assume hat the set of real numbers in the interval

[0, 1] is infinitely countable

This means, by definition , that there is a function f such that $f: N \xrightarrow{1-1,onto} [01]$

Let f be any such function. We write $f(n) = d_n$ and denote by

$$d_0, d_1, \ldots, d_n, \ldots,$$

a sequence of of **all elements** of [01] **defined** by f We will get a **contradiction** by showing that one can always find an element $d \in [01]$ such that $d \neq d_n$ for all $n \in N$

We use **binary** representation of real numbers Hence we assume that all numbers in the interval [01] form a one to one sequence

> $d_0 = 0.a_{00} a_{01} a_{02} a_{03} a_{04} \dots \dots$ $d_1 = 0.a_{10} a_{11} a_{12} a_{13} a_{04} \dots \dots$ $d_2 = 0.a_{20} a_{21} a_{22} a_{23} a_{0} \dots \dots$ $d_3 = 0.a_{30} a_{31} a_{32} a_{33} a_{04} \dots \dots$

> > ▲□▶▲□▶▲□▶▲□▶ □ のQ@

where all $a_{ij} \in \{0, 1\}$

We use Cantor Diagonatization idea to define an element $d \in [01]$, such that $d \neq d_n$ for all $n \in N$ as follows For each element a_{nn} of the "diagonal"

 $a_{00}, a_{11}, a_{22}, \ldots a_{nn}, \ldots, \ldots$

of the sequence $d_0, d_1, \ldots, d_n, \ldots$, of binary representation of all elements of the interval [01] we define an element $b_{nn} \neq a_{nn}$ as

$$b_{nn} = \begin{cases} 0 & \text{if } a_{nn} = 1\\ 1 & \text{if } a_{nn} = 0 \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Given such defined sequence

 $b_{00}, b_{11}, b_{22}, b_{33}, b_{44}, \ldots$

We now construct a real number d as

 $d = b_{00} \ b_{11} \ b_{22} \ b_{33} \ b_{44} \ \ldots \ \ldots$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Obviously $d \in [01]$ and by the Diagonatization Principle $d \neq d_n$ for all $n \in N$

Contradiction

This ends the proof

Here is another proof of the Cantor Theorem 3

It uses, after Cantor the **decimal representation** of real numbers

In this case we assume that all numbers in the interval [01] form a one to one sequence

$$d_0 = 0.a_{00} a_{01} a_{02} a_{03} a_{04} \dots \dots$$

$$d_1 = 0.a_{10} a_{11} a_{12} a_{13} a_{04} \dots \dots$$

$$d_2 = 0.a_{20} a_{21} a_{22} a_{23} a_{0} \dots \dots$$

$$d_3 = 0.a_{30} a_{31} a_{32} a_{33} a_{04} \dots \dots$$

$$\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$$

where all $a_{ij} \in \{0, 1, 2...9\}$

For each element ann of the "diagonal"

 $a_{00}, a_{11}, a_{22}, \ldots a_{nn}, \ldots, \ldots$

we define now an element (this is not the only possible definition) $b_{nn} \neq a_{nn}$ as

$$b_{nn} = \begin{cases} 2 & \text{if } a_{nn} = 1\\ 1 & \text{if } a_{nn} \neq 1 \end{cases}$$

We construct a real number $d \in [01]$ as

$$d = b_{00} \ b_{11} \ b_{22} \ b_{33} \ b_{44} \ \ldots \ \ldots$$