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Discrete Mathematics Basics

PART 4: Finite and Infinite Sets



Equinumerous Sets

Equinumerous sets

We call two sets A and B are equinumerous

if and only if there is a bijection function f : A −→ B,

i.e. there is f is such that

f : A
1−1,onto
−→ B

Notation

We write A ∼ B to denote that the sets A and B are
equinumerous and write symbolically

A ∼ B if and only if f : A
1−1,onto
−→ B



Equinumerous Relation

Observe that for any set X, the relation ∼

is an equivalence on the set 2X , i.e.

∼ ⊆ 2X × 2X

is reflexive, symmetric and transitive and for any set A

the equivalence class

[A ] = {B ∈ 2X : A ∼ B }

describes for finite sets all sets that have the same

number of elements as the set A



Equinumerous Relation

Observe also that the relation ∼ when considered for

any sets A ,B is not an equivalence relation as its domain

would have to be the set of all sets that does not exist

We extend the notion of ”the same number of elements”

to any sets by introducing the notion of cardinality of sets



Cardinality of Sets

Cardinality definition

We say that A and B have the same cardinality if and only
if they are equipotent, i.e.

A ∼ B

Cardinality notations

If sets A and B have the same cardinality we denote it as:

|A | = |B | or cardA = cardB



Cardinality of Sets

Cardinality

We put the above together in one definition

|A | = |B | if and only if

there is a function f is such that

f : A
1−1,onto
−→ B



Finite and Infinite Sets

Definition

A set A is finite if and only if

there is n ∈ N and there is a function

f : {0, 1, 2, ..., n − 1}
1−1,onto
−→ A

In this case we have that

|A | = n

and say that the set A has n elements



Finite and Infinite Sets

Definition

A set A is infinite if and only if A is not finite

Here is a theorem that characterizes infinite sets

Dedekind Theorem

A set A is infinite if and only if

there is a proper subset B of the set A such that

|A | = |B |



Infinite Sets Examples

E1 Set N of natural numbers is infinite

Consider a function f given by a formula

f(n) = 2n for all n ∈ N

Obviously

f : N
1−1,onto
−→ 2N

By Dedekind Theorem the set N is infinite as the set 2N of

even numbers are a proper subset of natural numbers N



Infinite Sets Examples

E2 Set R of real numbers is infinite

Consider a function f given by a formula

f(x) = 2x for all x ∈ R

Obviously

f : R
1−1,onto
−→ R+

By Dedekind Theorem the set R is infinite as the set

R+ of positive real numbers are a proper subset of

real numbers R



Countably Infinite Sets
Cardinal Number ℵ0

Definition

A set A is called countably infinite if and only if it has the
same cardinality as the set N natural numbers, i.e. when

|A | = |N|

The cardinality of natural numbers N is called

ℵ0 (Aleph zero) and we write

|N| = ℵ0



Countably Infinite Sets

Definition

For any set A,

|A | = ℵ0 if and only if |A | = |N|

Directly from definitions we get the following

Fact 1

A set A is countably infinite if and only if |A | = ℵ0



Countably Infinite Sets

Fact 2

A set A is countably infinite if and only if

all elements of A can be put in a 1-1 sequence

Other name for countably infinite set is

infinitely countable set and we will use both names



Countably Infinite Sets

In a case of an infinite set A and not 1-1 sequence

we can ”prune” all repetitive elements to get a 1-1 sequence,

i.e. we prove the following

Fact 2a

An infinite set A is countably infinite if and only if

all elements of A can be put in a sequence



Countable and Uncountable Sets

Definition

A set A is countable if and only if A is finite

or countably infinite

Fact 3

A set A is countable if and only if A is finite

or |A | = ℵ0, i.e. |A | = |N|



Countable and Uncountable Sets

Definition

A set A is uncountable if and only if A is not countable

Fact 4

A set A is uncountable if and only if A is infinite and

|A | , ℵ0, i.e. |A | , |N|

Fact 5

A set A is uncountable if and only if its elements

can not be put into a sequence

Proof proof follows directly from definition and Facts 2, 4



Countably Infinite Sets

We have proved the following

Fact 2a

An infinite set A is countably infinite if and only if

all elements of A can be put in a sequence

We use it now to prove two theorems about countably infinite
sets



Countably Infinite Sets

Union Theorem

Union of two countably infinite sets is a countably infinite set

Proof

Let A, B be two disjoint infinitely countable sets

By Fact 2 we can list their elements as 1-1 sequences

A : a0, a1, a2, . . . and B : b0, b1, b2, . . .

and their union can be listed as 1-1 sequence

A ∪ B : a0, b0, a1, b1, a2, b2, . . . , . . .

In a case not disjoint sets we proceed the same and then

”prune” all repetitive elements to get a 1-1 sequence



Countably Infinite Sets

Product Theorem
Cartesian Product of two countably infinite sets is a
countably infinite set
Proof
Let A, B be two infinitely countable sets
By Fact 2 we can list their elements as 1-1 sequences

A : a0, a1, a2, . . . and B : b0, b1, b2, . . .

We list their Cartesian Product A × B as an infinite table
(a0, b0), (a0, b1), (a0, b2), (a0, b3), . . .

(a1, b0), (a1, b1), (a1, b2), (a1, b3), . . .

(a2, b0), (a2, b1), (a2, b2), (a2, b3), . . .

(a3, b0), (a3, b1), (a3, b2), (a3, b3), . . .

. . . , . . . , . . . , . . . , . . . , . . . ,



Cartesian Product Theorem Proof

Observe that even if the table is infinite each of its

diagonals is finite

(a0, b0), (a0, b1), (a0, b2), (a0, b3), (a0, b4), . . ., . . .

(a1, b0), (a1, b1), (a1, b2), (a1, b3), . . .

(a2, b0), (a2, b1), (a2, b2), (a2, b3), . . .

(a3, b0), (a3, b1), (a3, b2), (a3, b3), . . .

. . . , . . . , . . . , . . . ,

We list now elements of A × B one diagonal after the other

Each diagonal is finite, so now we know when one finishes

and other starts



Cartesian Product Theorem Proof

A × B becomes now the following sequence

(a0, b0),

(a1, b0), (a0, b1),

(a2, b0), (a1, b1), (a0, b2),

(a3, b0), (a2, b1), (a1, b2), (a0, b3),

(a3, b1), (a2, b2), (a1, b3), (a0, b4), . . .,

. . . , . . . , . . . , . . . ,

We prove by Mathematical induction that the sequence is well

defined for all n ∈ N and hence that |A × B | = |N|

It ends the proof of the Product Theorem



Union and Cartesian Product Theorems

Observe that the both Union and Product Theorems

can be generalized by Mathematical Induction to the case of

Union or Cartesian Products of any finite number of sets



Uncountable Sets

Theorem 1

The set R of real numbers is uncountable

Proof

We first prove ( homework problem 1.5.11) the following

Lemma 1

The set of all real numbers in the interval [0,1] is
uncountable

Then we use the Lemma 2 below (to be proved it as an

exercise) and the fact that [0, 1] ⊆ R and this ends the proof

Lemma 2 For any sets A,B such that B ⊆ A and B is
uncountable we have that also the set A is uncountable



Special Uncountable Sets

Cardinal Number C - Continuum

We denote by C the cardinality of the set R of real numbers

C is a new cardinal number called continuum and we write

|R | = C

Definition

We say that a set A has cardinality C (continuum)

if and only if |A | = |R |

We write it
|A | = C



Sets of Cardinality C

Example

The set of positive real numbers R+ has cardinality C

because a function f given by the formula

f(x) = 2x for all x ∈ R

is 1-1 function and maps R onto the set R+



Sets of Cardinality C

Theorem 2

The set 2N of all subsets of natural numbers is uncountable

Proof

We will prove it in the PART 5.

Theorem 3

The set 2N has cardinality C, i.e.

|2N | = C

Proof

The proof of this theorem is not trivial and is not in the scope
of this course



Cantor Theorem

Cantor Theorem (1891)

For any set A ,
|A | < |2A |

where we define

|A | ≤ |B | if and only if there is a function f : A
1−1
−→ B

|A | < |B | if and only if |A | ≤ |B | and |A | , |B |



Cantor Theorem

Directly from the definition we have the following

Fact 6

If A ⊆ B then |A | ≤ |B |

We know that |N| = ℵ0, C = |R |, and N ⊆ R hence from

Fact 6, ℵ0 ≤ C , but ℵ0 , C, as the set N is countable and

the set R is uncountable

Hence we proved

Fact 7
ℵ0 < C



Uncountable Sets of Cardinality Greater then C

By Cantor Theorem we have that

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < . . .

All sets
P(P(N)), P(P(P(N))) . . .

are uncountable with cardinality greater then C, as by

Theorem 3, Fact 7, and Cantor Theorem we have that

ℵ0 < C < |P(P(N))| < |P(P(P(N)))| < . . .



Countable and Uncountable Sets

Here are some basic Theorem and Facts

Union 1

Union of two infinitely countable (of cardinality ℵ0) sets is

an infinitely countable set

This means that
ℵ0 + ℵ0 = ℵ0

Union 2

Union of a finite (of cardinality n) set and infinitely countable
( of cardinality ℵ0 ) set is an infinitely countable set

This means that
ℵ0 + n = ℵ0



Countable and Uncountable Sets

Union 3

Union of an infinitely countable (of cardinality ℵ0) set

and a set of the same cardinality as real numbers i.e. of the
cardinality C has the same cardinality as the set of real
numbers

This means that
ℵ0 + C = C

Union 4 Union of two sets of cardinality the same as real
numbers (of cardinality C ) has the same cardinality as the

set of real numbers

This means that
C+ C = C



Countable and Uncountable Sets

Product 1

Cartesian Product of two infinitely countable sets is an

infinitely countable set

ℵ0 · ℵ0 = ℵ0

Product 2

Cartesian Product of a non-empty finite set and an

infinitely countable set is an infinitely countable set

n · ℵ0 = ℵ0 for n > 0



Countable and Uncountable Sets

Product 3

Cartesian Product of an infinitely countable set and an
uncountable set of cardinality C has the cardinality C

ℵ0 · C = C

Product 4

Cartesian Product of two uncountable sets of cardinality C
has the cardinality C

C · C = C



Countable and Uncountable Sets

Power 1

The set 2N of all subsets of natural numbers (or of any
countably infinite set) is uncountable set of cardinality C , i.e.
has the same cardinality as the set of real numbers

2ℵ0 = C

Power 2

There are C of all functions that map N into N

Power 3

There are C possible sequences that can be form out of an
infinitely countable set

ℵ
ℵ0
0 = C



Countable and Uncountable Sets

Power 4

The set of all functions that map R into R has the cardinality
CC

Power 5

The set of all real functions of one variable has the same
cardinality as the set of all subsets of real numbers

CC = 2C



Countable and Uncountable Sets

Theorem 4
n < ℵ0 < C

Theorem 5

For any non empty, finite set A , the set A∗ of all finite
sequences formed out of A is countably infinite, i.e

|A∗| = ℵ0

We write it as

If |A | = n, n ≥ 1, then |A∗| = ℵ0



Simple Short Questions



Simple Short Questions

Q1 Set A is uncountable iff A ⊆ R (R is the set of real
numbers)

Q2 Set A is countable iff N ⊆ A where N is the set of
natural numbers

Q3 The set 2N is infinitely countable

Q4 The set A = {{n} ∈ 2N : n2 + 1 ≤ 15} is infinite

Q5 The set A = {({n}, n) ∈ 2N × N : 1 ≤ n ≤ n2} is infinitely
countable

Q6 Union of an infinite set and a finite set is an infinitely
countable set



Answers to Simple Short Questions

Q1 Set A is uncountable if and only if A ⊆ R ( R is the
set of real numbers)

NO

The set 2R is uncountable, as |R | < |2R | by Cantor
Theorem, but 2R is not a subset of R

Also for example. N ⊆ R and N is not uncountable



Answers to Simple Short Questions

Q2 Set A is countable if and only if N ⊆ A , where N
is the set of natural numbers

NO

For example, the set A = {∅} is c
¯
ountable as it is finite, but

N * {∅}

In fact, A can be any finite set

or any A can be any infinite set that does not include N,
for example,

A = {{n} : n ∈ N}



Answers to Simple Short Questions

Q3 The set 2N is infinitely countable

NO

|2N | = |R | = C and hence 2N is uncountable

Q4

The set A = {{n} ∈ 2N : n2 + 1 ≤ 15} is infinite

NO

The set {n ∈ N : n2 + 1 ≤ 15} = {0, 1, 2, 3},

Hence the set A = {{0}, {1}, {2}, {3}} is finite



Answers to Simple Short Questions

Q5 The set A = {({n}, n) ∈ 2N × N : 1 ≤ n ≤ n2} is infinitely
countable (countably infinite)

YES

Observe that the condition n ≤ n2 holds for all n ∈ N,

so the set B = {n : n ≤ n2} is nfinitely countable

The set C = {({n} ∈ 2N : 1 ≤ n ≤ n2} is also

infinitely countable as the function given by a formula

f(n) = {n} is 1 − 1 and maps B onto C, i.e |B | = |C |

The set A = C × B is hence infinitely countable as the
Cartesian Product of two infinitely countable sets


