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Equivalence Relation

Equivalence relation

A binary relation R ⊆ A × A is an equivalence relation

defined in the set A if and only if it is reflexive, symmetric

and transitive

Symbols

Equivalence relation is denoted in literature by symbols

∼, ≈ or ≡

We will use the symbol ≈ to denote it



Equivalence Relation

Equivalence class

Let ≈ ⊆ A × A be an equivalence relation on A

The set E(a) = {b ∈ A : a ≈ b} is called an equivalence

class with a representant a

Observe that by symmetry of the equivalence relation

we have that

E(a) = {b ∈ A : a ≈ b} = {a ∈ A : b ≈ a} = E(b)

This proves the following

Equivalence class Property

Equivalence class is independent from the choice of its

representants



Equivalence Classes

Equivalence Class Symbol

Let ≈ ⊆ A × A be an equivalence relation on A

The equivalence classes are usually denoted by

[a] = {b ∈ A : a ≈ b}

The element a is called a representative of the equivalence

class [a] defined in A



Partitions

Partition

A family of sets P ⊆ P(A) is called a partition of the set A
if and only if the following conditions hold

1. ∀X∈P (X , ∅)
i.e. all sets in the partition are non-empty

2. ∀X ,Y∈P (X ∩ Y = ∅)
i.e. all sets in the partition are disjoint

3.
⋃

P = A
i.e. the union of all sets from P is the set A



Equivalence and Partitions

Notation

A/ ≈ denotes the set of all equivalence classes of the

equivalence relation ≈ , i.e.

A/ ≈ = {[a] : a ∈ A }

We prove the following theorem

Theorem 1

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A



Equivalence and Partitions

Theorem 1 (full statement)

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A , i.e.

1. ∀[a]∈A/≈ ([a] , ∅)
i.e. all equivalence classes are non-empty

2. ∀[a],[b]∈A/≈ ([a] ∩ [b] = ∅)
i.e. all different equivalence classes are disjoint

3.
⋃

A/ ≈= A
i.e the union of all equivalence classes is equal to the set A



Partition and Equivalence

We also prove a following

Theorem 2

For any partition

P ⊆ P(A) of the set A

one can construct a binary relation R on A such that

R is an equivalence on A and its equivalence classes are

exactly the sets of the partition P



Partition and Equivalence

Observe that we can consider, for any binary relation R on

s set A the sets that ”look” like equivalence classes i.e. that

are defined as follows:

R(a) = {b ∈ A ; aRb} = {b ∈ A ; (a, b) ∈ R}

Fact 1

If the relation R is an equivalence on A,

then the family {R(a)}a∈A is a partition of A

Fact 2

If the family {R(a)}a∈A is not a partition of A ,

then R is not an equivalence on A



Proof of Theorem 1

Theorem 1

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A

Proof

Consider aA/ ≈ = {[a] : a ∈ A }

We must show that all sets in P are nonempty, disjoint, and

together exhaust the set A



Proof of Theorem 1

1. All equivalence classes are nonempty,

This holds as a ∈ [a] for all a ∈ A , reflexivity of equivalence
relation

2. All different equivalence classes are disjoint

We carry the proof by contradiction. Assume [a] , [b] and

[a] ∩ [b] , ∅, thus there is an element c

such that c ∈ [a] and c ∈ [b]

Hence a ≈ c and c ≈ b, hence by transitivity a ≈ b

and so [a] = [b] what contradicts the assumption that

[a] , [b]



Proof of the Theorem 2

Now we are going to prove that the Theorem 1 can be
reversed, namely that the following is also true

Theorem 2

For any partition
P ⊆ P(A)

of A , one can construct a binary relation R on A

such that R is an equivalence and its equivalence classes

are exactly the sets of the partition P

Proof

We define a binary relation R as follows

R = {(a, b) ∈ A × A : a, b ∈ X for some X ∈ P}



Short Review

PART 3: Equivalence Relations - Short and Long Questions



Short Questions

Q1 Let R ⊆ A × A for A , ∅, then the set

[a] = {b ∈ A : (a, b) ∈ R}

is an equivalence class with a representative a

Q2 The set
{(∅, ∅), ({a}, {a}), (3, 3)}

represents a transitive relation



Short Questions

Q3 There is an equivalence relation on the set

A = {{0}, {0, 1}, 1, 2}

with 3 equivalence classes

Q4 Let A , ∅ be such that there are exactly

25 partitions of A

It is possible to define 20 equivalence relations on A



Short Questions Answers

Q1 Let R ⊆ A × A then the set

[a] = {b ∈ A : (a, b) ∈ R}

is an equivalence class with a representative a

NO The set [a] = {b ∈ A : (a, b) ∈ R} is an equivalence
class only when the relation R is an equivalence relation

Q2 The set
{(∅, ∅), ({a}, {a}), (3, 3)}

represents a transitive relation

YES Transitivity condition is vacuously true



Short Questions Answers

Q3 There is an equivalence relation on

A = {{0}, {0, 1}, 1, 2}

with 3 equivalence classes

YES For example, a relation R defined by the partition

P = {{{0}}, {{0, 1}}, {1, 2}}

and so By proof of Theorem 2

R = {(a, b) : a, b ∈ X for some X ∈ P}

i.e. a = b = {0} or a = b = {0, 1} or (a = 1 and b= 2)



Short Questions Answers

Q4

Let A , ∅ be such that there are exactly 25 partitions of A

It is possible to define 2 equivalence relations on A

YES By Theorem 2 one can define up to 25 (as many as
partitions) of equivalence classes



Equivalence Relations

Some Long Questions



Some Long Questions

Q1 Consider a function f : A −→ B

Show that R = {(a, b) ∈ A × A : f(a) = f(b)}

is an equivalence relation on A

Q2 Let f : N −→ N be such that

f(n) =
{

1 if n ≤ 6
2 if n > 6

Find equivalence classes of R from Q1 for this particular
function f



Long Questions Solutions

Q1 Consider a function f : A −→ B

Show that

R = {(a, b) ∈ A × A : f(a) = f(b)}

is an equivalence relation on A

Solution

1. R is reflexive

(a, a) ∈ R for all a ∈ A because f(a) = f(a)



Long Questions Solutions

2. R is symmetric

Let (a, b) ∈ R, by definition f(a) = f(b) and f(b) = f(a)

Consequently (b , a) ∈ R

3. R is transitive

For any a, b , c ∈ A we get that f(a) = f(b) and f(b) = f(c)

implies that f(a) = f(c)



Long Questions Solutions

Q2 Let f : N −→ N be such that

f(n) =
{

1 if n ≤ 6
2 if n > 6

Find equivalence classes of

R = {(a, b) ∈ A × A : f(a) = f(b)}

for this particular f



Long Questions Solutions

Solution

We evaluate

[0] = {n ∈ N : f(0) = f(n)} = {n ∈ N : f(n) = 1}

= {n ∈ N : n ≤ 6}

[7] = {n ∈ N : f(7) = f(n)} = {n ∈ N : f(n) = 2}

= {n ∈ N : n > 6}

There are two equivalence classes:

A1 = {n ∈ N : n ≤ 6}, A2 = {n ∈ N : n > 6}



Discrete Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATIONS: Order Relations



Order Relations

We introduce now of another type of important binary
relations: the order relations

Definition

R ⊆ A × A is an order relation on A iff R is 1.Reflexive, 2.
Antisymmetric, and 3. Transitive, i.e. the following conditions
are satisfied

1. ∀a∈A (a, a) ∈ R

2. ∀a,b∈A ((a, b) ∈ R ∩ (b , a) ∈ R ⇒ a = b)

3. ∀a,b ,c∈A ((a, b) ∈ R ∩ (b , c) ∈ R ⇒ (a, c) ∈ R)



Order Relations

Definition

R ⊆ (A × A) is a total order on A if and only if R is an

order and any two elements of A are comparable, i.e.

additionally the following condition is satisfied

4. ∀a,b∈A ((a, b) ∈ R ∪ (b , a) ∈ R)

Names

order relation is also called historically a partial order

total order is also called historically a linear order



Order Relations

Notations

order relations are usually denoted by ≤, or when we want to

make a clear distinction from the natural order in sets of

numbers we denote it by �

Remember

We use ≤ as the order relation symbol, it is a symbol for

any order relation, not a the natural order in sets of

numbers, unless we say so



Posets

Definition

Given A , ∅ and an order relation defined on A

A tuple
(A ,≤)

is called a poset

Name poset stands historically for Partially Ordered Set

A Diagram of is a graphical representation of a poset and

is defined as follows



Posets

A Diagram of a poset (A ,≤) is a simplified graph
constructed as follows

1. As the order relation ≤ is reflexive, i.e. (a, a) ∈ R for
all a ∈ A , we draw a point with symbol a instead of a point
with symbol a with the loop

2. As the order relation ≤ is antisymmetric we draw a point b
above a point a connected with a line, but without arrows to
indicate that (a, b) ∈ R

3. As the order relation is transitive, we connect points a, b , c
with lines between points a, b , c located above each other,
but without arrows



Posets Special Elements

Special elements in a poset (A ,≤) are: maximal, minimal,
greatest (largest) and smallest (least) and are defined below.

Definitions

1. Smallest (least)

a0 ∈ A is a smallest (least) element in the poset (A ,≤)

if and only if ∀a∈A (a0 ≤ a)

2. Greatest (largest)

a0 ∈ A is a greatest (largest) element in the poset (A ,≤)

if and only if ∀a∈A (a ≤ a0)



Posets Special Elements

Definitions

3. Maximal (formal)

a0 ∈ A is a maximal element in the poset (A ,≤)

if and only if ¬ ∃a∈A (a0 ≤ a ∩ a0 , a)

Maximal (informal)

a0 ∈ A is a maximal element in the poset (A ,≤)

if and only if on the diagram of (A ,≤) there is no element

placed above a0



Posets Special Elements

Definitions

4. Minimal (formal)

a0 ∈ A is a minimal element in the poset (A ,≤)

if and only if ¬ ∃a∈A (a ≤ a0 ∩ a0 , a)

Minimal (informal)

a0 ∈ A is a minimal element in the poset (A ,≤)

if and only if on the diagram of (A ,≤) there is no element

placed below a0



Some Properties of Posets

Property 1 Every non-empty finite poset has at least one
maximal element

Proof

Let (A ,≤) be a finite, not empty poset with the set A such that
|A | = n for n ∈ N − {0}

We carry the Mathematical Induction over n ∈ N − {0}

Reminder: an element ao ∈ A is a maximal element in the
poset (A ,≤) if and only if

¬∃a∈A (a0 , a ∩ a0 ≤ a)



Inductive Proof

Base case: n = 1, so A = {a} and a is maximal (and
minimal, and smallest, and largest) in the poset ({a},≤)

Inductive step: Assume that any poset (A ,≤) with n
-elements has a maximal element a0 ∈ A . We want to prove
that any poset (B ,≤) with n + 1 elements has at least one
maximal element.

Consider (B ,≤) with with n + 1 elements. Observe that we

can always represent the set B as

B = A ∪ {b} for some b < A and the set A has n elements



Inductive Proof

By Inductive Assumption the poset (A ,≤) has the maximal
element a0

To show that (B ,≤) has a maximal element we need to
consider 3 cases.

1. b ≤ a0; in this case a0 is also a maximal element in poset
(B ,≤)

2. a0 ≤ b; in this case b is a maximal element in poset (B ,≤)

3. a0, b are not compatible; in this case a0 remains
maximal in (B ,≤)

This end the proof



Some Properties of Posets

Exercise 1

We just proved the Property 1 saying that every non-empty
finite poset has at least one maximal element

Show an example an infinite poset (A ,≤) in which Property 1
does not hold

Solution: Consider a poset (Z ,≤), where Z is the set of
integers and ≤ is the natural order on Z . Obviously no
maximal element.

Exercise 2

Give an example an infinite poset (A ,≤) in which Property 1
does hold and (A ,≤) has a unique maximal element

Solution: Consider a poset (Z ,≤), where Z is the set on
integers and ≤ is the natural order on Z − {0} and ≤ is
equality = on the set {0}



Discrete Mathematics Basics

PART4: Lattices and Boolean Algebras



LATTICES

Upper Bound

Given a poset (A ,�)

a0 ∈ A is an upper bound of a non empty set B ⊆ A if and
only if

∀b ∈ B (b � a0)

Lower Bound

Given a non empty poset (A ,�)

a0 ∈ A is a lower bound of a non empty set B ⊆ A if and
only if

∀b ∈ B (a0 � b)



LATTICES

Greatest lower bound of B (glb B)

Given a poset (A ,�)

b0 ∈ A is a greatest lower bound of B ⊆ A (b0 = glbB)

if and only if b0 is the greatest element the set all lower
bounds of B

Least upper bound of B ( lub B )

Given a poset (A ,�) and a set B ⊆ A

b0 ∈ A is a least upper bound of B (b0 = lubB)

if and only if b0 is the least element of the set all upper
bounds of B



LATTICE DEFINITION

Lattice

A poset (A ,�) is a lattice if and only if

for all a, b ∈ A , lub{a, b} and glb{a, b} exist

Lattice notation

We denote lub{a, b} = a ∪ b and glb{a, b} = a ∩ b

The element lub{a, b} = a ∪ b is called a lattice union
(meet) of a and b

The element glb{a, b} = a ∩ b is called a lattice
intersection (joint) of a and b



LATTICE DEFINITION

Lattice as an Algebra

An abstract algebra (A ,∪,∩), where ∪,∩ are two argument

operations defined on A is called a lattice

if and only if the following conditions hold
L1 a ∪ b = b ∪ a and a ∩ b = b ∩ a
L2 (a ∪ b) ∪ c = a ∪ (b ∪ c)

and (a ∩ b) ∩ c = a ∩ (b ∩ c)
L3 a ∩ (a ∪ b) = a and a ∪ (a ∩ b) = a

Lattice axioms

The conditions L1- L3 are called lattice axioms



LATTICE ORDERINGS

Lattice orderings

Let the algebra (A ,∪,∩) be a lattice. The relations

a � b if and only if a ∪ b = b

a � b if and only if a ∩ b = a

are order relations in the lattice universe A

and are called lattice orderings

Lattice Poset

A poset (A ,�) is called a lattice poset



DISTRIBUTIVE LATTICE

Distributive lattice

A lattice (A ,∪,∩) is called a distributive lattice

if and only if

for all a, b , c ∈ A the following conditions hold

L4 a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)
L5 a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)

Distributive lattice axioms

Conditions L4 - L5 from above are called distributive

lattice axioms



LATTICE UNIT and ZERO

Given a lattice poset (A ,�)

The greatest element in (A ,�) (if exists) is denoted by 1 and
is called a lattice unit

The least (smallest) element in (A ,�) (if exists) it is denoted
by 0 and called a lattice zero

Lattice with unit and zero

If 0 (lattice zero) and 1 (lattice unit) exist we write the lattice

as (A ,∪,∩, 0, 1) and call it a lattice with zero and unit



LATTICE UNIT AXIOMS

Lattice Unit Axioms

Let (A ,∪,∩) be a lattice

An element x ∈ A is called a lattice unit if and only if

for all a, b , c ∈ A the following conditions hold

x ∩ a = a and x ∪ a = x

If such element x ∈ A exists we denote it by 1 and we write

the lattice unit axioms as follows.
L6 1 ∩ a = a
L7 1 ∪ a = 1



LATTICE ZERO AXIOMS

Lattice Zero Axioms

Let (A ,∪,∩) be a lattice

An element x ∈ A is called a lattice zero if and only if

for all a, b , c ∈ A the following conditions hold

x ∩ a = x and x ∪ a = a

If such element x ∈ A exists we denote it by 0 and we write

the lattice unit axioms as follows.
L8 0 ∩ a = 0
L9 0 ∪ a = a



BOOLEAN ALGEBRA DEFINITION and AXIOMS

Boolean Algebra Definition

A distributive lattice (A ,∪,∩, 1, 0) with zero and unit, such
that each element has a complement is called a Boolean
Algebra

Boolean Algebra Axioms

A lattice (A ,∪,∩, 1, 0) is called a Boolean Algebra if and
only if the operations ∩,∪ satisfy axioms L1 -L5,

0 ∈ A and 1 ∈ A satisfy axioms L6 - L9 and each element
a ∈ A has a complement −a ∈ A , i.e. the following axiom
holds

L10 For all a ∈ A there exists −a ∈ A such that

a ∪ −a = 1 and a ∩ −a = 0


