cse581 COMPUTER SCIENCE FOUNDAMENTALS: THEORY

Professor Anita Wasilewska

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Lecture 2

DISCRETE MATHEMATICS BASICS

Discrete Mathematics Basics

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

PART 3: Special types of Binary Relations PART 4: Finite and Infinite Sets PART 5: Some Fundamental Proof Techniques

Theory of Computation BASICS

PART 6: Closures and Algorithms PART 7: Alphabets and languages PART 8: Finite Representation of Languages **Discrete Mathematics Basics**

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

PART 3: Special types of Binary Relations

SPECIAL RELATION: Equivalence Relation

Equivalence relation

A binary relation $R \subseteq A \times A$ is an **equivalence** relation defined in the set A if and only if it is reflexive, symmetric and transitive

Symbols

Equivalence relation is denoted in literature by symbols

~, ≈ or ≡

We will use the symbol \approx to denote it

Equivalence Relation

Equivalence class

Let $\approx \subseteq A \times A$ be an **equivalence** relation on AThe set $E(a) = \{b \in A : a \approx b\}$ is called an **equivalence** class with a representant a Observe that by symmetry of the **equivalence** relation we have that

 $E(a) = \{b \in A : a \approx b\} = \{a \in A : b \approx a\} = E(b)$

This proves the following

Equivalence class Property

Equivalence class is **independent** from the choice of its representants

Equivalence Classes

Equivalence Class Symbol

Let $\approx \subseteq A \times A$ be an **equivalence** relation on *A* The equivalence classes are usually **denoted** by

 $[a] = \{b \in A : a \approx b\}$

The element *a* is called a **representative** of the equivalence class [*a*] defined in *A*

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Partitions

Partition

A family of sets $\mathbf{P} \subseteq \mathcal{P}(A)$ is called a **partition** of the set *A* if and only if the following conditions hold

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1. $\forall_{X \in \mathbf{P}} (X \neq \emptyset)$

i.e. all sets in the partition are non-empty

2. $\forall_{X,Y\in\mathbf{P}} (X \cap Y = \emptyset)$

i.e. all sets in the partition are disjoint

3. ∪ **P** = *A*

i.e. the union of all sets from P is the set A

Equivalence and Partitions

Notation

 A/\approx denotes the set of **all equivalence** classes of the equivalence relation \approx , i.e.

 $A/\approx=\{[a]:a\in A\}$

We prove the following theorem

Theorem 1

Let $A \neq \emptyset$

If \approx is an equivalence relation on A,

then the set A/\approx is a partition of A

Equivalence and Partitions

Theorem 1 (full statement)

Let $A \neq \emptyset$

If \approx is an equivalence relation on A,

then the set A/\approx is a **partition** of A, i.e.

1. $\forall_{[a]\in A/\approx}$ ($[a] \neq \emptyset$)

i.e. all equivalence classes are non-empty

2. $\forall_{[a]\neq[b]\in A/\approx}$ ($[a]\cap[b]=\emptyset$)

i.e. all different equivalence classes are disjoint

3.
$$\bigcup A / \approx = A$$

i.e the union of all equivalence classes is equal to the set A

Partition and Equivalence

We also prove a following Theorem 2 For any partition

 $\mathbf{P} \subseteq \mathcal{P}(A)$ of the set A

one can **construct** a binary relation R on A such that R is an **equivalence** on A and its equivalence classes are **exactly** the sets of the **partition** P

Partition and Equivalence

Observe that we **can** consider, for any binary relation R on s set A the sets that "look" like equivalence classes i.e. that are defined as follows:

 $R(a) = \{b \in A; aRb\} = \{b \in A; (a, b) \in R\}$

・ロト・日本・モト・モト・ ヨー のくぐ

Fact 1

If the relation R is an **equivalence** on A, then the family $\{R(a)\}_{a \in A}$ is a **partition** of A **Fact 2** If the family $\{R(a)\}_{a \in A}$ is **not** a partition of A, then R is **not** an **equivalence** on A Proof of Theorem 1

Theorem 1

Let $A \neq \emptyset$ If \approx is an **equivalence relation** on A, then the set A/\approx is a **partition** of A

Proof

Consider $aA / \approx = \{[a] : a \in A\}$

We must show that all sets in ${\mbox{P}}$ are nonempty, disjoint, and together exhaust the set A

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof of Theorem 1

1. All equivalence classes are nonempty,

This holds as $a \in [a]$ for all $a \in A$, reflexivity of equivalence relation

2. All different equivalence classes are disjoint We carry the proof by contradiction. Assume $[a] \neq [b]$ and $[a] \cap [b] \neq \emptyset$, thus there is an element c such that $c \in [a]$ and $c \in [b]$ Hence $a \approx c$ and $c \approx b$, hence by transitivity $a \approx b$ and so [a] = [b] what **contradicts** the assumption that $[a] \neq [b]$

Proof of the Theorem 2

Now we are going to prove that the **Theorem 1** can be reversed, namely that the following is also true

Theorem 2

For any partition

 $\mathbf{P} \subseteq \mathcal{P}(A)$

of *A*, one can **construct** a binary relation R on *A* such that R is an **equivalence** and its equivalence classes are exactly the sets of the **partition** P

Proof

We define a binary relation R as follows

 $R = \{(a, b) \in A \times A : a, b \in X \text{ for some } X \in \mathbf{P}\}$

・ロト・日本・モト・モト・ ヨー のくぐ

Short Review

PART 3: Equivalence Relations - Short and Long Questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Short Questions

Q1 Let $R \subseteq A \times A$ for $A \neq \emptyset$, then the set $[a] = \{b \in A : (a, b) \in R\}$

is an equivalence class with a representative a

Q2 The set

 $\{(\emptyset, \emptyset), (\{a\}, \{a\}), (3, 3)\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

represents a transitive relation

Short Questions

Q3 There is an **equivalence** relation on the set

 $A = \{\{0\}, \{0, 1\}, 1, 2\}$

with 3 equivalence classes

Q4 Let $A \neq \emptyset$ be such that there are exactly **25 partitions** of *A* It is possible to define **20 equivalence** relations on *A* Short Questions Answers

Q1 Let $R \subseteq A \times A$ then the set

 $[a] = \{b \in A : (a, b) \in R\}$

is an **equivalence** class with a **representative a NO** The set $[a] = \{b \in A : (a, b) \in R\}$ is an equivalence class only when the relation R is an **equivalence** relation

Q2 The set

 $\{(\emptyset, \emptyset), (\{a\}, \{a\}), (3, 3)\}$

represents a transitive relation

YES Transitivity condition is vacuously true

Short Questions Answers

Q3 There is an equivalence relation on

 $A = \{\{0\}, \{0, 1\}, 1, 2\}$

with 3 equivalence classes

YES For example, a relation R defined by the partition $\mathbf{P} = \{\{\{0\}\}, \{\{0, 1\}\}, \{1, 2\}\}$

and so By proof of Theorem 2

 $R = \{(a, b) : a, b \in X \text{ for some } X \in \mathbf{P}\}$

i.e. $a = b = \{0\}$ or $a = b = \{0, 1\}$ or (a = 1 and b = 2)

Short Questions Answers

Q4

Let $A \neq \emptyset$ be such that there are exactly **25** partitions of *A* It is possible to define **2** equivalence relations on *A*

YES By **Theorem 2** one can define up to 25 (as many as partitions) of equivalence classes

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Equivalence Relations

Some Long Questions

(ロト (個) (E) (E) (E) (9)

Some Long Questions

Q1 Consider a function $f : A \longrightarrow B$ Show that $R = \{(a, b) \in A \times A : f(a) = f(b)\}$ is an **equivalence** relation on A

Q2 Let $f: N \longrightarrow N$ be such that

 $f(n) = \begin{cases} 1 & \text{if } n \le 6\\ 2 & \text{if } n > 6 \end{cases}$

Find equivalence classes of **R** from **Q1** for this particular function f

Q1 Consider a function $f : A \longrightarrow B$ Show that

$$R = \{(a,b) \in A \times A : f(a) = f(b)\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is an equivalence relation on A

Solution

1. R is reflexive

 $(a, a) \in R$ for all $a \in A$ because f(a) = f(a)

2. R is symmetric

Let $(a,b) \in R$, by definition f(a) = f(b) and f(b) = f(a)Consequently $(b,a) \in R$

3. R is transitive

For any $a, b, c \in A$ we get that f(a) = f(b) and f(b) = f(c)implies that f(a) = f(c)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Q2 Let $f: N \longrightarrow N$ be such that $f(n) = \begin{cases} 1 & \text{if } n \le 6\\ 2 & \text{if } n > 6 \end{cases}$

Find equivalence classes of

$$R = \{(a,b) \in A \times A : f(a) = f(b)\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

for this particular f

Solution

We evaluate

$$[0] = \{n \in N : f(0) = f(n)\} = \{n \in N : f(n) = 1\}$$
$$= \{n \in N : n \le 6\}$$

$$[7] = \{n \in N : f(7) = f(n)\} = \{n \in N : f(n) = 2\}$$

= $\{n \in N : n > 6\}$

There are two equivalence classes:

 $A_1 = \{n \in N : n \le 6\}, A_2 = \{n \in N : n > 6\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Discrete Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATIONS: Order Relations

Order Relations

We introduce now of another type of important binary relations: the order relations

Definition

 $R \subseteq A \times A$ is an order relation on A iff R is 1.Reflexive, 2. Antisymmetric, and 3. Transitive, i.e. the following conditions are satisfied

ション 小田 マイビット ビックタン

1. $\forall_{a \in A}(a, a) \in R$ 2. $\forall_{a, b \in A}((a, b) \in R \cap (b, a) \in R \Rightarrow a = b)$ 3. $\forall_{a, b, c \in A}((a, b) \in R \cap (b, c) \in R \Rightarrow (a, c) \in R)$

Order Relations

Definition

 $R \subseteq (A \times A)$ is a **total** order on A if and only if R is an **order** and any two elements of A are **comparable**, i.e. additionally the following condition is satisfied

4. $\forall_{a,b\in A} ((a,b)\in R\cup (b,a)\in R)$

Names

order relation is also called historically a partial order total order is also called historically a linear order

Order Relations

Notations

order relations are usually denoted by \leq , or when we want to make a clear distinction from the natural order in sets of numbers we **denote** it by \leq

Remember

We use \leq as the **order** relation symbol, it is a **symbol** for any order relation, not a the **natural order** in sets of numbers, unless we say so

Posets

Definition

Given $A \neq \emptyset$ and an **order** relation defined on A A tuple

 (A, \leq)

is called a **poset**

Name **poset** stands historically for Partially Ordered Set A **Diagram** of is a graphical representation of a **poset** and is defined as follows

Posets

A Diagram of a poset (A, \leq) is a simplified graph constructed as follows

1. As the **order** relation \leq is reflexive, i.e. $(a, a) \in R$ for all $a \in A$, we **draw** a **point** with symbol *a* instead of a point with symbol *a* with the loop

2. As the order relation \leq is antisymmetric we **draw** a point *b* **above** a point *a* connected with a line, but without arrows to indicate that $(a, b) \in R$

3. As the order relation is transitive, we connect points a, b, c with lines between points a, b, c located above each other, but without arrows

Posets Special Elements

Special elements in a poset (A, \leq) are: maximal, minimal, greatest (largest) and smallest (least) and are defined below.

Definitions

1. Smallest (least)

 $a_0 \in A$ is a smallest (least) element in the poset (A, \leq) if and only if $\forall_{a \in A} (a_0 \leq a)$

2. Greatest (largest)

 $a_0 \in A$ is a greatest (largest) element in the poset (A, \leq) if and only if $\forall_{a \in A} (a \leq a_0)$

Posets Special Elements

Definitions

3. Maximal (formal)

 $a_0 \in A$ is a maximal element in the poset (A, \leq) if and only if $\neg \exists_{a \in A} (a_0 \leq a \cap a_0 \neq a)$

Maximal (informal)

 $a_0 \in A$ is a maximal element in the poset (A, \leq) if and only if on the diagram of (A, \leq) there is **no element** placed **above** a_0

ション 小田 マイビット ビックタン

Posets Special Elements

Definitions

4. Minimal (formal)

 $a_0 \in A$ is a minimal element in the poset (A, \leq) if and only if $\neg \exists_{a \in A} (a \leq a_0 \cap a_0 \neq a)$

Minimal (informal)

 $a_0 \in A$ is a minimal element in the poset (A, \leq) if and only if on the diagram of (A, \leq) there is **no element** placed **below** a_0

ション 小田 マイビット ビックタン

Some Properties of Posets

Property 1 Every non-empty finite poset has at least one maximal element

Proof

Let (A, \leq) be a finite, not empty poset with the set A such that |A| = n for $n \in N - \{0\}$

We carry the **Mathematical Induction** over $n \in N - \{0\}$

Reminder: an element $a_o \in A$ is a **maximal element** in the poset (A, \leq) if and only if

 $\neg \exists_{a \in A} (a_0 \neq a \cap a_0 \leq a)$

Inductive Proof

Base case: n = 1, so $A = \{a\}$ and *a* is maximal (and minimal, and smallest, and largest) in the poset $(\{a\}, \leq)$

Inductive step: Assume that any poset (A, \leq) with n -elements has a maximal element $a_0 \in A$. We want to prove that any poset (B, \leq) with n + 1 elements has at least one maximal element.

Consider (B, \leq) with with n + 1 elements. Observe that we can always represent the set B as

 $B = A \cup \{b\}$ for some $b \notin A$ and the set A has n elements

Inductive Proof

By **Inductive Assumption** the poset (A, \leq) has the maximal element a_0

To show that (B, \leq) has a maximal element we need to consider 3 cases.

1. $b \le a_0$; in this case a_0 is also a maximal element in poset (B, \le)

2. $a_0 \le b$; in this case *b* is a maximal element in poset (B, \le)

3. a_0, b are **not compatible**; in this case a_0 remains maximal in (B, \leq)

This end the proof

Some Properties of Posets

Exercise 1

We just proved the **Property 1** saying that every non-empty finite poset has at least one maximal element

Show an example an infinite poset (A, \leq) in which **Property 1** does not hold

Solution: Consider a poset (Z, \leq) , where Z is the set of integers and \leq is the natural order on Z. Obviously no maximal element.

Exercise 2

Give an example an infinite poset (A, \leq) in which **Property 1** does hold and (A, \leq) has a unique maximal element **Solution:** Consider a poset (Z, \leq) , where Z is the set on integers and \leq is the natural order on $Z - \{0\}$ and \leq is equality = on the set $\{0\}$ **Discrete Mathematics Basics**

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

PART4: Lattices and Boolean Algebras

LATTICES

Upper Bound

Given a poset (A, \leq)

 $a_0 \in A$ is an **upper bound** of a non empty set $B \subseteq A$ if and only if

 $\forall b \in B (b \leq a_0)$

Lower Bound

Given a non empty poset (A, \leq)

 $a_0 \in A$ is a **lower bound** of a non empty set $B \subseteq A$ if and only if

 $\forall b \in B (a_0 \leq b)$

LATTICES

Greatest lower bound of B (glb B)

Given a poset (A, \leq)

 $b_0 \in A$ is a greatest lower bound of $B \subseteq A$ ($b_0 = glbB$) if and only if b_0 is the greatest element the set **all lower** bounds of B

Least upper bound of B (lub B) Given a poset (A, \leq) and a set $B \subseteq A$ $b_0 \in A$ is a least upper bound of B ($b_0 = lubB$) if and only if b_0 is the least element of the set all upper bounds of B

LATTICE DEFINITION

Lattice

A poset (A, \leq) is a **lattice** if and only if for all $a, b \in A$, $lub\{a, b\}$ and $glb\{a, b\}$ exist

Lattice notation

We denote $lub{a, b} = a \cup b$ and $glb{a, b} = a \cap b$

The element $lub{a, b} = a \cup b$ is called a **lattice union** (meet) of a and b

The element $glb{a, b} = a \cap b$ is called a **lattice** intersection (joint) of a and b

LATTICE DEFINITION

Lattice as an Algebra

An abstract algebra (A, \cup, \cap) , where \cup, \cap are two argument operations defined on A is called a **lattice** if and only if the following conditions hold

L1
$$a \cup b = b \cup a$$
 and $a \cap b = b \cap a$
L2 $(a \cup b) \cup c = a \cup (b \cup c)$
and $(a \cap b) \cap c = a \cap (b \cap c)$
L3 $a \cap (a \cup b) = a$ and $a \cup (a \cap b) = a$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lattice axioms

The conditions L1- L3 are called lattice axioms

LATTICE ORDERINGS

Lattice orderings

Let the algebra (A, \cup, \cap) be a lattice. The relations

 $a \leq b$ if and only if $a \cup b = b$

 $a \leq b$ if and only if $a \cap b = a$

are order relations in the lattice universe A

and are called lattice orderings

Lattice Poset

A poset (A, \leq) is called a lattice poset

DISTRIBUTIVE LATTICE

Distributive lattice

A lattice (A, \cup, \cap) is called a distributive lattice if and only if for all $a, b, c \in A$ the following conditions hold $L4 \quad a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$ $L5 \quad a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$

Distributive lattice axioms

Conditions L4 - L5 from above are called distributive lattice axioms

LATTICE UNIT and ZERO

Given a lattice poset (A, \leq) The greatest element in (A, \leq) (if exists) is denoted by 1 and is called a lattice unit

The **least** (smallest) element in (A, \leq) (if exists) it is denoted by 0 and called a **lattice zero**

Lattice with unit and zero

If 0 (lattice zero) and 1 (lattice unit) exist we write the lattice as $(A, \cup, \cap, 0, 1)$ and call it a lattice with zero and unit

LATTICE UNIT AXIOMS

Lattice Unit Axioms

Let (A, \cup, \cap) be a lattice An element $x \in A$ is called a **lattice unit** if and only if for all $a, b, c \in A$ the following conditions hold $x \cap a = a$ and $x \cup a = x$

If such element $x \in A$ exists we denote it by 1 and we write the **lattice unit axioms** as follows.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

```
\begin{array}{ccc} \mathsf{L6} & \mathsf{1} \cap a = a \\ \mathsf{L7} & \mathsf{1} \cup a = 1 \end{array}
```

LATTICE ZERO AXIOMS

Lattice Zero Axioms

Let (A, \cup, \cap) be a lattice An element $x \in A$ is called a **lattice zero** if and only if for all $a, b, c \in A$ the following conditions hold $x \cap a = x$ and $x \cup a = a$

If such element $x \in A$ exists we denote it by 0 and we write the **lattice unit axioms** as follows.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

```
 \begin{array}{ll} \mathsf{L8} & \mathsf{0} \cap a = \mathsf{0} \\ \mathsf{L9} & \mathsf{0} \cup a = a \end{array}
```

BOOLEAN ALGEBRA DEFINITION and AXIOMS

Boolean Algebra Definition

A distributive lattice $(A, \cup, \cap, 1, 0)$ with zero and unit, such that each element has a **complement** is called a Boolean Algebra

Boolean Algebra Axioms

A lattice $(A, \cup, \cap, 1, 0)$ is called a **Boolean Algebra** if and only if the operations \cap, \cup satisfy axioms L1 -L5,

 $0 \in A$ and $1 \in A$ satisfy axioms **L6 - L9** and each element $a \in A$ has a **complement** $-a \in A$, i.e. the following axiom holds

L10 For all $a \in A$ there exists $-a \in A$ such that

 $a \cup -a = 1$ and $a \cap -a = 0$