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Discrete Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATION: Equivalence Relation



Equivalence Relation

Equivalence relation

A binary relation R C A X A is an equivalence relation
definedinthe set A ifandonlyif itis reflexive, symmetric
and transitive

Symbols

Equivalence relation is denoted in literature by symbols
~ B~ or =

bl

We will use the symbol =~ to denote it



Equivalence Relation

Equivalence class

Let ~C AxXA beanequivalence relationon A
Theset E(a)={beA: a=~b} iscalledanequivalence
class with a representant a

Observe that by symmetry of the equivalence relation

we have that

E(a)={bcA: a~bl={acA: b=xa}=E(b)

This proves the following

Equivalence class Property

Equivalence class is independent from the choice of its
representants



Equivalence Classes

Equivalence Class Symbol
Let ~C AXA be anequivalence relationon A
The equivalence classes are usually denoted by

[a] ={beA: a=b}

The element a is called a representative of the equivalence
class [a] definedin A



Partitions

Partition

A family of sets P C P(A) s called a partition of the set A
if and only if  the following conditions hold
1. VYxep (X * V))
i.e. all sets in the partition are non-empty
2. VX,yEp (Xﬂ Y = (Z))
i.e. all sets in the partition are disjoint
3. UP=A
i.e. the union of all sets from P is the set A



Equivalence and Partitions

Notation
A/ ~ denotes the set of all equivalence classes of the
equivalence relation ~, i.e.

A/ ~={la]:acA}

We prove the following theorem
Theorem 1

Let A#0

If ~ is an equivalence relation on A,
then theset A/~ isa partition of A



Equivalence and Partitions

Theorem 1 (full statement)

Let A#0

If ~ is an equivalence relation on A,

then theset A/~ isa partition of A, i.e.

1. v[a]eA/z ([a] # (D)
i.e. all equivalence classes are non-empty
2. Viaplea/~ ([a] N [b] = 0)
i.e. all different equivalence classes are disjoint
3. UA/~»=A
i.e the union of all equivalence classes is equal to the set A



Partition and Equivalence

We also prove a following
Theorem 2
For any partition

PCcP(A) oftheset A

one can construct a binary relation R on A such that
R is an equivalence on A and its equivalence classes are
exactly the sets of the partition P



Partition and Equivalence

Observe that we can consider, for any binary relation R on
s set A the sets that "look” like equivalence classes i.e. that
are defined as follows:

R(a)={beA; aRb}=1{becA; (a,b)eR)

Fact 1

If the relation R is an equivalence on A,

then the family {R(a)}asca is a partition of A
Fact 2

If the family {R(a)}sca is not a partition of A,
then R is not an equivalence on A



Proof of Theorem 1

Theorem 1

Let A#0

If ~ is an equivalence relation on A,
then theset A/ =~ is a partition of A

Proof

Consider aA/ ~ = {[a] : a € A}

We must show that all sets in P are nonempty, disjoint, and
together exhaust the set A



Proof of Theorem 1

1. All equivalence classes are nonempty,

This holds as a € [a] forall a € A, reflexivity of equivalence
relation

2. All different equivalence classes are disjoint

We carry the proof by contradiction. Assume [a] # [b] and
[a] N [b] # 0, thus there is an element ¢

suchthat c € [a] and c € [b]

Hence a ~ c and ¢ =~ b, hence by transitivity a ~ b
and so [a] = [b] what contradicts the assumption that
[a] # [b]



Proof of the Theorem 2

Now we are going to prove that the Theorem 1 can be
reversed, namely that the following is also true

Theorem 2
For any partition
PcP(A)
of A, one can construct a binary relation R on A
such that R is an equivalence and its equivalence classes
are exactly the sets of the partition P
Proof
We define a binary relation R as follows

R={(a,b)e AxA: a,beX forsome X € P}



Short Review

PART 3: Equivalence Relations - Short and Long Questions



Short Questions

Q1 Let RCAXA for A#0, thenthe set
[a] ={beA:(a,b) e R}

is an equivalence class with a representative a

Q2 The set
{(0,0), ({a}.{a}). (3,3)}

represents a transitive relation



Short Questions

Q3 There is an equivalence relation on the set
A ={{0},{0,1},1,2}

with 3 equivalence classes

Q4 Let A #(0 besuchthatthere are exactly

25 partitions of A
It is possible to define 20 equivalence relations on A



Short Questions Answers

Q1 Let RC A x A then the set
[a] ={beA:(a,b) R}

is an equivalence class with a representative a

NO Theset [a] ={beA:(a,b)e R} isanequivalence
class only when the relation R is an equivalence relation

Q2 The set

{(0,0), ({a).{a}). (3,3))
represents a transitive relation
YES Transitivity condition is vacuously true



Short Questions Answers

Q3 There is an equivalence relation on
A = {{0},{0,1},1,2}

with 3 equivalence classes

YES For example, arelation R defined by the partition
P ={{{0}}, {{0,1}}, {1.2}}
and so By proof of Theorem 2
R ={(a,b): a,be X forsome X € P}

ie. a=b={0}ora=b={0,1}or (a=1 and b=2)



Short Questions Answers

Q4
Let A # 0 be such that there are exactly 25 partitions of A
It is possible to define 2 equivalence relations on A

YES By Theorem 2 one can define up to 25 (as many as
partitions) of equivalence classes



Equivalence Relations

Some Long Questions



Some Long Questions

Q1 Consider a functionf: A — B
Showthat R ={(a,b)e AxA: f(a)=1f(b)}
is an equivalence relation on A

Q2 Let f: N— N be such that

1 ifn<6
f(”)_{z itn>6

Find equivalence classes of R from Q1 for this particular
function f



Long Questions Solutions

Q1 Consider a function f: A — B
Show that

R ={(a,b)e AxA: f(a)=f(b)}
is an equivalence relation on A
Solution

1. R is reflexive
(a,a) e R forall a€ A because f(a) = f(a)



Long Questions Solutions

2. R is symmetric
Let (a,b) € R, by definition f(a) = f(b)and f(b) = f(a)
Consequently (b,a) € R

3. R is transitive
Forany a.b,c € A we getthatf(a) = f(b) and f(b) = f(c)
implies that f(a) = f(c)



Long Questions Solutions

Q2 Let f: N— N be such that

1 ifn<6
f(”):{z itn>6

Find equivalence classes of
R =1{(a,b) e AxA: f(a)=f(b)}

for this particular f



Long Questions Solutions

Solution
We evaluate

[0l ={neN: f(0) =f(n)} ={neN: f(n) =1}
={neN: n<6}

[7]={neN: {(7)=1f(n)}={neN: f(n) =2}
={neN: n>6}
There are two equivalence classes:

Ai={neN: n<6}, A A={neN: n>6}



Discrete Mathematics Basics

PART 3: Special types of Binary Relations

SPECIAL RELATIONS: Order Relations



Order Relations

We introduce now of another type of important binary
relations: the order relations

Definition
R c A x Aisanorderrelatonon A iff R is 1.Reflexive, 2.

Antisymmetric, and 3. Transitive, i.e. the following conditions
are satisfied

1- VaeA(a,a) € R
2. Yapea((a,b) e RN (b,a) e R = a=0>b)
3. Yabcea ((a,b) e RN (b,c) e R = (a,c) € R)



Order Relations

Definition

Rc(AxA)isatotal orderon A ifandonlyif R isan
order and any two elements of A are comparable, i.e.
additionally the following condition is satisfied

4. Yapen ((a,b) e RU(b,a) € R)

Names

order relation is also called historically a partial order

total order is also called historically a linear order



Order Relations

Notations

order relations are usually denoted by <, or when we want to
make a clear distinction from the natural order in sets of
numbers we denote it by <

Remember

We use < as the order relation symbol, it is a symbol for
any order relation, not a the natural order in sets of
numbers, unless we say so



Posets

Definition
Given A # (0 and an order relation defined on A
A tuple

(A, <)

is called a poset

Name poset stands historically for Partially Ordered Set
A Diagram of is a graphical representation of a poset and
is defined as follows



Posets

A Diagram of a poset (A, <) is a simplified graph
constructed as follows

1. Asthe order relation < isreflexive,i.e. (a,a) e R for
all a € A, we draw a point with symbol a instead of a point
with symbol a with the loop

2. As the order relation < is antisymmetric we draw a point b
above a point a connected with a line, but without arrows to
indicate that (a,b) € R

3. As the order relation is transitive, we connect points a, b, ¢

with lines between points a, b, ¢ located above each other,
but without arrows



Posets Special Elements

Special elements in aposet (A, <) are: maximal, minimal,
greatest (largest) and smallest (least) and are defined below.

Definitions

1. Smallest (least)

ap € A is a smallest (least) element in the poset (A, <)
ifand only if Vaea(ao < a)

2. Greatest (largest)
ap € A is a greatest (largest) element in the poset (A, <)
if and only if Vaea(a < ap)



Posets Special Elements

Definitions

3. Maximal (formal)

ap € A is a maximal element in the poset (A, <)
ifand only if = d,ca(ap<a N ap # a)

Maximal (informal)

ap € A is a maximal element in the poset (A, <)

if and only if on the diagram of (A, <) there is no element
placed above a



Posets Special Elements

Definitions

4. Minimal (formal)

ap € A is a minimal element in the poset (A, <)
ifandonly if = d,ca(@<ap N ap # a)

Minimal (informal)

ap € A is a minimal element in the poset (A, <)

if and only if on the diagram of (A, <) there is no element
placed below a;



Some Properties of Posets

Property 1 Every non-empty finite poset has at least one
maximal element

Proof

Let (A, <) be afinite, not empty poset with the set A such that
|A| = nfor ne N - {0}

We carry the Mathematical Induction over n € N — {0}

Reminder: an element a, € A is a maximal element in the
poset (A, <) if and only if

—Jdgea(@p #anap < a)



Inductive Proof

Base case: n=1,s0 A = {a} and a is maximal (and
minimal, and smallest, and largest) in the poset ({a}, <)

Inductive step: Assume that any poset (A, <) with n
-elements has a maximal element ag € A. We want to prove
that any poset (B, <) with n + 1 elements has at least one
maximal element.

Consider (B, <) with with n + 1 elements. Observe that we
can always represent the set B as

B=AuU{b} forsomeb ¢ A andthe set A has n elements



Inductive Proof

By Inductive Assumption the poset (A, <) has the maximal
element ap

To show that (B, <) has a maximal element we need to
consider 3 cases.

1. b < ag; in this case ayp is also a maximal element in poset
(B.<)

2. ap < b;inthis case b is a maximal element in poset (B, <)

3. ap, b are not compatible; in this case ap remains
maximal in (B, <)

This end the proof



Some Properties of Posets

Exercise 1

We just proved the Property 1 saying that every non-empty
finite poset has at least one maximal element

Show an example an infinite poset (A, <) in which Property 1
does not hold

Solution: Consider a poset (Z, <), where Z is the set of
integers and < is the natural order on Z. Obviously no
maximal element.

Exercise 2

Give an example an infinite poset (A, <) in which Property 1
does hold and (A, <) has a unique maximal element
Solution: Consider a poset (Z, <), where Z is the set on
integers and < is the natural order on Z — {0} and < is
equality = on the set {0}



Discrete Mathematics Basics

PART4: Lattices and Boolean Algebras



LATTICES

Upper Bound

Given a poset (A, <)

ap € A is an upper bound of a non empty set BC A if and
only if

Vb e B (b < ap)

Lower Bound

Given a non empty poset (A, <)

ap € A is a lower bound of a non empty set B € A if and
only if

Vb e B (ap <b)



LATTICES

Greatest lower bound of B (glb B)
Given a poset (A, <)
by € A is a greatest lower bound of B C A (by = glbB)

if and only if by is the greatest element the set all lower
bounds of B

Least upper bound of B (lub B)
Given a poset (A,<) andasetBC A
by € A is a least upper bound of B (by = lubB)

if and only if by is the least element of the set all upper
bounds of B



LATTICE DEFINITION

Lattice
A poset (A, <) is a lattice if and only if
foralla,b € A, lub{a,b} and glb{a,b} exist

Lattice notation
We denote lub{a,b} =auUb and glb{a,b} =anb

The element lub{a,b} = a U b is called a lattice union
(meet) of a and b

The element glb{a,b} = an b is called a lattice
intersection (joint) of a and b



LATTICE DEFINITION

Lattice as an Algebra
An abstract algebra (A,U,N), where U,N are two argument
operations defined on A is called a lattice
if and only if the following conditions hold

L1 aub=bua and anb=bna

L2 (aub)uc=au(buc)

and (anb)nc=an(bnc)

L3 an(aub)=a and au(anb)=a
Lattice axioms
The conditions L1- L3 are called lattice axioms



LATTICE ORDERINGS

Lattice orderings

Let the algebra (A.,U,N) be a lattice. The relations
a<b ifandonlyif aub=>b

a<b ifandonlyif anb=a

are order relations in the lattice universe A

and are called lattice orderings

Lattice Poset
A poset (A, <) is called a lattice poset



DISTRIBUTIVE LATTICE

Distributive lattice

A lattice (A,U,N) is called a distributive lattice

if and only if

for all a, b, c € A the following conditions hold
L4 au(bnc)=(aub)n(auc)
L5 an(buc)=(anb)u(anc)

Distributive lattice axioms
Conditions L4 - L5 from above are called distributive
lattice axioms



LATTICE UNIT and ZERO

Given a lattice poset (A, <)

The greatest element in (A, <) (if exists) is denoted by 1 and
is called a lattice unit

The least (smallest) element in (A, <) (if exists) it is denoted
by 0 and called a lattice zero

Lattice with unit and zero
If 0 (lattice zero) and 1 (lattice unit) exist we write the lattice
as (A,U,n,0,1) and call it a lattice with zero and unit



LATTICE UNIT AXIOMS

Lattice Unit Axioms

Let (A,U,N) be a lattice

An element x € A is called a lattice unit if and only if
forall a, b, c € A the following conditions hold
xNa=a and xUa=x

If such element x € A exists we denote it by 1 and we write
the lattice unit axioms as follows.

L6 1na=a
L7 1ua=1



LATTICE ZERO AXIOMS

Lattice Zero Axioms

Let (A,U,N) be a lattice

An element x € A is called a lattice zero if and only if
forall a, b, c € A the following conditions hold
xNa=x and xUa=a

If such element x € A exists we denote it by 0 and we write
the lattice unit axioms as follows.

L8 0na=0
L9 Oua=a



BOOLEAN ALGEBRA DEFINITION and AXIOMS

Boolean Algebra Definition

A distributive lattice (A,U,N,1,0) with zero and unit, such
that each element has a complement is called a Boolean
Algebra

Boolean Algebra Axioms

A lattice (A,U,N,1,0) is called a Boolean Algebra if and
only if the operations N, U satisfy axioms L1 -L5,

0e Aand1e A satisfy axioms L6 - L9 and each element
a € A has a complement —a <€ A, i.e. the following axiom
holds

L10 For all a € A there exists —a € A such that
au-a=1andan-a=>0



