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Discrete Mathematics Basics

PART 0: Basic sets of Numbers, Peano Arithmetic



Basic Sets of Numbers

Natural numbers N, Integers Z, Positive Integers Z+,
Positive Natural numbers N+, Prime Numbers P,
Rational Numbers Q, and Real numbers R

Natural Numbers N

N = {0, 1, 2, 3, . . . , . . . }

Integers Z and Positive Integers Z+

Z = { . . . , −3, −2, −1, 0, 1, 2, 3, . . . , . . . }

Z+ = { 1, 2, 3, . . . , . . . }

Positive Integers Z+ are also called Positive Natural
numbers N+ and we denote

N+ = { 1, 2, 3, . . . , . . . }



Prime Numbers

A positive integer p ∈ Z+ is called prime

if it has only two divisors, namely 1 and p

By convention, 1 is not prime

Prime Numbers P

P = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . . , . . . }



Rational and Real Numbers

Rational numbers Q

Q = {
p
q
: p, q ∈ Z and q , 0 }

Real numbers R

The first rigorous definition of the set R of real
numbers was published by Cantor in 1871

Cantor’s definition (as established today in modern
terminology)

The set R Is the quotient set of the set of Cauchy
sequences of rational numbers, with two
sequences considered equivalent if their difference
converges to zero

Cantor also showed In 1874, that the set of all real
numbers is uncountably infinite, but the set of all
algebraic numbers is countably infinite



Real Numbers

The other first rigorous definition of R established
today was given by Richard Dedekind at the same
time and independent from Cantor in terms what we
call now Dedekind cuts

The concept of theDedekind cuts developed for it
became on of the very important concepts for
modern mathematics

The set of R is often called ”The Reals” - after the
name ”real numbers” first used by a French
philosopher, scientist, and mathematician Rene
Descartes (1596 -1650), also known as Renatus
Cartesius



Irrational and Algebraic Numbers

Of course we have that N ⊂ Q ⊂ R

Real numbers that are not Rational are called
Irrational numbers, i.e. we put IR = R − Q

Algebraic number is a number that is a root of a

non-zero polynomial P(x) in one variable equation
P(x) = 0 with integer (or, equivalently rational)

coefficients

All rational numbers are algebraic

Let x ∈ Q , by the definition x = a
b for any integers

a, b , 0 is the root of a non-zero polynomial
equation namely bx − a = 0



Encyclopedia Britannica

Here is what is published the Encyclopedia
Britannica

Real number in mathematics, is a quantity that can
be expressed as an infinite decimal expansion

The real numbers include the positive and negative
integers and the fractions made from those integers
(or rational numbers) andalso the irrational numbers



Natural Numbers in Encyclopedia Britannica

Here is what is published the Encyclopedia
Britannica

Natural numbers: called the counting numbers or
natural numbers (1, 2, 3, ). For an empty set, no
object is present, and the count yields the number
0, which, appended to the counting numbers,
produces what are known as the whole numbers

Hence the Modern Mathematics definition is

N = {0, 2, 3, 4, ... . . . }

N = Z+ ∪ {0} = N+ ∪ {0} = whole numbers



Peano Arithmetic PA

Next to geometry, the theory of natural numbers is the

most intuitive and intuitively known of all branches of
mathematics

This is why the first attempts to formalize mathematics begin

with arithmetic of natural numbers.

The first attempt of axiomatic formalization was given by

Dedekind in 1879 and by Peano in 1889

The Peano formalization became known as

Peano Postulates and can be written as follows.



Peano Arithmetic PA

Peano Postulates (1889)

p1 0 is a natural number

p2 If n is a natural number, there is another number

which we denote by n′

We call the number n′ a successor of n and the intuitive

meaning of n′ is n + 1

p3 0 , n′, for any natural number n

p4 If n′ = m′, then n = m, for any natural numbers n, m



Peano Arithmetic PA

p5 If W is is a property that may or may not hold for

natural numbers, and

if (i) 0 has the property W and

(ii) whenever a natural number n has the property W,

then n′ has the property W,

then all natural numbers have the property W

The postulate p5 is called Principle of Induction



Peano Arithmetic PA

The Peano Postulates together with certain amount of

set theory are sufficient to develop not only theory of natural

numbers, but also theory of rational and even real numbers

But Peano Postulates can’t act as a fully formal theory as

they include intuitive notions like ”property” and

”has a property” . A formal theory of natural numbers based
on the Peano

Postulates is referred in literature as Peano Arithmetic, or

simply PA

We present, in Chapter 11 of the book B2 a formalization by
Mendelson (1973) It is included and worked out in the
smallest details in his book Intoduction to Mathematical
Logic (1987)



Discrete Mathematics Basics

PART 1: Sets and Operations on Sets



Sets

Set A set is a collection of objects

Elements The objects comprising a set are are
called its elements or members

a ∈ A denotes that a is an element of a set A

a < A denotes that a is not an element of A

Empty Set is a set without elements

Empty Set is denoted by ∅



Sets

Sets can be defined by listing their elements;

Example

The set

A = {a, ∅, {a, ∅}}

has 3 elements:

a ∈ A , ∅ ∈ A , {a, ∅} ∈ A



Sets

Sets can be defined by referring to other sets and

to properties P(x) that elements may or may not
have

We write it as

B = {x ∈ A : P(x)}

Example

Let N be a set of natural numbers

B = {n ∈ N : n < 0} = ∅



Operations on Sets

Set Inclusion

A ⊆ B if and only if ∀a(a ∈ A ⇒ a ∈ B)

is a true statement

Set Equality

A = B if and only if A ⊆ B and B ⊆ A

Proper Subset

A ⊂ B if and only if A ⊆ B and A , B



Operations on Sets

Subset Notations

A ⊆ B for a subset (might be improper)

A ⊂ B for a proper subset

Power Set Set of all subsets of a given set

P(A) = {B : B ⊆ A }

Other Notation

2A = {B : B ⊆ A }



Operations on Sets

Union

A ∪ B = {x : x ∈ A or x ∈ B}

We write:

x ∈ A ∪ B if and only if x ∈ A ∪ x ∈ B

Intersection

A ∩ B = {x : x ∈ A and x ∈ B}

We write:

x ∈ A ∩ B if and only if x ∈ A ∩ x ∈ B



Operations on Sets

Relative Complement

x ∈ (A − B) if and only if x ∈ A and x < B

We write:

A − B = {x : x ∈ A ∩ x < B}

Complement is defined only for A ⊆ U, where U
is called an universe

−A = U − A

We write for x ∈ U,

x ∈ −A if and only if x < A



Operations on Sets

Algebra of sets consists of properties of sets that
are true for all sets involved

We use tautologies of propositional logic

to prove basic properties of the algebra of sets

We then use the basic properties to prove more
elaborated properties of sets



Operations on Sets

It is possible to form intersections and unions of more then

two, or even a finite number o sets

Let F denote is any collection of sets

We write
⋃
F for the set whose elements are the

elements of all of the sets in F

Example Let
F = {{a}, {∅}, {a, ∅, b}}

We get ⋃
F = {a, ∅, b}



Operations on Sets

Observe that given

F = {{a}, {∅}, {a, ∅, b}} = {A1, A2, A3}

we have that

{a} ∪ {∅} ∪ {a, ∅, b} = A1 ∪ A2 ∪ A3 = {a, ∅, b} =
⋃
F

Hence we have that for any element x,

x ∈
⋃
F if and only if there exists i, such that x ∈ Ai



Operations on Sets

We define formally

Generalized Union of any family F of sets is⋃
F = {x : exists a set S ∈ F such that x ∈ S}

We write it also as

x ∈
⋃
F if and only if ∃S∈F x ∈ S



Operations on Sets

Generalized Intersection of any family F of sets is⋂
F = {x : ∀S∈F x ∈ S}

We write

x ∈
⋂
F if and only if ∀S∈F x ∈ S



Operations on Sets

Ordered Pair

Given two sets A ,B we denote by

(a, b)

an ordered pair, where a ∈ A and b ∈ B

We call a a first coordinate of (a, b)

and b its second coordinate

We define

(a, b) = (c, d) if and only if a = c and b = d



Operations on Sets

Cartesian Product

Given two sets A and B, the set

A × B = {(a, b) : a ∈ A and b ∈ B}

is called a Cartesian product (cross product) of sets A ,B

We write

(a, b) ∈ A × B if and only if a ∈ A and b ∈ B



Discrete Mathematics Basics

PART 2: Relations and Functions



Binary Relations

Binary Relation

Any set R such that R ⊆ A × A

is called a binary relation defined in a set A

Domain, Range of R

Given a binary relation R ⊆ A × A , the set

DR = {a ∈ A : (a, b) ∈ R}

is called a domain of the relation R

The set
VR = {b ∈ A : (a, b) ∈ R}

is called a range (set of values) of the relation R



n- ary Relations

Ordered tuple

Given sets A1, ...An, an element (a1, a2, ...an) such that
ai ∈ Ai for i = 1, 2, ...n is called an ordered tuple

Cartesian Product of sets A1, ,An is a set

A1 × A2 × ... × An = {(a1, a2, ...an) : ai ∈ Ai , i = 1, 2, ...n}

n-ary Relation on sets A1, . . . , An is any subset of
A1 × A2 × ... × An, i.e. the set

R ⊆ A1 × A2 × . . . × An



Binary Relations

Binary Relation

Any set R such that R ⊆ A × B

is called a binary relation defined in a sets A and B

Domain, Range of R

Given a binary relation R ⊆ A × B, the set

DR = {a ∈ A : (a, b) ∈ R}

is called a domain of the relation R

The set
VR = {b ∈ B : (a, b) ∈ R}

is called a range (set of values) of the relation R



Function as Relation

Definition

A binary relation R ⊆ A × B on sets A ,B is a function
from A to B

if and only if the following condition holds

∀a∈A ∃! b∈B (a, b) ∈ R

where ∃! b∈B means there is exactly one b ∈ B

Because the condition says that for any a ∈ A we have

exactly one b ∈ B, we write

R(a) = b for (a, b) ∈ R



Function as Relation

Given a binary relation

R ⊆ A × B

that is a function

The set A is called a domain of the function R

and we write:

R : A −→ B

to denote that the relation R is a function and say that

R maps the set A into the set B



Functions

Function notation

We denote relations that are functions by letters f, g, h,...
and write

f : A −→ B

say that the function f maps the set A into the set B

Domain, Codomain

Let f : A −→ B,

the set A is called a domain of f ,

and the set B is called a codomain of f



Functions

Range

Given a function f : A −→ B

The set
Rf = {b ∈ B : b = f(a) and a ∈ A }

is called a range of the function f

By definition, the range of f is a subset of its codomain B

We write Rf = {b ∈ B : ∃a∈A b = f(a)}

The set
f = {(a, b) ∈ A × B : b = f(a)}

is called a graph of the function f



Functions

Function ”onto”

The function f : A −→ B is an onto function

if and only if the following condition holds

∀b∈B ∃a∈A f(a) = b

We denote it by

f : A
onto
−→ B



Functions

Function ” one- to -one”

The function f : A −→ B

is called a one- to -one function and denoted by

f : A
1−1
−→ B

if and only if the following condition holds

∀x,y∈A (x , y ⇒ f(x) , f(y) )



Functions

A function f : A −→ B is not one- to -one function

if and only if the following condition holds

∃x,y∈A (x , y ∩ f(x) = f(y) )

If a function f is 1-1 and onto

we denote it as

f : A
1−1,onto
−→ B



Functions

Composition of functions

Let f and g be two functions such that

f : A −→ B and g : B −→ C

We define a new function

h : A −→ C

called a composition of functions f and g as follows:

for any x ∈ A we put

h(x) = g(f(x))



Functions

Composition notation

Given function f and g such that

f : A −→ B and g : B −→ C

We denote the composition of f and g by (f ◦ g)

in order to stress that the function

f : A −→ B

”goes first” followed by the function

g : B −→ C

with a shared set B between them



Functions

We write now the definition of composition of functions f

and g using the composition notation (name for the

composition function ) (f ◦ g) as follows

The composition (f ◦ g) is a new function

(f ◦ g) : A −→ C

such that for any x ∈ A we put

(f ◦ g)(x) = g(f(x))



Functions

There is also other notation (name) for the composition of f

and g that uses the symbol (g ◦ f), i.e. we put

(g ◦ f)(x) = g(f(x)) for all x ∈ A

This notation was invented to help calculus students to

remember the formula g(f(x)) defining the composition of

functions f and g



Functions

Inverse function

Let f : A −→ B and g : B −→ A

g is called an inverse function to f if and only if

the following condition holds

∀a∈A (f ◦ g)(a) = g(f(a)) = a

If g is an inverse function to f we denote by g = f−1



Functions

Identity function

A function I : A −→ A is called an identity on A

if and only if the following condition holds

∀a∈A I(a) = a

Inverse and Identity

Let f : A −→ B and let f−1 : B −→ A

be an inverse to f, then the following hold

(f ◦ f−1)(a) = f−1(f(a)) = I(a) = a, for all a ∈ A

(f−1 ◦ f(b)) = f(f−1(b) = I(b) = b , for all b ∈ B



Functions: Image and Inverse Image

Image

Given a function f : X −→ Y and a set A ⊆ X

The set

f [A ] = {y ∈ Y : ∃x (x ∈ A ∩ y = f(x))}

is called an image of the set A ⊆ X under the function f

We write

y ∈ f [A ] if and only if there is x ∈ A and y = f(x)

Other symbols used to denote the image are

f→(A) or f(A)



Functions: Image and Inverse Image

Inverse Image

Given a function f : X −→ Y and a set B ⊆ Y

The set
f−1[B] = {x ∈ X : f(x) ∈ B}

is called an inverse image of the set B ⊆ Y under the
function f

We write

x ∈ f−1[B] if and only if f(x) ∈ B

Other symbol used to denote the inverse image are

f−1(B) or f←(B)



Sequences

Definition

A sequence of elements of a set A is any function from
the set of natural numbers N into the set A, i.e. any function

f : N −→ A

Any f(n) = an is called n-th term of the sequence f

Notations {an}n∈N , {an}n≥0

a0, a1, a2, . . . , . . .



Sequences

We often consider sequences {an}n≥1 and adopt

Definition

A sequence of elements of a set A is any function from
the set of positive natural numbers N+ or from the set positive
Integers Z+ into the set A, i.e. any function

f : N+ −→ A or f : Z+ −→ A

Any f(n) = an is called n-th term of the sequence f

Notations {an}n∈Z+ , {an}n∈N+ , {an}n≥1

a1, a2, a3, . . . , . . .



Sequences Example

Example

We define a sequence f of real numbers R as follows

f : N −→ R

such that
f(n) = n +

√
n

We also use a shorthand notation for the function f and

write it as
an = n +

√
n



Sequences Example

We often write the function f = {an} in an even shorter and

informal form as

a0 = 0, a1 = 1 + 1 = 2, a2 = 2 +
√

2.........

or even as

0, 2, 2 +
√

2, 3 +
√

3, ...........n +
√

n.........



Observations

Observation 1

By definition, sequence of elements of any set is always

infinite (countably infinite) because the domain of the

sequence function f is a set N of natural numbers

Observation 2

We can enumerate elements of a sequence by any infinite

subset of N

We often take a set N+ = N − {0} as a sequence domain
(enumeration) and ”start” with n = 1, i.e. write

a1, a2, a3, ..... an, . . . . . .



Observations

Observation 3

We can choose as a set of indexes of a sequence any

countably infinite set T, i. e, not only the set N

of natural numbers

We often choose T = N − {0} = N+, i.e we consider

sequences that ”start” with n = 1

In this case we write sequences as

a1, a2, a3, ..... an, . . . . . .



Finite Sequences

Finite Sequence

Given a finite set K = {1, 2, . . . , n}, for n ∈ N and any set
A

Any function
f : {1, 2, ...n} −→ A

is called a finite sequence of elements of the set A

of the length n

Case n=0

In this case the function f is an empty set and we call it an

empty sequence

We denote the empty sequence by e

Other common notation is λ



Example

Example

Consider a sequence given by a formula

an =
n

(n − 2)(n − 5)

The domain of the function f(n) = an is the set N − {2, 5}

and the sequence f is a function

f : N − {2, 5} → R

The first elements of the sequence f are

a0 = f(0), a1 = f(1), a3 = f(3), a4 = f(4), a6 = f(6), . . .



Families of Sets

Family of sets

Any collection of sets is called a family of sets

We denote the family of sets by F

Sequence of sets

Any function

f : N −→ F or f : N+ −→ F

is a sequence of sets, i..e a sequence where all its

elements are sets

We use capital letters to denote sets and write the sequence

of sets as {An}n∈N , {An}n∈N+ , {An}n≥1



Generalized Union

Generalized Union

Given a sequence {An}n∈N of sets

We define that Generalized Union of the sequence of sets as⋃
n∈N

An = {x : ∃n∈N x ∈ An}

We write

x ∈
⋃
n∈N

An if and only if ∃n∈N x ∈ An



Generalized Intersection

Generalized Intersection

Given a sequence {An}n∈N of sets

We define that Generalized Intersection of the sequence

of sets as ⋂
n∈N

An = {x : ∀n∈N x ∈ An}

We write

x ∈
⋂
n∈N

An if and only if ∀n∈N x ∈ An



Indexed Family of Sets

Indexed Family of Sets

Given F be a family of sets

Let T , ∅ be any non empty set

Any function
f : T −→ F

is called an indexed family of sets with the set of indexes T

We write it
{At }t∈T

Notice

Any sequence of sets is an indexed family of sets for T = N



Short Review

Some Simple Questions and Answers



Simple Short Questions

Here are some short Yes/ No questions

Answer them and write a short justification of your answer

Q1 2{1,2} ∩ {1, 2} , ∅

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

Q3 ∅ ∈ 2{a,b ,{a,b}}

Q4 Any function f from A , ∅ onto A , has property

f(a) , a for certain a ∈ A



Simple Short Questions

Q5 Let f : N −→ P(N) be given by a formula:

f(n) = {m ∈ N : m < n2}

then ∅ ∈ f [{0, 1, 2}]

Q6 Some relations
R ⊆ A × B

are functions that map the set A into the set B



Answers to Short Questions

Q1 2{1,2} ∩ {1, 2} , ∅

NO because

2{1,2} = {∅, {1}, {2}, {1, 2}} ∩ {1, 2} = ∅

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

YES because

have that {a, b} ⊆ {a, b , {a, b}} and hence

{{a, b}} ∈ 2{a,b ,{a,b}}

by definition of the set of all subsets of a given set



Answers to Short Questions

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

YES other solution

We list all subsets of the set {a, b , {a, b}},

i.e. all elements of the set

2{a,b ,{a,b}}

We start as follows

{∅, {a}, {b}, {{a, b}}, . . . , . . . }

and observe that we can stop listing because we reached

the set {{a, b}}

This proves that {{a, b}} ∈ 2{a,b ,{a,b}}



Answers to Short Questions

Q3 ∅ ∈ 2{a,b ,{a,b}}

YES because for any set A, we have that ∅ ⊆ A

Q4 Any function f from A , ∅ onto A has a property

f(a) , a for certain a ∈ A

NO

Take a function such that f(a) = a for all a ∈ A

Obviously f is ”onto” and and there is no a ∈ A

for which f(a) , a



Answers to Short Questions

Q5 Let f : N −→ P(N) be given by formula:

f(n) = {m ∈ N : m < n2}, then ∅ ∈ f [{0, 1, 2}]

YES We evaluate

f(0) = {m ∈ N : m < 0} = ∅

f(1) = {m ∈ N : m < 1} = {0}

f(2) = {m ∈ N : m < 22} = {0, 1, 2, 3}

and so by definition of f [A ] get that

f [{0, 1, 2}] = {∅, {0}, {0, 1, 2, 3}} and hence ∅ ∈ f [{0, 1, 2}]

Q6 Some R ⊆ A × B are functions that map A into B

YES: Functions are special type of relations



Simple Short Questions

Q7 {(1, 2), (a, 1)} is a binary relation on {1, 2}

Q8 For any binary relation R ⊆ A × A , the

inverse relation R−1 exists

Q9 For any binary relation R ⊆ A × A that is a function,

the inverse function R−1 exists



Simple Short Questions

Q10 Let A = {a, {a}, ∅} and B = {∅, {∅}, ∅}

there is a function f : A−→1−1
onto B

Q11 Let f : A−→ B and g : B −→onto A ,

then the compositions (g ◦ f) and (f ◦ g) exist

Q12 The function f : N −→ P(R) given by the formula:

f(n) = {x ∈ R : x >
ln(n3 + 1)
√

n + 6
}

is a sequence



Answers to Short Questions

Q7 {(1, 2), (a, 1)} is a binary relation on {1, 2}

NO because (a, 1) < {1, 2} × {1, 2}

Q8 For any binary relation R ⊆ A × A , the inverse

relation R−1 exists

YES By definition, the inverse relation to R ⊆ A × A is
the set

R−1 = {(b , a) : (a, b) ∈ R}

and it is a well defined relation in the set A



Answers to Short Questions

Q9 For any binary relation R ⊆ A × A that is a function,

the inverse function R−1 exists

NO R must be also a 1 − 1 and onto function

Q10 Let A = {a, {a}, ∅} and B = {∅, {∅}, ∅}

there is a function f : A−→1−1
onto B

NO The set A has 3 elements and the set

B = {∅, {∅}, ∅} = {∅, {∅}}

has 2 elements and an onto function does not exists



Answers to Short Questions

Q11 Let f : A−→ B and g : B −→onto A ,

then the compositions (g ◦ f) and (f ◦ g) exist

YES The composition (f ◦ g) exists because the functions

f : A−→ B and g : B −→onto A share the same set B

The composition (g ◦ f) exists because the functions

g : B −→onto A and f : A−→ B share the same set A

The information ”onto” is irrelevant



Answers to Short Questions

Q12 The function f : N −→ P(R) given by the formula:

f(n) = {x ∈ R : x >
ln(n3 + 1)
√

n + 6
}

is a sequence

YES It is a sequence as the domain of the function f is

the set N of natural numbers and the formula for f(n) assigns

to each natural number n a certain subset of R, i.e.

an element of P(R)


