cse581 COMPUTER SCIENCE FOUNDAMENTALS: THEORY

Professor Anita Wasilewska

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Lecture 1

DISCRETE MATHEMATICS BASICS

Discrete Mathematics Basics

PART 0: Basic sets of Numbers, Peano Arithmetic

- PART 1: Sets and Operations on Sets
- PART 2: Relations and Functions
- PART 3: Special types of Binary Relations
- PART 4: Finite and Infinite Sets
- PART 5: Some Fundamental Proof Techniques

Theory of Computation BASICS

- PART 6: Closures and Algorithms
- PART 7: Alphabets and languages
- PART 8: Finite Representation of Languages

(日)

Discrete Mathematics Basics

PART 0: Basic sets of Numbers, Peano Arithmetic

Basic Sets of Numbers

Natural numbers N, Integers Z, Positive Integers Z^+ , Positive Natural numbers N^+ , Prime Numbers P, Rational Numbers Q, and Real numbers R Natural Numbers N

 $N = \{0, 1, 2, 3, \ldots, \ldots\}$

Integers Z and Positive Integers Z^+

 $Z = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots, \ldots \}$

 $Z^+ = \{ 1, 2, 3, \ldots, \ldots \}$

Positive Integers Z^+ are also called Positive Natural numbers N^+ and we denote

$$N^+ = \{ 1, 2, 3, \ldots, \ldots \}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Prime Numbers

A positive integer $p \in Z^+$ is called prime if it has only two divisors, namely 1 and p By convention, 1 **is not** prime

Prime Numbers P

 $P = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, \dots, \dots\}$

Rational and Real Numbers

Rational numbers Q

$$Q = \{\frac{p}{q}: p, q \in Z \text{ and } q \neq 0\}$$

Real numbers R

The **first rigorous definition** of the set **R** of real numbers was published by **Cantor** in 1871

Cantor's definition (as established today in modern terminology)

The set R Is the **quotient set** of the set of Cauchy sequences of **rational numbers**, with two sequences considered **equivalent** if their difference converges to zero

Cantor also showed In 1874, that the set of all real numbers is uncountably infinite, but the set of all algebraic numbers is countably infinite

Real Numbers

The **other first rigorous definition** of **R** established today was given by **Richard Dedekind** at the same time and independent from **Cantor** in terms what we call now **Dedekind cuts**

The concept of the Dedekind cuts developed for it became on of the very important concepts for modern mathematics

The set of **R** is often called "The Reals" - after the name "real numbers" first used by a French philosopher, scientist, and mathematician **Rene Descartes** (1596 -1650), also known as **Renatus Cartesius**

Irrational and Algebraic Numbers

Of course we have that $N \subset Q \subset R$ Real numbers that are not Rational are called **Irrational** numbers, i.e. we put IR = R - Q**Algebraic number** is a number that is a **root** of a non-zero polynomial P(x) in one variable equation P(x) = 0 with **integer** (or, equivalently **rational**) coefficients

All rational numbers are algebraic

Let $x \in Q$, by the definition $x = \frac{a}{b}$ for any integers $a, b \neq 0$ is the root of a non-zero polynomial equation namely bx - a = 0

Encyclopedia Britannica

Here is what is published the Encyclopedia Britannica

Real number in mathematics, is a quantity that can be expressed as an infinite decimal expansion

The real numbers include the positive and negative integers and the fractions made from those integers (or rational numbers) and**also** the irrational numbers

Natural Numbers in Encyclopedia Britannica

Here is what is published the Encyclopedia Britannica

Natural numbers: called the counting numbers or natural numbers (1, 2, 3,). For an empty set, no object is present, and the **count yields** the number 0, which, appended to the counting numbers, produces what are known as the **whole numbers** Hence the Modern Mathematics definition is

 $N = \{0, 2, 3, 4, \dots \}$

 $N = Z^+ \cup \{0\} = N^+ \cup \{0\} =$ whole numbers

Next to geometry, the **theory of natural numbers** is the most intuitive and intuitively known of all branches of mathematics

This is why the first attempts to **formalize mathematics** begin with arithmetic of natural numbers.

(日)

The first attempt of axiomatic formalization was given by Dedekind in **1879** and by Peano in **1889**

The Peano formalization became known as **Peano Postulates** and can be written as follows.

Peano Postulates (1889)

p1 0 is a natural number

p2 If *n* is a natural number, there is another number which we denote by n'We call the number n' a **successor** of *n* and the intuitive meaning of n' is n + 1

p3 $0 \neq n'$, for any natural number **n**

p4 If n' = m', then n = m, for any natural numbers n, m

p5 If W is is a property that may or may not hold for natural numbers, and
if (i) 0 has the property W and
(ii) whenever a natural number n has the property W, then n' has the property W,
then all natural numbers have the property W

The postulate **p5** is called Principle of Induction

The **Peano Postulates** together with certain amount of set theory are sufficient to develop **not only** theory of natural numbers, **but also** theory of rational and even real numbers

But **Peano Postulates** can't act as a fully formal theory as they include **intuitive** notions like "property" and

"has a property" . A **formal theory** of natural numbers based on the Peano

Postulates is referred in literature as **Peano Arithmetic**, or simply **PA**

We present, in Chapter 11 of the book **B2** a formalization by Mendelson (1973) It is included and worked out in the smallest **details** in his book *Intoduction to Mathematical Logic* (1987) **Discrete Mathematics Basics**

(ロト (個) (E) (E) (E) (9)

PART 1: Sets and Operations on Sets

Sets

Set A set is a collection of objects

Elements The objects comprising a set are are called its elements or members

 $a \in A$ denotes that a is an **element** of a set A

 $a \notin A$ denotes that a is not an **element** of A

Empty Set is a set without elements

Empty Set is denoted by Ø

Sets

Sets can be defined by listing their elements;

Example

The set

$$A = \{a, \emptyset, \{a, \emptyset\}\}$$

has 3 elements:

 $a \in A$, $\emptyset \in A$, $\{a, \emptyset\} \in A$

Sets

Sets can be defined by referring to other sets and to properties P(x) that elements may or may not have

We write it as

 $B = \{x \in A : P(x)\}$

Example

Let N be a set of natural numbers

 $B = \{n \in N : n < 0\} = \emptyset$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Set Inclusion

 $A \subseteq B$ if and only if $\forall a (a \in A \Rightarrow a \in B)$ is a **true** statement

Set Equality A = B if and only if $A \subseteq B$ and $B \subseteq A$

Proper Subset $A \subset B$ if and only if $A \subseteq B$ and $A \neq B$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Subset Notations

- $A \subseteq B$ for a subset (might be improper) $A \subset B$ for a proper subset
- **Power Set** Set of all subsets of a given set

 $\mathcal{P}(A) = \{B : B \subseteq A\}$

Other Notation

$$2^{A} = \{B : B \subseteq A\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Union

 $A \cup B = \{x : x \in A \text{ or } x \in B\}$

We write:

 $x \in A \cup B$ if and only if $x \in A \cup x \in B$

Intersection $A \cap B = \{x : x \in A \text{ and } x \in B\}$ We write: $x \in A \cap B$ if and only if $x \in A \cap x \in B$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Relative Complement

 $x \in (A - B)$ if and only if $x \in A$ and $x \notin B$ We write:

$$A-B=\{x: x\in A \cap x \notin B\}$$

Complement is defined only for $A \subseteq U$, where *U* is called an **universe**

$$-A = U - A$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

We write for $x \in U$,

 $x \in -A$ if and only if $x \notin A$

Algebra of sets consists of properties of sets that are true for all sets involved

We use **tautologies** of propositional logic to prove **basic** properties of the algebra of sets

We then use the basic properties to **prove** more elaborated properties of sets

(日)

It is possible to form intersections and unions of **more** then two, or even a finite number o **sets**

Let \mathcal{F} denote is any **collection** of sets

We write $\bigcup \mathcal{F}$ for the set whose elements are the elements of all of the sets in \mathcal{F}

Example Let

 $\mathcal{F} = \{\{a\}, \{\emptyset\}, \{a, \emptyset, b\}\}$

We get

$$\bigcup \mathcal{F} = \{a, \ \emptyset, \ b\}$$

Observe that given

$$\mathcal{F} = \{\{a\}, \{\emptyset\}, \{a, \emptyset, b\}\} = \{A_1, A_2, A_3\}$$

we have that

 $\{a\} \cup \{\emptyset\} \cup \{a, \emptyset, b\} = A_1 \cup A_2 \cup A_3 = \{a, \emptyset, b\} = \left(\begin{array}{c} \int \mathcal{F} \\ \int \mathcal{F} \\ \end{array} \right)$

Hence we have that for any element x,

 $x \in \bigcup \mathcal{F}$ if and only if there exists i, such that $x \in A_i$

We **define** formally **Generalized Union** of any family \mathcal{F} of sets is

 $\int \mathcal{F} = \{x : \text{ exists a set } S \in \mathcal{F} \text{ such that } x \in S\}$

We write it also as

$$x \in \bigcup \mathcal{F}$$
 if and only if $\exists_{S \in \mathcal{F}} x \in S$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Generalized Intersection of any family $\ensuremath{\mathcal{F}}$ of sets is

$$\bigcap \mathcal{F} = \{ x : \forall_{S \in \mathcal{F}} x \in S \}$$

We write

$$x \in \bigcap \mathcal{F}$$
 if and only if $\forall_{S \in \mathcal{F}} x \in S$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Ordered Pair

Given two sets A, B we denote by

(a, b)

an **ordered pair**, where $a \in A$ and $b \in B$ We call a a **first** coordinate of (a, b)and b its **second** coordinate We define

(a,b) = (c,d) if and only if a = c and b = d

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cartesian Product

Given two sets A and B, the set

 $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$

is called a **Cartesian product** (cross product) of sets *A*, *B* We write

 $(a, b) \in A \times B$ if and only if $a \in A$ and $b \in B$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Discrete Mathematics Basics

PART 2: Relations and Functions

Binary Relations

Binary Relation

Any set R such that $R \subseteq A \times A$ is called a **binary relation** defined in a set A

Domain, Range of R Given a binary relation $R \subseteq A \times A$, the set

 $D_R = \{a \in A : (a, b) \in R\}$

is called a domain of the relation R

The set

$$V_R = \{b \in A : (a, b) \in R\}$$

is called a range (set of values) of the relation R

n- ary Relations

Ordered tuple

Given sets $A_1, ..., A_n$, an element $(a_1, a_2, ..., a_n)$ such that $a_i \in A_i$ for i = 1, 2, ..., n is called an **ordered tuple**

Cartesian Product of sets A_1, A_n is a set

 $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) : a_i \in A_i, i = 1, 2, ..., n\}$

n-ary Relation on sets A_1, \ldots, A_n is any subset of $A_1 \times A_2 \times \ldots \times A_n$, i.e. the set

 $R \subseteq A_1 \times A_2 \times \ldots \times A_n$

Binary Relations

Binary Relation

Any set R such that $R \subseteq A \times B$ is called a **binary relation** defined in a sets A and B

Domain, Range of R Given a binary relation $R \subseteq A \times B$, the set

 $D_R = \{a \in A : (a, b) \in R\}$

is called a domain of the relation R

The set

```
V_R = \{b \in B : (a, b) \in R\}
```

is called a range (set of values) of the relation R

Function as Relation

Definition

A binary relation $R \subseteq A \times B$ on sets A, B is a **function** from A to B

if and only if the following condition holds

 $\forall_{a\in A} \exists! _{b\in B} (a,b) \in R$

where $\exists !_{b \in B}$ means there is **exactly one** $b \in B$

Because the condition says that for any $a \in A$ we have **exactly one** $b \in B$, we write

R(a) = b for $(a, b) \in R$

Function as Relation

Given a binary relation

 $R\subseteq A\times B$

that is a **function**

The set *A* is called a **domain** of the function *R* and we write:

$$R: A \longrightarrow B$$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

to denote that the relation R is a function and say that

R maps the set A into the set B
Function notation

We denote relations that are functions by letters f, g, h, \dots and write

 $f: A \longrightarrow B$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

say that the function f maps the set A into the set B

Domain, Codomain

Let $f: A \longrightarrow B$,

the set A is called a **domain** of f,

and the set B is called a codomain of f

Range

Given a function $f: A \longrightarrow B$

The set

 $R_f = \{b \in B : b = f(a) \text{ and } a \in A\}$

is called a **range** of the function f

By definition, the **range** of f is a subset of its **codomain** B We write $R_f = \{b \in B : \exists_{a \in A} b = f(a)\}$

The set

$$f = \{(a, b) \in A \times B : b = f(a)\}$$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

is called a graph of the function f

Function "onto"

The function $f: A \longrightarrow B$ is an **onto** function if and only if the following condition holds

 $\forall_{b\in B} \exists_{a\in A} f(a) = b$

We denote it by

 $f: A \xrightarrow{onto} B$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Function "one-to-one"

The function $f: A \longrightarrow B$ is called a **one- to -one** function and denoted by

 $f: A \xrightarrow{1-1} B$

if and only if the following condition holds

 $\forall_{x,y\in A} (x\neq y \Rightarrow f(x)\neq f(y))$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A function $f: A \longrightarrow B$ is **not one- to -one** function if and only if the following condition holds

 $\exists_{x,y\in A}(x\neq y\cap f(x)=f(y))$

If a function f is **1-1** and **onto** we denote it as

 $f: A \xrightarrow{1-1,onto} B$

Composition of functions

Let f and g be two functions such that

 $f: A \longrightarrow B$ and $g: B \longrightarrow C$

We define a new function

 $h: A \longrightarrow C$

called a **composition** of functions f and g as follows: for any $x \in A$ we put

h(x) = g(f(x))

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Composition notation

Given function f and g such that

 $f: A \longrightarrow B$ and $g: B \longrightarrow C$

We **denote** the **composition** of f and g by $(f \circ g)$ in order to stress that the function

 $f: A \longrightarrow \mathbf{B}$

"goes first" followed by the function

 $g: \mathbf{B} \longrightarrow C$

with a shared set B between them

We write now the **definition** of composition of functions **f** and **g** using the **composition notation** (name for the composition function) $(f \circ g)$ as follows The composition $(f \circ g)$ is a **new** function

 $(f \circ g) : A \longrightarrow C$

such that for any $x \in A$ we put

 $(f \circ g)(x) = g(f(x))$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

There is also other notation (name) for the **composition** of f and g that uses the symbol $(g \circ f)$, i.e. we put

 $(g \circ f)(x) = g(f(x))$ for all $x \in A$

This notation was invented to help calculus students to remember the formula g(f(x)) defining the composition of functions f and g

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Inverse function

Let $f: A \longrightarrow B$ and $g: B \longrightarrow A$

g is called an **inverse** function to *f* if and only if the following condition holds

$\forall_{a\in A}(f\circ g)(a)=g(f(a))=a$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

If g is an **inverse** function to f we denote by $g = f^{-1}$

Identity function

A function $I: A \longrightarrow A$ is called an **identity** on A if and only if the following condition holds

 $\forall_{a\in A} l(a) = a$

Inverse and Identity

Let $f : A \longrightarrow B$ and let $f^{-1} : B \longrightarrow A$ be an **inverse** to f, then the following hold

 $(f \circ f^{-1})(a) = f^{-1}(f(a)) = I(a) = a$, for all $a \in A$

 $(f^{-1} \circ f(b)) = f(f^{-1}(b) = l(b) = b$, for all $b \in B$

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Functions: Image and Inverse Image

Image

Given a function $f: X \longrightarrow Y$ and a set $A \subseteq X$ The set

$$f[A] = \{y \in Y : \exists x \ (x \in A \cap y = f(x))\}$$

is called an **image** of the set $A \subseteq X$ under the function f We write

 $y \in f[A]$ if and only if there is $x \in A$ and y = f(x)

Other symbols used to denote the image are

$$f^{\rightarrow}(A)$$
 or $f(A)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Functions: Image and Inverse Image

Inverse Image

Given a function $f: X \longrightarrow Y$ and a set $B \subseteq Y$ The set

$$f^{-1}[B] = \{x \in X : f(x) \in B\}$$

is called an **inverse image** of the set $B \subseteq Y$ under the function f

We write

$$x \in f^{-1}[B]$$
 if and only if $f(x) \in B$

Other symbol used to denote the inverse image are

$$f^{-1}(B)$$
 or $f^{\leftarrow}(B)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sequences

Definition

A **sequence** of elements of a set A is any **function** from the set of natural numbers N into the set A, i.e. any function

 $f: N \longrightarrow A$

Any $f(n) = a_n$ is called **n-th term** of the sequence f Notations $\{a_n\}_{n \in \mathbb{N}}, \{a_n\}_{n \ge 0}$

 $a_0, a_1, a_2, \ldots, \ldots$

Sequences

We often consider sequences $\{a_n\}_{n\geq 1}$ and adopt **Definition**

A **sequence** of elements of a set A is any **function** from the set of positive natural numbers N^+ or from the set positive Integers Z^+ into the set A, i.e. any function

$$f: \mathbb{N}^+ \longrightarrow \mathbb{A}$$
 or $f: \mathbb{Z}^+ \longrightarrow \mathbb{A}$

Any $f(n) = a_n$ is called **n-th term** of the sequence f Notations $\{a_n\}_{n \in \mathbb{Z}^+}, \{a_n\}_{n \in \mathbb{N}^+}, \{a_n\}_{n \ge 1}$

 $a_1, a_2, a_3, \ldots, \ldots$

Sequences Example

Example

We define a sequence f of real numbers R as follows

 $f: N \longrightarrow R$

such that

$$f(n)=n+\sqrt{n}$$

We also use a shorthand notation for the function f and write it as

 $a_n = n + \sqrt{n}$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Sequences Example

We often write the function $f = \{a_n\}$ in an even shorter and **informal** form as

 $a_0 = 0$, $a_1 = 1 + 1 = 2$, $a_2 = 2 + \sqrt{2}$

or even as

0, 2, 2 + $\sqrt{2}$, 3 + $\sqrt{3}$, n + \sqrt{n}

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Observations

Observation 1

By definition, **sequence** of elements of any set is always infinite (countably infinite) because the domain of the **sequence** function f is a set N of **natural numbers**

Observation 2

We can enumerate elements of a sequence by any infinite subset of $\ensuremath{\mathsf{N}}$

We often take a set $N^+ = N - \{0\}$ as a **sequence** domain (enumeration) and "start" with n = 1, i.e. write

$$a_1, a_2, a_3, \dots, a_n, \dots$$

Observations

Observation 3

We can choose as a set of indexes of a **sequence** any countably infinite set T, i. e, **not only** the set N of natural numbers We often choose $T = N - \{0\} = N^+$, i.e we consider **sequences** that "start" with n = 1In this case we write sequences as

 $a_1, a_2, a_3, \dots, a_n, \dots$

Finite Sequences

Finite Sequence

Given a finite set $K = \{1, 2, ..., n\}$, for $n \in N$ and any set A

Any function

 $f: \{1, 2, ..., n\} \longrightarrow A$

is called a **finite sequence** of elements of the set A of the **length** n

Case n=0

In this case the function f is an empty set and we call it an

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

empty sequence

We denote the empty sequence by e

Other common notation is λ

Example

Example

Consider a sequence given by a formula

$$a_n=\frac{n}{(n-2)(n-5)}$$

The domain of the function $f(n) = a_n$ is the set $N - \{2, 5\}$ and the **sequence** f is a function

 $f: N-\{2,5\} \rightarrow R$

The first elements of the sequence f are

 $a_0 = f(0), \ a_1 = f(1), \ a_3 = f(3), \ a_4 = f(4), \ a_6 = f(6), \dots$

Families of Sets

Family of sets

Any collection of sets is called a **family of sets** We denote the family of sets by \mathcal{F} Sequence of sets Any function

 $f: N \longrightarrow \mathcal{F} \text{ or } f: N^+ \longrightarrow \mathcal{F}$

is a **sequence of sets**, i..e a sequence where all its elements are sets

We use capital letters to denote sets and write the **sequence** of sets as $\{A_n\}_{n \in \mathbb{N}}$, $\{A_n\}_{n \in \mathbb{N}^+}$, $\{A_n\}_{n \geq 1}$

Generalized Union

Generalized Union

Given a sequence $\{A_n\}_{n \in \mathbb{N}}$ of sets

We define that Generalized Union of the sequence of sets as

$$\bigcup_{n\in N} A_n = \{x : \exists_{n\in N} x \in A_n\}$$

We write

$$x \in \bigcup_{n \in \mathbb{N}} A_n$$
 if and only if $\exists_{n \in \mathbb{N}} x \in A_n$

Generalized Intersection

Generalized Intersection

Given a sequence $\{A_n\}_{n \in \mathbb{N}}$ of sets We define that **Generalized Intersection** of the sequence of sets as

$$\bigcap_{n\in\mathbb{N}}A_n=\{x: \forall_{n\in\mathbb{N}} x\in A_n\}$$

We write

$$x \in \bigcap_{n \in N} A_n$$
 if and only if $\forall_{n \in N} x \in A_n$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Indexed Family of Sets

Indexed Family of Sets

Given \mathcal{F} be a family of sets Let $T \neq \emptyset$ be any non empty set

Any function

 $f: T \longrightarrow \mathcal{F}$

is called an indexed family of sets with the set of indexes T We write it

$\{\mathbf{A}_t\}_{t\in T}$

Notice

Any sequence of sets is an indexed family of sets for T = N

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Short Review

Some Simple Questions and Answers

・ロト・日本・日本・日本・日本・日本

Simple Short Questions

Here are some short **Yes**/ **No** questions Answer them and write a short **justification** of your answer

- **Q1** $2^{\{1,2\}} \cap \{1,2\} \neq \emptyset$
- **Q2** $\{\{a, b\}\} \in 2^{\{a, b, \{a, b\}\}}$
- **Q3** $\emptyset \in 2^{\{a,b,\{a,b\}\}}$
- **Q4** Any function f from $A \neq \emptyset$ onto A, has property

 $f(a) \neq a$ for certain $a \in A$

Simple Short Questions

Q5 Let $f: N \longrightarrow \mathcal{P}(N)$ be given by a formula: $f(n) = \{m \in N : m < n^2\}$

then $\emptyset \in f[\{0, 1, 2\}]$

Q6 Some relations $R \subseteq A \times B$

are functions that map the set A into the set B

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Q1 $2^{\{1,2\}} \cap \{1,2\} \neq \emptyset$ NO because

 $2^{\{1,2\}} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \cap \{1,2\} = \emptyset$

Q2 $\{\{a, b\}\} \in 2^{\{a, b, \{a, b\}\}}$ YES because have that $\{a, b\} \subseteq \{a, b, \{a, b\}\}$ and hence $\{\{a, b\}\} \in 2^{\{a, b, \{a, b\}\}}$

by definition of the set of all subsets of a given set

Q2 $\{\{a, b\}\} \in 2^{\{a, b, \{a, b\}\}}$ YES other solution We list all subsets of the set $\{a, b, \{a, b\}\}$, i.e. all elements of the set

2^{{a,b,{a,b}}}

We start as follows

```
\{\emptyset, \{a\}, \{b\}, \{\{a, b\}\}, \ldots, \ldots\}
```

and observe that we can **stop** listing because we reached the set $\{\{a, b\}\}\$ This proves that $\{\{a, b\}\} \in 2^{\{a, b, \{a, b\}\}}$

- **Q3** $\emptyset \in 2^{\{a,b,\{a,b\}\}}$
- **YES** because for any set A, we have that $\emptyset \subseteq A$
- **Q4** Any function f from $A \neq \emptyset$ onto A has a property

 $f(a) \neq a$ for certain $a \in A$

NO

Take a function such that f(a) = a for all $a \in A$ Obviously f is "onto" and and there is no $a \in A$ for which $f(a) \neq a$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Q5 Let $f: N \to \mathcal{P}(N)$ be given by formula: $f(n) = \{m \in N : m < n^2\}$, then $\emptyset \in f[\{0, 1, 2\}]$ **YES** We evaluate $f(0) = \{m \in N : m < 0\} = \emptyset$ $f(1) = \{m \in N : m < 1\} = \{0\}$ $f(2) = \{m \in N : m < 2^2\} = \{0, 1, 2, 3\}$ and so by definition of f[A] get that $f[\{0, 1, 2\}] = \{\emptyset, \{0\}, \{0, 1, 2, 3\}\}$ and hence $\emptyset \in f[\{0, 1, 2\}]$

Q6 Some $R \subseteq A \times B$ are functions that map A into B **YES**: Functions are special type of relations

Simple Short Questions

Q7 $\{(1,2), (a,1)\}$ is a binary relation on $\{1,2\}$

Q8 For any binary relation $R \subseteq A \times A$, the **inverse** relation R^{-1} **exists**

Q9 For any **binary relation** $R \subseteq A \times A$ that is a function, the **inverse function** R^{-1} exists

Simple Short Questions

Q10 Let $A = \{a, \{a\}, \emptyset\}$ and $B = \{\emptyset, \{\emptyset\}, \emptyset\}$ there is a function $f : A \longrightarrow_{onto}^{1-1} B$

Q11 Let $f: A \rightarrow B$ and $g: B \rightarrow onto A$, then the compositions $(g \circ f)$ and $(f \circ g)$ exist

Q12 The function $f: N \longrightarrow \mathcal{P}(R)$ given by the formula:

$$f(n) = \{x \in R : x > \frac{ln(n^3 + 1)}{\sqrt{n + 6}}\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

is a **sequence**

- **Q7** $\{(1,2), (a,1)\}$ is a binary relation on $\{1,2\}$
- **NO** because $(a, 1) \notin \{1, 2\} \times \{1, 2\}$
- **Q8** For any binary relation $R \subseteq A \times A$, the inverse relation R^{-1} exists

YES By definition, the **inverse relation** to $R \subseteq A \times A$ is the set

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

and it is a well defined relation in the set A

Q9 For any **binary relation** $R \subseteq A \times A$ that is a function, the **inverse function** R^{-1} exists

NO R must be also a 1 - 1 and *onto* function

Q10 Let $A = \{a, \{a\}, \emptyset\}$ and $B = \{\emptyset, \{\emptyset\}, \emptyset\}$ there is a function $f : A \longrightarrow_{onto}^{1-1} B$ **NO** The set A has **3** elements and the set

 $\boldsymbol{B} = \{\emptyset, \{\emptyset\}, \emptyset\} = \{\emptyset, \{\emptyset\}\}$

has 2 elements and an onto function does not exists
Answers to Short Questions

Q11 Let $f: A \longrightarrow B$ and $g: B \longrightarrow {}^{onto} A$, then the compositions $(g \circ f)$ and $(f \circ g)$ exist

YES The composition $(f \circ g)$ exists because the functions $f: A \rightarrow B$ and $g: B \rightarrow Onto A$ share the same set B

- ロト・日本・日本・日本・日本・日本

The composition $(g \circ f)$ exists because the functions $g: B \longrightarrow {}^{onto} A$ and $f: A \longrightarrow B$ share the same set A

The information "onto" is irrelevant

Answers to Short Questions

Q12 The function $f: N \longrightarrow \mathcal{P}(R)$ given by the formula:

$$f(n) = \{x \in R : x > \frac{ln(n^3 + 1)}{\sqrt{n + 6}}\}$$

is a **sequence**

YES It is a sequence as the **domain** of the function f is the set N of natural numbers and the formula for f(n) assigns to each natural number n a certain **subset** of R, i.e. an **element** of $\mathcal{P}(R)$