cse581 Computer Science Fundamentals: Theory

Professor Anita Wasilewska

CM - Lecture 3

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Chapter 4: Number Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

PART 1: Divisibility

PART 2: Primes

PART 1: DIVISIBILITY

Basic Definitions

Definition

Given $m, n \in Z$, we say m divides n or n is divisible by m if and only if $m \neq 0$ and n = mk, for some $k \in Z$

We write it symbolically

 $m \mid n$ if and only if n = mk, for some $k \in Z$

Definition

If $m \mid n$, then m is called a **divisor** or a **factor** of n We call n = mk a **decomposition** or a **factorization** of n

Basic Definitions

Definition

Let m be a **divisor** of n, i.e. n = mkCleary: $k \neq 0$ is also a **divisor** of n and is uniquely determined by m

Definition

Divisors of of n occur in pairs (m,k)

Definition

 $n \in Z$ is a square number if and only if all its divisors of n are (m, m) i.e when $n = m^2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fact 1

If (m, k) is a divisor of n so is (-m, -k)**Proof**

n = mk, so n = (-m)(-k) = mk

Definition

(-m, -k) is called an **associated divisor** to (m, k)

Fact 2

 ± 1 together with $\pm n$ are **trivial divisors** of *n*

Proof Each number n has an obvious decomposition (1, n), (-1, -n) as n = 1n = (-1)(-n)

Fact 3

If m|n and n|m, then m, n are **associated**, i.e $m = \pm n$ **Proof**

Assume m|n i.e. $n = mk_1$, also n|m i.e. $m = nk_2$, for $k_1, k_2 \in Z$

So $n = nk_1k_2$ iff $k_1 = k_2 = 1$ and m = n

or $k_1 = k_2 = -1$, and m = -n

Fact 4

If $m \mid n_1$ and $m \mid n_2$ then $m \mid (n_1 \pm n_2)$

Proof

Assume $m \mid n_1$ i.e. $n_1 = mk_1$, and $m \mid n_2$ i.e. $n_2 = mk_2$ Hence $n_1 \pm n_2 = m(k_1 \pm k_2)$ i.e. $m \mid (n_1 \pm n_2)$

Fact 5 If $m \mid n$ and $n \mid k$ then $m \mid k$

Proof

 $m \mid n$ iff $n = mk_1$ and $n \mid k$ iff $k = nk_2$ Hence $k = mk_1k_2$ iff $m \mid k$

In most questions regarding **divisors** we assume that m > 0 and only consider **positive divisors** (m, k)

We look first at **positive factorizations** and then we work out others

Book Definition

The Book Definition

For $n, m, k \in \mathbb{Z}$

$m \mid n$ if and only if m > 0 and n = mk

It means the **The Book** considers only **positive divisors** $(m, k), m > 0, k \in \mathbb{Z}$

Definition

All positive divisors, including 1, that are less than n are called **proper divisors** of n

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fact 6

If (m,k) is a divisor of n then the factors m,k can't be both $> \sqrt{n}$

Proof

Assume that for both factors $m > \sqrt{n}$ and $k > \sqrt{n}$, then $mk > \sqrt{n}\sqrt{n} = n$;

we got a contradiction with n = mk

Fact 6 Rewrite

If (m, k) is a divisor of n, then $m \le \sqrt{n}$ or $k \le \sqrt{n}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

Problem

Find all divisors of n = 60

By the **Fact 6** the number of divisors of $m \le \sqrt{n} = \sqrt{60}$ i.e.

 $m \leq \sqrt{60} < \sqrt{64} = 8$

Hence m < 8, m = 1, 2, 3, 4, 5, 6, 7and we have six pairs of divisors

(1,60) (3,20) (5,12)

(2,30) (4,15) (6,10)

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Let $b \neq 0$ and $b \in Z$

Then any $a \in Z$ is either a multiple of b or alls between two consecutive multiples q b and (q+1)b of b We write it:

a = q b + r $q \in Z$ r = 0, 1, 2, ..., |b| - 1

r is called the least positive remainder or simply the remainder of a by division with b

 $0 \leq r < |b|$

q is the incomplete quotient or simply the quotient

・ロト・日本・日本・日本・日本・日本

Note

Given $a, b \in Z$, $b \neq 0$ the quotient q and the remainder r are uniquely determined and each integer $a \in Z$ can be written as:

$$a = q b + r$$
 $0 \le r < |b|$

Example

- $321 = 4 \cdot 74 + 25$ q = 4, b = 74, r = 25
- 46 = (-2)(-17) + 12 q = -2, b = -17, r = 12

In particular any $n \in N$, n=2q (even) or n=2q+1 (odd)

Theorem

The square of $n \in Z$ is either divisible by 4, or leaves the remainder 1 when divided by 4

Proof

Case 1: n = 2q, $n^2 = (2q)^2 = 4q^2$ Case 2: n = 2q + 1, $n^2 = 4q^2 + 4q + 1 = 4(q^2 + q) + 1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let $b \neq 0$; $a, b, q \in Z$ a = qb + r $0 \le r < |b|$ We re-write is as $\frac{a}{b} = q + \frac{r}{b}$ $0 \le \frac{r}{b} < 1$

Fact q is the greatest integer such that $q \leq \frac{a}{b}$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ▲目▶

Special Notation

Old notation

[q] = greatest integer such that it is less or equal $\frac{a}{b}$ **Modern** notation

 $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$ = greatest integer such that it is less or equal $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Modern notation comes from K.E. Iverson, 1960

Book, page 67 FLOOR: $\lfloor x \rfloor$ = the greater integer q, $q \le x$ CEILING: $\lceil x \rceil$ = the least integer q, $q \ge x$ $q = \lfloor \frac{a}{b} \rfloor$ = the greatest integer q, $q \le \frac{a}{b}$ is also called the greatest integer **contained** in $\frac{a}{b}$ **Example**

$$\left\lfloor \frac{25}{5} \right\rfloor = 5, \quad \left\lfloor \frac{5}{3} \right\rfloor = 1, \quad \lfloor 2 \rfloor = 2, \quad \left\lfloor \frac{-1}{3} \right\rfloor = -1, \quad \left\lfloor \frac{1}{3} \right\rfloor = 0$$

We extent notation to Real numbers

 $x, y, q \in R$ $x = \lfloor x \rfloor + y, \quad 0 \le y < 1$

Example

 $\lfloor \pi \rfloor = 3, \quad \lfloor e \rfloor = 2, \quad \lfloor \pi^2/2 \rfloor = 4$

Given $a, b \in N$, we represent a on base b as

 $a = a_n b^n + a_{n-1} b^{n-1} + \ldots + a_1 b^1 + a_0$ for $a_i \in \{0, 1, \ldots, b-1\}$

We write it as

$$\mathbf{a} = \left(\mathbf{a}_n, \ \mathbf{a}_{n-1}, \dots, \mathbf{a}_1, \mathbf{a}_0\right)$$

Questions

1. How to find the representation of *a* on base *b*?

2. How to pass from one base to the other?

This we did show already in Chapter 1, CM Lecture 2

Consider

$$a = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b^1 + a_0$$

Observation 1

 a_0 is the remainder of *a* by division by *b* as

$$a = b (a_n b^{n-1} + ... + a_1 b^0) + a_0$$

So we have

 $a = q_1 b + a_0$ where $q_1 = a_n b^{n-1} + ... + a_2 b + a_1$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Consider now

$$q_1 = b(a_n b^{n-2} + ... + a_2) + a_1$$

Observation 2

 a_1 is the remainder of q_1 by division by b and

$$q_1 = bq_2 + a_1$$
 for $q_2 = a_n b^{n-2} + ... + a_3 b + a_2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Repeat

 a_i is the remainder of q_i by division by b, for i = 1, ..., n - 1

to find all a_1, a_2, \ldots, a_n

Examples

Example

Represent 1749 in a system with base 7

$$1749 = 249 \cdot 7 + 6$$

$$249 = 35 \cdot 7 + 4$$

$$35 = 5 \cdot 7 + 0$$

$$a_0 = 6, \quad a_1 = 4, \quad a_2 = 0, \quad a_3 = 5$$

So we get

 $1749 = (5, 0, 4, 6)_7$

Examples

Example

Represent 19151 in a system with base 12

 $19151 = 1595 \cdot 12 + 11$ $1595 = 132 \cdot 12 + 11$ $132 = 11 \cdot 12 + 0$ $a_0 = 11, \quad a_1 = 11, \quad a_2 = 0, \quad a_3 = 11$

So we get

 $19151 = (11, 0, 11, 11)_{12}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

We evaluated the components

 $a_0, a_1, ..., a_n$

from the lowest a_0 upward to a_n

Now let's evaluate a_0, \ldots, a_n downward from a_n to a_0

In this case we have to determine the **highest power** of **b** such that b^n is **less than a**, while the next power b^{n+1} **exceeds a**

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We look for **division** of a by b^n and

$$a = a_n b^n + r_{n-1}$$

$$r_{n-1} = a_{n-1}b^{-1} + \ldots + a_0$$

We determine a_{n-1} from r_{n-1}

$$r_{n-1} = a_{n-1}b^{n-1} + r_{n-2}$$

$$r_{n-2} = a_{n-2}b^{n-2} + \ldots + a_0$$

We determine a_{n-2} from r_{n-2}

$$r_{n-2} = a_{n-2} b^{n-2} + r_{n-3}$$
 and etc ...

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Example

Example

Represent 1832 to the base 7 First calculate powers of 7

 $7^1 = 7$ $7^2 = 49$ $7^3 = 343$ $7^4 = 2401$

and then calculate

$$a = a_n b^n + r_{n-1}$$
 for $n = 3$

$$1832 = \frac{5}{5} \cdot 7^3 + 117 \qquad a_3 = 5$$

$$117 = 2 \cdot 7^2 + 19$$
 $a_2 = 2$

$$19 = 2 \cdot 7 + 5$$
 $a_1 = 2, a_0 = 5$

We obtained

1832 = (5,2,2,5)7

Common and Greatest Common Divisor

Definition (Common Divisor)

Let $a, b, c \in Z$

If c divides a and b simultaneously, then c is called a common divisor a and b.

Definition (Greatest Common Divisor)

Let $a, b \in Z$, not both zero, then $d \in Z$ is called the **greatest** common divisor of a and b if and only if

1. *d* > 0

2. d is a common divisor of a and b, and

3. each $c \in Z$ that is a common divisor of both and **a**

and b, is a divisor of d

We denote the greatest common divisor (g.c.d.) of

a and b by

gcd(a,b)

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

Proving that d = gcd(a, b)

Let $a, b \in Z$, not both zero. Since there is only question of divisibility, there is no limitation in assuming that

 $a, b \in Z^+$, and $a \ge b$.

Let A be a set of **all common divisors** of **a** and **b** i.e. $A = \{c \in Z^+ \ c \mid a \text{ and } c \mid b\}$. We know that the divisibility | is and order relation on Z, so we consider a poset (A, \leq) ,

such that for for any $x, y \in A$, $x \leq y$ if and only if $x \mid y$.

In order to **prove** that $d \in Z^+$, d > 0 is a the greatest common divisor of **a** and **b**, we have to **show** that

1. *d* ∈ *A*, and

2. d is the greatest element in the poset (A, \leq) , i.e. for **all** $c \in A$, $c \leq d$.

Relatively Prime Numbers

Remark

Every number has the divisor 1, so gcd(a, b) is a positive integer, i.e. $gcd(a, b) \in Z^+$

Definition

 $a, b \in Z$ are relatively prime if and only if

gcd(a,b) = 1

Book notation

 $a \perp b$ for $a, b \in Z$ relatively prime

Example

gcd(24, 56) = 8, 24 / \perp 56 and gcd(15, 21) = 1, 15 \perp 22

A procedure of finding the **greatest common divisor** of two positive natural numbers is known as Euclid Algorithm The original version called Euclid Algorism comes from seventh book of Euclid's Elements (about 300 BC); however it is certainly of earlier origin Since there is only question of **divisibility**, there is no limitation in assuming that a, b are non zero and positive and a is greater or equal b, i.e. $a, b \in N^+$ and $a \ge b$

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. We divide a by b with respect to the least positive remainder

$$a = q_1 b + r_1 \qquad 0 \le r_1 < b$$

2. We divide $b \ by \ r_1$ with respect to the least positive remainder

$$b = q_2 r_1 + r_2$$
 $0 \le r_2 < r_1$

3. We divide r_1 by r_2 with respect to the least positive remainder

 $r_1 = q_3 r_2 + r_3$ $0 \le r_3 < r_2$

4. We divide r_2 by r_3 with respect to the least positive remainder

```
r_2 = q_4 r_3 + r_4  0 \le r_4 < r_3
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We continue the process

Observe that such obtained remainders

 $r_1, r_2, r_3, \ldots r_n,$

form a decreasing sequence of positive integers

 $r_1 > r_2 > r_3 > \dots r_n > \dots$

and one must arrive on a division for which $r_{n+1} = 0$, i.e. the Euclid algorithm process: divide a by b, divide b by r_1 , ... divide r_k by r_{k+1} must **terminate**

▲□▶▲□▶▲□▶▲□▶ = のへの

Algorithm

 $a = q_1 b + r_1$ $b = q_2 r_1 + r_2$ $r_1 = q_3 r_2 + r_3$ $r_2 = q_4 r_3 + r_4$ $r_3 = q_5 r_4 + r_5$ $r_{n-3} = q_{n-1}r_{n-2} + r_{n-1}$ $r_{n-2} = q_n r_{n-1} + r_n$ $r_{n-1} = q_{n+1}r_n + 0$

We have to prove

 $r_n = gcd(a, b)$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Euclid Algorithm Example

Example

Find gcd(76084, 63, 020)

76, 084 = 63, 020
$$\cdot$$
 1 + 13, 064 $q_1 = 1$, $r_1 = 13, 064$ 63, 020 = 13, 064 \cdot 4 + 10, 764 $q_2 = 4$, $r_2 = 10, 764$ 13, 064 = 10, 764 \cdot 1 + 2, 300 $q_3 = 1$, $r_3 = 2, 300$ 10, 764 = 2, 300 \cdot 4 + 1, 564 $q_4 = 5$, $r_4 = 1, 564$ 2, 300 = 1, 564 \cdot 1 + 736 $q_5 = 1$, $r_5 = 736$ 1, 564 = 736 \cdot 2 + 92 $q_6 = 2$, $r_6 = 92$ 736 = 92 \cdot 8 + 0 $q_7 = 8$, $r_7 = 0$ endgcd(76084, 63020) = (76084, 63020) = r_6 = 92

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Euclid Algorithm Correctness Proof

Euclid Algorithm Correctness Theorem For any $a, b \in N^+$ and $a \ge b$, and the Euclid Algorithm applied to a, b, the **last non-vanishing** remainder r_n is the **greatest common divisor** of a and b, i.e the following implication holds

IF
$$r_{n+1} = 0$$
 THEN $r_n = gcd(a, b)$

Proof Let A be set of all common divisors of a and b, i.e.

$$A = \{c \in Z^+ \ c \mid a \text{ and } c \mid b\}$$

We know that the divisibility | on Z is an order relation and we consider a **poset** (A, |).

In order to **prove** that $r_n > 0$ is the greatest common divisor of **a** and **b** we have to **show** that

1. $r_n \in A$, and

2. $r_n > 0$ is the greatest element in the poset (A, |), i.e. we prove that for all $c \in A$, $c | r_n$.

This means that we have to carry the proof in two steps.

Step 1 We show that the last non-vanishing remainder r_n is a **common divisor** of a and b

Step 2 We show that the r_n is the **greatest element** in the poset (A, |)

We conduct the proof of the Step 1 and Step 2 by **double induction**, what is a **Mathematical Induction** with two BASIC CASES.

Step 1 We show that the last non-vanishing remainder r_n is a **common divisor** of **a** and **b**, i.e. we show that

 $r_n \mid a$ and $r_n \mid b$

Assume that r_n is the last non-vanishing remainder, i.e. $r_{n-1} = q_{n+1}r_n$ and hence

1. $r_n | r_{n-1}$

Observe that

$$r_{n-2} = q_n r_{n-1} + r_n = q_n q_{n+1} r_n + r_n = r_n (q_n q_{n+1} + 1)$$

Hence

2. *r*_{*n*} | *r*_{*n*-2}

▲□▶▲舂▶▲壹▶▲壹▶ 壹 の��

Observe that

 $r_{n-3} = q_{n-1}r_{n-2} + r_{n-1}$ and $r_n | r_{n-1}, r_n | r_{n-2}$ Hence $r_n | r_{n-3}$

Observe that

 $r_{n-4} = q_{n-2}r_{n-3} + r_{n-2}$ and we proved that $r_n | r_{n-3}, r_n | r_{n-3}$

Hence

 $r_n | r_{n-4}$

We carry our **proof** by **double induction**, i.e. **Mathematical Induction** with

1. $r_n | r_{n-1}$, **2**. $r_n | r_{n-2}$ as base cases

We want to prove that the continuation of this process, i.e. we want to prove that

 $r_n \mid r_{n-k}$ for all $k \ge 1$

To do so we need to develop a **general formula** for r_{n-k} of which $r_{n-1}, r_{n-2}, r_{n-3}, r_{n-4}$ are **particular cases** This is the **key step** of the proof The rest is just application of the **Mathematical Induction** to the general formula below

 $r_{n-k} = q_{n-(k-2)}r_{n-(k-1)} + r_{n-(k-2)}$ for $k \ge 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We carry our **proof** by **Mathematical Induction** on $k \ge 1$ with **1.** for k = 1 and **2.** for k = 1 as **base cases** already proved to be true

Inductive assumption

 $r_n \mid r_p$ for all p < k

Induction Step We **prove** from the Inductive assumption that

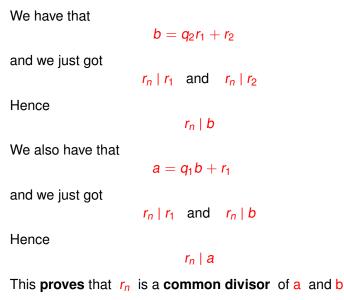
$r_n \mid r_{n-k}$

and by the Mathematical Induction Principle we get the Induction Thesis

 $r_n \mid r_{n-k}$ for all $k \ge 1$

In particular case when k = n - 1 and k = n - 2 we get

 $r_n | r_1$ and $r_n | r_2$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In order to **complete** the proof of the **Step 1** we have to do the **Proof** of the **Induction Step**

$r_n \mid r_{n-k}$

Consider the general formula for r_{n-k}

$$r_{n-k} = q_{n-(k-2)}r_{n-(k-1)} + r_{n-(k-2)}$$
 for $k \ge 1$

Observe that

k - 2 = p < k and k - 1 = p < k

Hence by the Inductive assumption

$$r_n | r_{n-(k-1)}$$
 and $r_{n-(k-2)}$

・ロト・日本・モト・モト・ ヨー のへぐ

we get that

$r_n \mid r_{n-k}$

This ends the proof of the Step 1

Step 2 We show that the r_n is the **greatest** common divisor of a and b. Let the set A be a set of **all** common divisors of a and b, i.e.

 $A = \{c \in Z^+ : c \mid a \text{ and } c \mid b\}$

We know that | is an **order relation** on Z and we now consider a **poset** (A, |). We have to show that r_n is the **greatest element** in it, i.e. we have to **prove** that the following

 $c \mid r_n$, for all $c \in A$

We carry the proof, as in previous step, by the **Double Induction**. We have

 $a = q_1 b + r_1$ and $r_1 = a - q_1 b$

so for all $c \in A$, $c \mid a$ and $c \mid b$, hence

1. $c \mid r_1$, for all $c \in A$

Similarly

 $b = q_2 r_1 + r_2$ and $r_2 = b - q_2 r_1$

and $c \mid b$ and $c \mid r_1$, hence

2. $c \mid r_2$, for all $c \in A$

This is the **Base Case**

We carry the Double Induction **inductive step** similarly to **Step 1** and we get

 $c \mid r_k$, for all $c \in A$, for all $k \ge 1$

In particular it holds for k = n and we get that

 $c \mid r_n$, for all $c \in A$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

This **ends the proof** of the **correctness** of **Euclid Algorithm**

Faster Algorithm

Kronecker (1823 - 1891) proved that no Euclid Algorism can be shorter then one obtained by **least absolute remainders** - r_n can be negative

Example Find *gcd*(76084, 63020) by the least absolute remainders

 $76,084 = 63,020 \cdot 1 + 13,064$ $63,020 = 13,064 \cdot 5 - 2,300$ $13,064 = 2,300 \cdot 6 - 736$ $2,300 = 736 \cdot 2 + 92$ $736 = 92 \cdot 8$ gcd(76084, 63020) = 92

We did it in 5 steps instead of 7 steps

"mod" Binary Operation

Definition

For any $x, y \in R$ we define a binary relation $mod \subseteq R \times R$ as

$$x \mod y = x - y \left\lfloor \frac{x}{y} \right\rfloor$$
 for $y \neq 0$

and

 $x \mod 0 = x$

Example

$$5 \mod 3 = 5 - 3 \left\lfloor \frac{5}{3} \right\rfloor = 5 - 3 \cdot 1 = 2$$

$$5 \mod (-3) = 5 - (-3) \left\lfloor \frac{5}{-3} \right\rfloor = 5 - (-3) \cdot (-1) = -1$$

"mod" Binary Operation

Observe that when $a, b \in Z, b \neq 0$ we get

$$a = b \left\lfloor \frac{a}{b} \right\rfloor + a \mod b$$

and

$$a = b q + r$$
 for $q = \left\lfloor \frac{a}{b} \right\rfloor$, $r = a \mod b$

Fact

For any $a, b \in Z$, $b \neq 0$,

a mod b is a remainder in the division of a by b

Example

We evaluated $r_1 = 5 \mod 3 = 2$, $r_2 = 5 \mod (-3) = -1$ and we have

$$5 = 3 \cdot 1 + 2$$
 and $5 = (-3)(-1) - 1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

"mod" Euclid Algorithm

We use the the mod relation to formulate a more modern version of Euclid Algorithm

We define a recursive function f for any $m, n \in \mathbb{Z}$, $0 \le m < n$ we put

$$f(m, n) = f(n \mod m, m)$$
 for $m > 0$

f(0,n) = n for m = 0

Theorem

For any $a, b \in Z$, $0 \le a < b$

If the function f = f(m, n) applied recursively to a, b as the initial values terminates at f(0, k), then

gcd(a,b) = f(0,k)

Proof Book pages 103, 103 - but this is just a translation of our proven theorem!

Examples

Example 6

$$f(m, n) = f(n \mod m, m)$$
 for $m > 0$, $f(0, n) = n$
 $f(12, 18) = f(6, 12) = f(0, 6) = 6$ $gcd(12, 18) = f(0, 6) = 6$
Example 2

f(63020, 76084) = f(13064, 63020) = f(10764, 13064)

f(2300, 107640) = f(1564, 2300) = f(736, 1564)

f(92, 736) = f(0, 92) gcd(63020, 76084) = f(0, 92) = 92

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

```
m, n \in N - \{0, 1\} are relatively prime if and only if gcd(m, n) = 1
Notation n \perp m for m, n relatively prime
```

We now use Euclid Algorithm to derive other properties of the gcd. The most important one is the following

Division Lemma

When a product ac of two natural numbers is divisible by a number b that is **relatively prime** to a, the factor c must be divisible by b

Division Lemma written symbolically

```
If b \mid ac and a \perp b then b \mid c
```

Proof

Since $a \perp b$, i.e. gcd(m, n) = 1, hence the last non zero remainder r_n in the Euclid Algorithm must be 1, so E A has a form

$$a = q_{1}b + r_{1}$$

$$b = q_{2}r_{1} + r_{2}$$
...
$$r_{n-2} = q_{n}r_{n-1} + 1$$

$$r_{n-1} = q_{n+1}r_{n} + 0$$

Multiply by c

$$ac = q_1bc + r_1c$$
$$bc = q_2r_1c + r_2c$$
$$\dots$$
$$r_{n-2}c = q_nr_{n-1}c + c$$
$$r_{n-1} = q_{n+1}r_n + 0$$

and $b \mid ac$, so $b \mid r_1c$, and hence $b \mid r_2c$ By Mathematical Induction we get

 $\forall i \geq 1(b \mid r_i)$

In particular $b | r_{n-2}c$, and hence b | cIt ends the proof

Theorem 1

When a number is relatively prime to each of several numbers, it is relatively prime to their product **Symbolically**

If $a \perp b_i$, for $i = 1, 2, \ldots k$, then $a \perp b_1 b_2 \ldots b_k$

Proof By contradiction; we show case i = 2 and the rest is carried by Mathematical Induction

Assume $a \perp b$ and $a \perp c$, and $a \not\perp bc$

By definition we have hence that $gcd(a, bc) \neq 1$, i.e. a has a common divisor d with bc, i.e. there is d such that

 $d \mid a$ and $d \mid bc$

We have that there is d such that

d a and d bc

and

```
a \perp b, and d \mid a, hence we get d \perp b
```

We also have

 $a \perp c$, and $d \mid a$, hence we get $d \perp c$

So from $d \mid bc$ and $d \perp b$ we get by the **Division Lemma** that $d \mid c$ what is **contrary** to $d \perp c$

Exercise Write the full proof by Mathematical Induction

Theorem 2

```
gcd(ka, kb) = k \cdot gcd(a, b)
```

Proof

 $gcd(a, b) = r_n$ in the Euclid Algorithm

 $a = q_1 b + r_1$

... ...

$$r_{n-2} = q_n r_{n-1} + r_n$$

 $r_{n-1} = q_{n+1} r_n + 0$

We multiply each step by k

We multiply each step by k

$$ka = kq_1b + kr_1$$

$$kr_{n-2} = kq_n r_{n-1} + kr_n$$
$$kr_{n-1} = q_{n+1}kr_n + 0$$

... .

This is the Euclid Algorithm for ka, kb and

 $gcd(ka, kb) = k \cdot r_n = k \cdot gcd(a, b)$

Theorem 3

Let d = gcd(a, b) be such that

 $a = a_1 d$ and $b = b_1 d$

Then

 $a_1 \perp b_1$

Proof

Evaluate using Theorem 2

$$gcd(a, b) = gcd(a_1d, b_1d)$$

 $= \mathbf{d} \cdot gcd(a_1 \ , \ b_1) = gcd(a, b)gcd(a_1 \ , \ b_1)$

So we get $gcd(a_1, b_1) = 1$, as nk=k iff k=1 This means

$a_1 \perp b_1$

The **Theorem 3** applies in elementary arithmetic in the reduction of fractions

Take any fraction and $a = a_1 d$, $b = b_1 d$

$$\frac{a}{b} = \frac{a_1d}{b_1d} = \frac{a_1}{b_1}$$

for

 $a_1 \perp b_1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

I.e any fraction can be represented in **reduced form** with numerator and denominator that are relatively prime

A number m is said to be a common multiple of the numbers a and b when it is divisible by both of them For example, the product ab is a common multiple of a and b Since, as before there is only question of divisibility, there is no limitation in considering only positive multiples **Definition** Common Multiple Let $a, b, m \in Z$ m or (a, b) is a common multiple of a and b iff

m = cm(a, b) is a common multiple of a and b iff

 $a \mid m$ and $b \mid m$ and m > 0

Let $A = \{m : a \mid m \text{ and } b \mid m\}$ be the set of **all** common multiples of a and b

This **least** element is called a **least common multiple** (l.c.m.) of a and b and denoted by lcm(a,b)

Remark The **least** element in the poset (A, \leq) is its unique minimal element so it justifies the BOOK definition

 $lcm(a,b) = min\{m : m > 0 \text{ and } a \mid m \text{ and } b \mid m\}$

Theorem 4

Any common multiple of a and b is **divisible** by lcm(a,b) **Proof**

Let m = cm(a,b)

We divide m by lcm(a,b), i.e

$$m = qlcm(a, b) + r$$
 $0 \le r < lcm(a, b)$

But a | lcm(a, b) and b | lcm(a, b) and a | m and b | mHence a | r and b | r and r is a common multiple of a, bBut $0 \le r < lcm(a, b)$, so r=0 what proves that $m = q \cdot lcm(a, b)$, i.e. m is **divisible** by lcm(a,b)

Theorem 5

For any $a, b \in Z^+$ such that lcm(a,b) and gcd(a, b) exist

 $lcm(a,b) \cdot gcd(a,b) = ab$

Theorem 6

lcm(a,b) = ab if and only if $a \perp b$

Exercise Prove both Theorems

PART 2: PRIME NUMBERS

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Definition

Definition

A positive integer is called **prime** if it has only two divisors 1 and itself

We assume convention that 1 is not prime

We denote by P the set of all primes

Symbolically

 $p \in P \subseteq N$ if and only if p > 1 and for any $k \in Z$

if k|p then k = 1 or k = p

Some primes

2, 3, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...

・ロト・西ト・西ト・西ト・日・ション

Observe2 is the only even prime!QuestionIs 91 prime?No, it isn't as $91 = 7 \cdot 13$ Definition

 $n \in N$, n > 1 is called **composite** and denoted by CN, if it is **not prime**

Symbolically

 $n \in CN$ if and only if $n \le 1 \cup \exists_{k \in Z} (k | n \cap k \ne 1 \cap k \ne n)$

Directly from the definition we have that

Fact 1

 $\forall_{m \in N - \{0,1\}} (m \in P \cup m \in CN) \text{ and } P \cap CN = \emptyset$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

 $m, n \in N$ are **relatively prime** if and only if gcd(m, n) = 1Notation $n \perp m$ for $m, n \in N$ relatively prime Fact 2

 $\forall_{p\in P} \forall_{n\in N} (p\perp n \cup p|n)$

Fact 3

A product of two numbers is divisible by a prime p only when p **divides** at least one of the factors Symbolically

 $\forall_{p \in P} \forall_{m,n \in Z} (p \mid mn \implies (p \mid m \cup p \mid n))$

Proof

Assume that Fact 3 is not true, i.e.

 $\exists_{p\in P} \exists_{m,n\in Z} (p \mid mn \cap p \nmid m \cap p \nmid n)$

 $p \nmid m$ so by Fact 2 $p \perp m$. Now when $p \mid mn$ and $p \perp m$ we get by Fact 2 that $p \mid n$. We get a contradiction with $p \nmid n$ Observation

For any $p \in P$, $m, n \in Z$,

if p divides m or p divides m, then p divides mn

Proof Assume $p \mid m$, i.e. m = kp for $k \in Z$. Hence mn = kmp and $p \mid mn$. The case $p \mid m$ is similar

Because of the obvious character of the **Observation** we usually formulate and prove the **Fact 3** in the following more general form

Fact 3a

A product of two numbers is divisible by a prime p if and only if p **divides** at least one of the factors Symbolically

 $\forall_{p \in P} \ \forall_{m,n \in Z} \ (p \mid mn \ \Leftrightarrow \ (p \mid m \cup p \mid n))$

Fact 4

A product $q_1q_2...q_n$ of prime numbers (factors) q_i is **divisible** by a prime p only when $p = q_i$ for some q_i Symbolically

$$\forall_{p,q_1q_2\dots q_n \in P} \left(p \mid \prod_{k=1}^n q_k \Rightarrow \exists_{1 \leq i \leq n} \left(p = q_i \right) \right)$$

Proof

Let $p \mid \prod_{k=1}^{n} q_k$. By the **Fact 3** $p \mid q_i$ for some g_i where $q_i \in P$; but p > 1 as $1 \notin P$ hence $p = q_i$

Fact 5

Every natural number n, n > 1 is **divisible** by some prime Symbolically

 $\forall_{n\in N,n>1} \exists_{p\in P} (p \mid n)$

Proof

When $n \in P$, this is evident as $n \mid n$ When n is composite it can be factored $n = n_1 n_2$ where $n_1 > 1$

The smallest possible one of these divisors of n_1 must be prime

We are now ready to prove the main theorem about factorization. The idea of this theorem, as well as all **Facts 1-5** we will use in proving it, can be found in **Euclid's Elements** in **Book VII** and **Book IX**

Main Factorization Theorem

Every composite number can be factored uniquely into prime factors

We present here an "old" and pretty straightforward proof You have another proof in the Book pages 105-105 and all this without saying that it is a Theorem, and a quite important one

Proof We conduct it in two steps

Step 1 We show that every composite number n > 1 is product of prime numbers

Step 2 We show the uniqueness

Step 1 We show that every composite number n > 1 is product of prime numbers

By **Fact 5** there is $p_1 \in P$ such that $n = p_1 n_1$

If n_1 is composite, then by **Fact 5** again, $n_1 = p_2 n_2$ We continue this process with a decreasing sequence

 $n_1 > n_2 > n_3 > \ldots$

of numbers together with a corresponding sequence of prime numbers

 p_1, p_2, p_3, \ldots

until some n_k becomes a prime, i.e. $n_k = p_k$ and we get

 $n = p_1 p_2 p_3 \dots p_k$

Step 2 We show the uniqueness

Assume that we have two different prime factorizations

 $n = p_1 p_2 p_3 \ldots p_k = q_1 q_2 q_3 \ldots q_m$

Each $p_i \mid n$, so for each p_i

$$p_i \mid \prod_{k=1}^m q_k$$

By the **Fact 4** $p_i = q_j$ for some *j* and $1 \le j \le m$ Conversely, we also have that each $q_i \mid n$, so for each q_i

$$q_i \mid \prod_{n=1}^{\kappa} p_n$$

By the Fact 4 $q_i = p_n$ for some *n* and $1 \le n \le k$

This proves that both sides of

$$n = p_1 p_2 p_3 \ldots p_k = q_1 q_2 q_3 \ldots q_m$$

contain the same primes

The only difference might be that a prime p could occur a greater number of times on one side then on the other

In this case we cancel p on both sides sufficient number of times and get equation with p on one side, not the other

This **contradicts** just proven the fact that both sides of the equation contain the same primes

We re-write our Theorem in a more formal way as follows

Main Factorization Theorem

For any $n \in N$, n > 1, there are $\alpha_i \in N$, $\alpha_i \ge 1$, and prime numbers $p_1 \neq p_2 \neq \ldots \neq p_r$ $r \ge 1$, $1 \le i \le r$, such that

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_r^{\alpha_r} = \prod_{k=1}^r p_k^{\alpha_k}$$

and this representation is unique

 p_i 's are different prime factors of n α_i is the multiplicity, i.e. the number of times p_i occurs in the prime factorization Main Factorization Theorem; General Form

We write our Theorem shortly in a more general form, as in the Book (page 107)

Main Factorization Theorem General Form

$$n = \prod_{p} p^{\alpha_{p}}$$
 for $p \in P$, $\alpha_{p} \ge 0$

and this representation is unique

This is an infinite product, bur for any particular n all but few exponents $\alpha_p = 0$, and $p^0 = 1$ Hence for a given n it is a finite product

Some Consequences of Main Factorization Theorem

We know, by the **Main Factorization Theorem** that any n > 1 has a unique representation

$$n = \prod_{p} p^{n_p}$$
 for $p \in P$, $n_p \ge 0$

Consider now the poset (P, \leq) , i.e. we have that all prime numbers in P are in the sequence

 $p_1 < p_2 < \dots p_n < \dots$

$$2 < 3 < 5 < 7 < 11 < 13 < \ldots$$

and we write

$$n = \prod_{i \ge 1} p_i^{n_i}$$
 for $n_i \ge 0$

Because of the uniqueness of the representation we can represent n as

 $n = \langle n_1, n_2, n_3, \dots n_k, \dots \rangle$

Example

Example

Reminder

 $2 < 3 < 5 < 7 < 11 < 13 < \dots$

Here are few representations

$$7 = 7 \text{ so } 7 = < 0, 0, 0, 1, 0, \dots = < 0, 0, 0, 1 >$$

$$12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3 \text{ so } 12 = < 2, 1, 0, 0, \dots > = < 2, 1 >$$

$$18 = 2 \cdot 3 \cdot 3 = 2 \cdot 3^2 \text{ so } 18 = < 1, 2, 0, 0, \dots > = < 1, 2 >$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Some Consequences of Factorization Theorem

Observe that when we have the general representations

$$k = \prod_{p} p^{k_{p}}, \quad n = \prod_{p} p^{n_{p}} \text{ and } m = \prod_{p} p^{m_{p}}$$

then we evaluate

$$k = n \cdot m = \prod_{p} p^{n_{p}} \cdot \prod_{p} p^{m_{p}} = \prod_{p} p^{n_{p}+m_{p}} = \prod_{p} p^{k_{p}}$$

We have hence **proved** the following **Fact 6**

 $k = n \cdot m$ if and only if $k_p = n_p + m_p$, for all $p \in P$

Some Consequences of Factorization Theorem

Fact 7

Let

$$m = \prod_{p} p^{m_p}$$
 and $n = \prod_{p} p^{n_p}$

Then

$$m \mid n$$
 if and only if $m_p \leq n_p$ for all $p \in P$

Proof

 $m \mid n$ iff there is k, such that n = mk and $k = \prod_{p} p^{k_{p}}$

By **Fact 6** we get that n = mk iff $n_p = k_p + m_p$ iff $m_p \le n_p$ and it **ends** the proof

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Some Consequences of Factorization Theorem

Directly from Fact 7 and definitions we get the following

Fact 8

k = gcd(m, n) if and only if $k_p = min\{m_p, n_p\}$ k = lcd(m, n) if and only if $k_p = max\{m_p, n_p\}$

Example

Example 1

Let

 $12 = 2^{2} \cdot 3^{1} \qquad 18 = 2^{1} \cdot 3^{2}$ $gcd(12, \ 18) = 2^{min\{2,1\}} \cdot 3^{min\{2,1\}} = 2^{1} \cdot 3^{1} = 6$ $lcm(12, \ 18) = 2^{max\{2,1\}} \cdot 3^{max\{2,1\}} = 2^{2} \cdot 3^{2} = 36$

Example 2

Let

 $m = 2^6 \cdot 3^2 \cdot 5^1 \cdot 7^0$ $n = 2^5 \cdot 3^3 \cdot 5^0 \cdot 7^0$

 $gcd(m, n) = 2^{min\{6,5\}} \cdot 3^{min\{2,3\}} \cdot 5^{min\{1,0\}} \cdot 7^{min\{0,0\}} = 2^5 \cdot 3^2$

 $lcm(m, n) = 2^6 \cdot 3^3 \cdot 5 \cdot 7$

Exercises

1. Use Facts 6-8 to prove

Theorem 5

For any $a, b \in Z^+$ such that lcm(a,b) and gcd(a, b) exist

 $lcm(a,b) \cdot gcd(a,b) = ab$

2. Use **Theorem 5** and the BOOK version of Euclid Algorithm to express $lcm(n \mod m, m)$ when $nmodm \neq 0$ This is Ch4 Problem 2