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PART 1: DIVISIBILITY



Basic Definitions

Definition

Given m, n ∈ Z , we say

m divides n or n is divisible by m if and only if m , 0
and n = mk, for some k ∈ Z

We write it symbolically

m | n if and only if n = mk , for some k ∈ Z

Definition

If m | n, then m is called a divisor or a factor of n

We call n = mk a decomposition or a factorization of n



Basic Definitions

Definition

Let m be a divisor of n, i.e. n = mk

Cleary: k , 0 is also a divisor of n and is uniquely
determined by m

Definition

Divisors of of n occur in pairs (m,k)

Definition

n ∈ Z is a square number if and only if all its divisors of n
are (m,m) i.e when n = m2



Basic Facts

Fact 1

If (m, k) is a divisor of n so is (−m,−k)

Proof

n = mk , so n = (−m)(−k) = mk

Definition

(−m,−k) is called an associated divisor to (m, k)

Fact 2

±1 together with ±n are trivial divisors of n

Proof Each number n has an obvious decomposition (1,
n), (-1, -n) as n = 1n = (−1)(−n)



Basic Facts

Fact 3

If m|n and n|m, then m, n are associated, i.e m = ±n

Proof

Assume m|n i.e. n = mk1, also n|m i.e. m = nk2, for
k1, k2 ∈ Z

So n = nk1k2 iff k1 = k2 = 1 and m = n

or k1 = k2 = −1, and m = −n

Fact 4

If m | n1 and m | n2 then m | (n1 ± n2)

Proof

Assume m | n1 i.e. n1 = mk1, and m | n2 i.e. n2 = mk2

Hence n1 ± n2 = m(k1 ± k2) i.e. m | (n1 ± n2)



Basic Facts

Fact 5

If m | n and n | k then m | k

Proof

m | n iff n = mk1 and n | k iff k = nk2

Hence k = mk1k2 iff m | k

In most questions regarding divisors we assume that
m > 0 and only consider positive divisors (m, k)

We look first at positive factorizations and then we work
out others



Book Definition

The Book Definition

For n,m, k ∈ Z

m | n if and only if m > 0 and n = mk

It means the The Book considers only positive divisors
(m, k), m > 0, k ∈ Z

Definition

All positive divisors, including 1 , that are less than n are
called proper divisors of n



Basic Facts

Fact 6

If (m,k) is a divisor of n then the factors m,k can’t be both
>
√

n

Proof

Assume that for both factors m >
√

n and k >
√

n , then
mk >

√
n
√

n = n;

we got a contradiction with n = mk

Fact 6 Rewrite

If (m, k) is a divisor of n, then m ≤
√

n or k ≤
√

n



Example

Problem

Find all divisors of n = 60

By the Fact 6 the number of divisors of m ≤
√

n =
√

60 i.e.

m ≤
√

60 <
√

64 = 8

Hence m < 8, m = 1, 2, 3, 4, 5, 6, 7

and we have six pairs of divisors

(1, 60) (3, 20) (5, 12)

(2, 30) (4, 15) (6, 10)



Division and Remainders

Let b , 0 and b ∈ Z

Then any a ∈ Z is either a multiple of b or alls between
two consecutive multiples q b and (q + 1)b of b

We write it:

a = q b + r q ∈ Z r = 0, 1, 2, ..., |b | − 1

r is called the least positive remainder or simply the
remainder of a by division with b

0 ≤ r < |b |

q is the incomplete quotient or simply the quotient



Division and Remainders

Note

Given a, b ∈ Z , b , 0 the quotient q and the remainder r
are uniquely determined and each integer a ∈ Z can be
written as:

a = q b + r 0 ≤ r < |b |

Example

321 = 4 · 74 + 25 q = 4, b = 74, r = 25

46 = (−2)(−17) + 12 q = −2, b = −17, r = 12

In particular any n ∈ N, n=2q (even) or n = 2q + 1 (odd)



Division and Remainders

Theorem

The square of n ∈ Z is either divisible by 4, or leaves the
remainder 1 when divided by 4

Proof

Case 1: n = 2q, n2 = (2q)2 = 4q2

Case2: n = 2q + 1, n2 = 4q2 + 4q + 1 = 4(q2 + q) + 1



Division and Remainders

Let b , 0; a, b , q ∈ Z

a = qb + r 0 ≤ r < |b |

We re-write is as

a
b
= q +

r
b

0 ≤
r
b
< 1

Fact q is the greatest integer such that q ≤ a
b



Division and Remainders

Special Notation

Old notation

[q] = greatest integer such that it is less or equal a
b

Modern notation

⌊ab ⌋ = greatest integer such that it is less or equal a
b

Modern notation comes from K.E. Iverson, 1960



Division and Remainders

Book, page 67

FLOOR: ⌊x⌋ = the greater integer q, q ≤ x

CEILING: ⌈x⌉ = the least integer q, q ≥ x

q = ⌊ab ⌋ = the greatest integer q, q ≤ a
b is also called the

greatest integer contained in a
b

Example⌊
25
5

⌋
= 5,

⌊
5
3

⌋
= 1, ⌊2⌋ = 2,

⌊
−1
3

⌋
= −1,

⌊
1
3

⌋
= 0



Division and Remainders

We extent notation to Real numbers

x, y, q ∈ R x = ⌊x⌋+ y, 0 ≤ y < 1

Example
⌊π⌋ = 3, ⌊e⌋ = 2, ⌊π2/2⌋ = 4



Number Systems

Given a, b ∈ N, we represent a on base b as

a = anbn + an−1bn−1 + . . . + a1b1 + a0 for ai ∈ {0, 1, . . . , b − 1}

We write it as
a = (an, an−1, . . . , a1, a0)

Questions

1. How to find the representation of a on base b?

2. How to pass from one base to the other?

This we did show already in Chapter 1, CM Lecture 2



Number Systems

Consider

a = anbn + an−1bn−1 + ...+ a1b1 + a0

Observation 1

a0 is the remainder of a by division by b as

a = b (anbn−1 + ...+ a1b0) + a0

So we have

a = q1b + a0 where q1 = anbn−1 + ...+ a2b + a1



Number Systems

Consider now

q1 = b(anbn−2 + ...+ a2) + a1

Observation 2

a1 is the remainder of q1 by division by b and

q1 = bq2 + a1 for q2 = anbn−2 + ...+ a3b + a2

Repeat

ai is the remainder of qi by division by b, for
i = 1, . . . , n − 1

to find all a1, a2, . . . , an



Examples

Example

Represent 1749 in a system with base 7

1749 = 249 · 7 + 6

249 = 35 · 7 + 4

35 = 5 · 7 + 0

a0 = 6, a1 = 4, a2 = 0, a3 = 5

So we get
1749 = (5, 0, 4, 6)7



Examples

Example

Represent 19151 in a system with base 12

19151 = 1595 · 12 + 11

1595 = 132 · 12 + 11

132 = 11 · 12 + 0

a0 = 11, a1 = 11, a2 = 0, a3 = 11

So we get
19151 = (11, 0, 11, 11)12



Number Systems

We evaluated the components

a0, a1, . . . , an

from the lowest a0 upward to an

Now let’s evaluate a0, . . . , an downward from an to a0

In this case we have to determine the highest power of b
such that bn is less than a, while the next power bn+1

exceeds a



Number Systems

We look for division of a by bn and

a = anbn + rn−1

rn−1 = an−1b−1 + . . . + a0

We determine an−1 from rn−1

rn−1 = an−1bn−1 + rn−2

rn−2 = an−2bn−2 + . . . + a0

We determine an−2 from rn−2

rn−2 = an−2 bn−2 + rn−3 and etc . . .



Example

Example
Represent 1832 to the base 7
First calculate powers of 7

71 = 7 72 = 49 73 = 343 74 = 2401

and then calculate

a = anbn + rn−1 for n = 3

1832 = 5 · 73 + 117 a3 = 5

117 = 2 · 72 + 19 a2 = 2

19 = 2 · 7 + 5 a1 = 2, a0 = 5

We obtained
1832 = (5, 2, 2, 5)7



Common and Greatest Common Divisor

Definition (Common Divisor)
Let a, b , c ∈ Z
If c divides a and b simultaneously, then c is called a
common divisor a and b.

Definition (Greatest Common Divisor)
Let a, b ∈ Z , not both zero, then d ∈ Z is called the greatest
common divisor of a and b if and only if
1. d > 0
2. d is a common divisor of a and b, and
3. each c ∈ Z that is a common divisor of both and a
and b, is a divisor of d
We denote the greatest common divisor (g.c.d.) of
a and b by

gcd(a, b)



Proving that d = gcd(a, b)

Let a, b ∈ Z , not both zero. Since there is only question of
divisibility, there is no limitation in assuming that

a, b ∈ Z+ , and a ≥ b.

Let A be a set of all common divisors of a and b i.e.

A = {c ∈ Z+ c | a and c | b}. We know that the divisibility |

is and order relation on Z , so we consider a poset (A , ⪯),

such that for for any x, y ∈ A , x ⪯ y if and only if x | y.

In order to prove that d ∈ Z+, d > 0 is a the greatest
common divisor of a and b, we have to show that

1. d ∈ A , and

2. d is the greatest element in the poset (A , ⪯), i.e.

for all c ∈ A , c ⪯ d.



Relatively Prime Numbers

Remark

Every number has the divisor 1, so gcd(a, b) is a positive
integer, i.e. gcd(a, b) ∈ Z+

Definition

a, b ∈ Z are relatively prime if and only if

gcd(a, b) = 1

Book notation

a ⊥ b for a, b ∈ Z relatively prime

Example

gcd(24, 56) = 8, 24 ̸ ⊥56 and gcd(15, 21) =1, 15⊥22



Euclid Algorithm

A procedure of finding the greatest common divisor of two

positive natural numbers is known as Euclid Algorithm

The original version called Euclid Algorism comes from

seventh book of Euclid’s Elements (about 300 BC); however it

is certainly of earlier origin

Since there is only question of divisibility, there is

no limitation in assuming that a, b are non zero and positive

and a is greater or equal b, i.e. a, b ∈ N+ and a ≥ b



Euclid Algorithm

1. We divide a by b with respect to the least positive
remainder

a = q1b + r1 0 ≤ r1 < b

2. We divide b by r1 with respect to the least positive
remainder

b = q2r1 + r2 0 ≤ r2 < r1

3. We divide r1 by r2 with respect to the least positive
remainder

r1 = q3r2 + r3 0 ≤ r3 < r2

4. We divide r2 by r3 with respect to the least positive
remainder

r2 = q4r3 + r4 0 ≤ r4 < r3

We continue the process



Euclid Algorithm

Observe that such obtained remainders

r1, r2, r3, . . . rn,

form a decreasing sequence of positive integers

r1 > r2 > r3 > . . . rn > . . .

and one must arrive on a division for which rn+1 = 0 , i.e.

the Euclid algorithm process:

divide a by b, divide b by r1, . . . divide rk by rk+1

must terminate



Euclid Algorithm

Euclid Algorithm

a = q1b + r1

b = q2r1 + r2

r1 = q3r2 + r3

r2 = q4r3 + r4

r3 = q5r4 + r5

. . . . . . . . .

rn−3 = qn−1rn−2 + rn−1

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn + 0

We have to prove
rn = gcd(a, b)



Euclid Algorithm Example

Example

Find gcd(76084 , 63, 020)

76, 084 = 63, 020 · 1 + 13, 064 q1 = 1, r1 = 13, 064

63, 020 = 13, 064 · 4 + 10, 764 q2 = 4, r2 = 10, 764

13, 064 = 10, 764 · 1 + 2, 300 q3 = 1, r3 = 2, 300

10, 764 = 2, 300 · 4 + 1, 564 q4 = 5, r4 = 1, 564

2, 300 = 1, 564 · 1 + 736 q5 = 1, r5 = 736

1, 564 = 736 · 2 + 92 q6 = 2, r6 = 92

736 = 92 · 8 + 0 q7 = 8, r7 = 0 end

gcd(76084 , 63020) = (76084 , 63020) = r6 = 92



Euclid Algorithm Correctness Proof

Euclid Algorithm Correctness Theorem

For any a, b ∈ N+ and a ≥ b, and the Euclid Algorithm

applied to a, b, the last non-vanishing remainder rn

is the greatest common divisor of a and b, i.e

the following implication holds

IF rn+1 = 0 THEN rn = gcd(a, b)

Proof Let A be set of all common divisors of a and b, i.e.

A = {c ∈ Z+ c | a and c | b}

We know that the divisibility | on Z is an order relation and
we consider a poset (A , |).



Euclid Algorithm Correctness Proof

In order to prove that rn > 0 is the greatest common divisor

of a and b we have to show that

1. rn ∈ A , and

2. rn > 0 is the greatest element in the poset (A , |), i.e.

we prove that for all c ∈ A , c | rn.

This means that we have to carry the proof in two steps.

Step 1 We show that the last non-vanishing remainder rn is
a common divisor of a and b

Step 2 We show that the rn is the greatest element in the
poset (A , |)



Euclid Algorithm Correctness Proof

We conduct the proof of the Step 1 and Step 2 by double
induction, what is a Mathematical Induction with two
BASIC CASES.
Step 1 We show that the last non-vanishing remainder rn is
a common divisor of a and b, i.e. we show that

rn | a and rn | b

Assume that rn is the last non-vanishing remainder, i.e.
rn−1 = qn+1rn and hence

1. rn | rn−1

Observe that

rn−2 = qnrn−1 + rn = qnqn+1rn + rn = rn(qnqn+1 + 1)

Hence
2. rn | rn−2



Euclid Algorithm Correctness Proof

Observe that

rn−3 = qn−1rn−2 + rn−1 and rn | rn−1, rn | rn−2

Hence
rn | rn−3

Observe that

rn−4 = qn−2rn−3 + rn−2 and we proved that rn | rn−3, rn | rn−3

Hence
rn | rn−4

We carry our proof by double induction, i.e. Mathematical
Induction with

1. rn | rn−1, 2. rn | rn−2 as base cases



Euclid Algorithm Correctness Proof

We want to prove that the continuation of this process, i.e.

we want to prove that

rn | rn−k for all k ≥ 1

To do so we need to develop a general formula for rn−k

of which rn−1, rn−2, rn−3, rn−4 are particular cases

This is the key step of the proof

The rest is just application of the Mathematical Induction to

the general formula below

rn−k = qn−(k−2)rn−(k−1) + rn−(k−2) for k ≥ 1



Euclid Algorithm Correctness Proof

We carry our proof by Mathematical Induction on k ≥ 1 with
1. for k = 1 and 2. for k = 1 as base cases already proved
to be true
Inductive assumption

rn | rp for all p < k

Induction Step We prove from the Inductive assumption
that

rn | rn−k

and by the Mathematical Induction Principle we get the
Induction Thesis

rn | rn−k for all k ≥ 1

In particular case when k = n − 1 and k = n − 2 we get

rn | r1 and rn | r2



Euclid Algorithm Correctness Proof

We have that
b = q2r1 + r2

and we just got
rn | r1 and rn | r2

Hence
rn | b

We also have that
a = q1b + r1

and we just got
rn | r1 and rn | b

Hence
rn | a

This proves that rn is a common divisor of a and b



Euclid Algorithm Correctness Proof

In order to complete the proof of the Step 1 we have to
do the Proof of the Induction Step

rn | rn−k

Consider the general formula for rn−k

rn−k = qn−(k−2)rn−(k−1) + rn−(k−2) for k ≥ 1

Observe that

k − 2 = p < k and k − 1 = p < k

Hence by the Inductive assumption

rn | rn−(k−1) and rn−(k−2)

we get that
rn | rn−k

This ends the proof of the Step 1



Euclid Algorithm Correctness Proof

Step 2 We show that the rn is the greatest common divisor
of a and b. Let the set A be a set of all common divisors of

a and b, i.e.

A = {c ∈ Z+ : c | a and c | b}

We know that | is an order relation on Z and we now
consider a poset (A , |). We have to show that rn is the
greatest element in it, i.e. we have to prove that the
following

c | rn, for all c ∈ A



Euclid Algorithm Correctness Proof

We carry the proof, as in previous step, by the

Double Induction. We have

a = q1b + r1 and r1 = a − q1b

so for all c ∈ A , c | a and c | b, hence

1. c | r1, for all c ∈ A

Similarly
b = q2r1 + r2 and r2 = b − q2r1

and c | b and c | r1, hence

2. c | r2, for all c ∈ A

This is the Base Case



Euclid Algorithm Correctness Proof

We carry the Double Induction inductive step similarly to
Step 1 and we get

c | rk , for all c ∈ A , for all k ≥ 1

In particular it holds for k = n and we get that

c | rn, for all c ∈ A

This ends the proof of the correctness of

Euclid Algorithm



Faster Algorithm

Kronecker (1823 - 1891) proved that no Euclid Algorism can
be shorter then one obtained by least absolute remainders
- rn can be negative

Example Find gcd(76084 , 63020) by the least absolute
remainders

76, 084 = 63, 020 · 1 + 13, 064

63, 020 = 13, 064 · 5 − 2, 300

13, 064 = 2, 300 · 6 − 736

2, 300 = 736 · 2 + 92

736 = 92 · 8

gcd(76084 , 63020) = 92

We did it in 5 steps instead of 7 steps



”mod” Binary Operation

Definition

For any x, y ∈ R we define a binary relation mod ⊆ R × R
as

x mod y = x − y
⌊
x
y

⌋
for y , 0

and
x mod 0 = x

Example

5 mod 3 = 5 − 3
⌊
5
3

⌋
= 5 − 3 · 1 = 2

5 mod (−3) = 5 − (−3)
⌊

5
−3

⌋
= 5 − (−3) · (−1) = −1



”mod” Binary Operation

Observe that when a, b ∈ Z , b , 0 we get

a = b
⌊a
b

⌋
+ a mod b

and
a = b q + r for q =

⌊a
b

⌋
, r = a mod b

Fact

For any a, b ∈ Z , b , 0,
a mod b is a remainder in the division of a by b

Example

We evaluated r1 = 5 mod 3 = 2 , r2 = 5mod (−3) = −1
and we have

5 = 3 · 1 + 2 and 5 = (−3)(−1) − 1



”mod” Euclid Algorithm

We use the the mod relation to formulate a more modern
version of Euclid Algorithm

We define a recursive function f for any m, n ∈ Z , 0 ≤ m < n
we put

f(m, n) = f(n mod m, m) for m > 0

f(0, n) = n for m = 0

Theorem

For any a, b ∈ Z , 0 ≤ a < b

If the function f = f(m, n) applied recursively to a, b as the
initial values terminates at f(0, k), then

gcd(a, b) = f(0, k)

Proof Book pages 103, 103 - but this is just a translation of
our proven theorem!



Examples

Example 6

f(m, n) = f(n mod m, m) for m > 0, f(0, n) = n

f(12, 18) = f(6, 12) = f(0, 6) = 6 gcd(12, 18) = f(0, 6) = 6

Example 2

f(63020 , 76084) = f(13064 , 63020) = f(10764 , 13064)

= f(2300 , 107640) = f(1564 , 2300) = f(736 , 1564)

f(92 , 736) = f(0 , 92)

gcd(63020 , 76084) = f(0 , 92) = 92



Some Consequences of Euclid Algorithm

Definition

m, n ∈ N − {0, 1} are relatively prime if and only if
gcd(m, n) = 1

Notation n⊥m for m, n relatively prime

We now use Euclid Algorithm to derive other properties of the
gcd. The most important one is the following

Division Lemma

When a product ac of two natural numbers is divisible by a
number b that is relatively prime to a, the factor c must
be divisible by b



Some Consequences of Euclid Algorithm

Division Lemma written symbolically

If b | ac and a⊥b then b | c

Proof

Since a⊥b, i.e. gcd(m, n) = 1, hence the last non zero
remainder rn in the Euclid Algorithm must be 1, so E A
has a form

a = q1b + r1

b = q2r1 + r2

. . . . . .

rn−2 = qnrn−1 + 1

rn−1 = qn+1rn + 0



Some Consequences of Euclid Algorithm

Multiply by c
ac = q1bc + r1c

bc = q2r1c + r2c

. . . . . .

rn−2c = qnrn−1c + c

rn−1 = qn+1rn + 0

and b | ac, so b | r1c, and hence b | r2c

By Mathematical Induction we get

∀i ≥ 1( b | ri)

In particular b | rn−2c, and hence b | c

It ends the proof



Some Consequences of Euclid Algorithm

Theorem 1

When a number is relatively prime to each of several
numbers, it is relatively prime to their product

Symbolically

If a ⊥ bi , for i = 1, 2, . . . k , then a ⊥ b1b2 . . . bk

Proof By contradiction; we show case i = 2 and the rest is
carried by Mathematical Induction

Assume a ⊥ b and a ⊥ c , and a ̸ ⊥ bc

By definition we have hence that gcd(a, bc) , 1, i.e. a has a
common divisor d with bc, i.e. there is d such that

d | a and d | bc



Some Consequences of Euclid Algorithm

We have that there is d such that

d | a and d | bc

and

a ⊥ b, and d | a, hence we get d ⊥ b

We also have

a ⊥ c, and d | a, hence we get d ⊥ c

So from d | bc and d ⊥ b we get by the Division Lemma
that d | c what is contrary to d ⊥ c

Exercise Write the full proof by Mathematical Induction



Some Consequences of Euclid Algorithm

Theorem 2
gcd(ka, kb) = k · gcd(a, b)

Proof

gcd(a, b) = rn in the Euclid Algorithm

a = q1b + r1

. . . . . .

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn + 0

We multiply each step by k



Some Consequences of Euclid Algorithm

We multiply each step by k

ka = kq1b + kr1

. . . . . .

krn−2 = kqnrn−1 + krn

krn−1 = qn+1krn + 0

This is the Euclid Algorithm for ka, kb and

gcd(ka, kb) = k · rn = k · gcd(a, b)



Some Consequences of Euclid Algorithm

Theorem 3

Let d = gcd(a, b) be such that

a = a1d and b = b1d

Then
a1 ⊥ b1

Proof

Evaluate using Theorem 2

gcd(a , b) = gcd(a1d , b1d)

= d · gcd(a1 , b1) = gcd(a, b)gcd(a1 , b1)

So we get gcd(a1 , b1) = 1, as nk=k iff k=1

This means
a1 ⊥ b1



Some Consequences of Euclid Algorithm

The Theorem 3 applies in elementary arithmetic in the
reduction of fractions

Take any fraction and a = a1d, b = b1d

a
b
=

a1d
b1d

=
a1

b1

for
a1 ⊥ b1

I.e any fraction can be represented in reduced form with
numerator and denominator that are relatively prime



Least Common Multiple

A number m is said to be a common multiple of the numbers

a and b when it is divisible by both of them

For example, the product ab is a common multiple of a and b

Since, as before there is only question of divisibility, there is

no limitation in considering only positive multiples

Definition Common Multiple

Let a, b ,m ∈ Z

m= cm(a , b) is a common multiple of a and b iff

a | m and b | m and m > 0



Least Common Multiple

Let A = {m : a | m and b | m} be the set of all
common multiples of a and b

This least element is called a least common multiple
(l.c.m.) of a and b and denoted by lcm(a, b)

Remark The least element in the poset (A ,≤) is its unique
minimal element so it justifies the BOOK definition

lcm(a, b) = min{m : m > 0 and a | m and b | m}



Least Common Multiple

Theorem 4

Any common multiple of a and b is divisible by lcm(a,b)

Proof

Let m = cm(a,b)

We divide m by lcm(a,b), i.e

m = qlcm(a, b) + r 0 ≤ r < lcm(a, b)

But a | lcm(a, b) and b | lcm(a, b) and a | m and b | m

Hence a | r and b | r and r is a common multiple of a, b

But 0 ≤ r < lcm(a, b), so r=0 what proves that
m = q · lcm(a, b), i.e. m is divisible by lcm(a,b)



Least Common Multiple

Theorem 5

For any a, b ∈ Z+ such that lcm(a,b) and gcd(a, b) exist

lcm(a, b) · gcd(a, b) = ab

Theorem 6

lcm(a, b) = ab if and only if a ⊥ b

Exercise Prove both Theorems



PART 2: PRIME NUMBERS



Definition

Definition

A positive integer is called prime if it has only two divisors 1
and itself

We assume convention that 1 is not prime

We denote by P the set of all primes

Symbolically

p ∈ P ⊆ N if and only if p > 1 and for any k ∈ Z

if k |p then k = 1 or k = p

Some primes

2, 3, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . .



Primes

Observe 2 is the only even prime!

Question Is 91 prime? No, it isn’t as 91 = 7 · 13

Definition

n ∈ N, n > 1 is called composite and denoted by CN, if it is
not prime

Symbolically

n ∈ CN if and only if n ≤ 1 ∪ ∃k∈Z(k |n ∩ k , 1 ∩ k , n)

Directly from the definition we have that

Fact 1

∀m∈N−{0,1}( m ∈ P ∪ m ∈ CN) and P ∩ CN = ∅



Primes

Definition

m, n ∈ N are relatively prime if and only if gcd(m, n) = 1

Notation n⊥m for m, n ∈ N relatively prime

Fact 2
∀p∈P ∀n∈N (p⊥n ∪ p|n )

Fact 3

A product of two numbers is divisible by a prime p only
when p divides at least one of the factors

Symbolically

∀p∈P ∀m,n∈Z (p | mn ⇒ (p | m ∪ p | n) )



Primes

Proof

Assume that Fact 3 is not true, i.e.

∃p∈P∃m,n∈Z (p | mn ∩ p ∤ m ∩ p ∤ n )

p ∤ m so by Fact 2 p⊥m. Now when p | mn and p⊥m we
get by Fact 2 that p | n . We get a contradiction with p ∤ n

Observation

For any p ∈ P, m, n ∈ Z ,

if p divides m or p divides m, then p divides mn

Proof Assume p | m, i.e. m = kp for k ∈ Z . Hence
mn = kmp and p | mn. The case p | m is similar



Primes

Because of the obvious character of the Observation we
usually formulate and prove the Fact 3 in the following more
general form

Fact 3a

A product of two numbers is divisible by a prime p if and
only if p divides at least one of the factors

Symbolically

∀p∈P ∀m,n∈Z (p | mn ⇔ (p | m ∪ p | n) )



Primes

Fact 4

A product q1q2 . . . qn of prime numbers (factors) qi is
divisible by a prime p only when p = qi for some qi

Symbolically

∀p,q1q2...qn∈P (p |
n∏

k=1

qk ⇒ ∃1≤i≤n (p = qi ) )

Proof

Let p |
n∏

k=1

qk . By the Fact 3 p | qi for some gi where

qi ∈ P; but p > 1 as 1 < P hence p = qi



Primes

Fact 5

Every natural number n, n > 1 is divisible by some prime

Symbolically
∀n∈N,n>1 ∃p∈P (p | n )

Proof

When n ∈ P, this is evident as n | n

When n is composite it can be factored n = n1n2

where n1 > 1

The smallest possible one of these divisors of n1 must be
prime



Main Factorization Theorem

We are now ready to prove the main theorem about
factorization. The idea of this theorem, as well as all Facts
1-5 we will use in proving it, can be found in Euclid’s
Elements in Book VII and Book IX

Main Factorization Theorem

Every composite number can be factored uniquely into
prime factors



Main Factorization Theorem

We present here an ”old” and pretty straightforward proof

You have another proof in the Book pages 105-105 and all
this without saying that it is a Theorem, and a quite important
one

Proof We conduct it in two steps

Step 1 We show that every composite number n > 1 is
product of prime numbers

Step 2 We show the uniqueness



Main Factorization Theorem

Step 1 We show that every composite number n > 1 is
product of prime numbers

By Fact 5 there is p1 ∈ P such that n = p1n1

If n1 is composite, then by Fact 5 again, n1 = p2n2

We continue this process with a decreasing sequence

n1 > n2 > n3 > . . .

of numbers together with a corresponding sequence of prime
numbers

p1, p2, p3, . . .

until some nk becomes a prime, i.e. nk = pk and we get

n = p1p2p3 . . . pk



Main Factorization Theorem

Step 2 We show the uniqueness

Assume that we have two different prime factorizations

n = p1p2p3 . . . pk = q1q2q3 . . . qm

Each pi | n, so for each pi

pi |

m∏
k=1

qk

By the Fact 4 pi = qj for some j and 1 ≤ j ≤ m

Conversely, we also have that each qi | n, so for each qi

qi |

k∏
n=1

pn

By the Fact 4 qi = pn for some n and 1 ≤ n ≤ k



Main Factorization Theorem

This proves that both sides of

n = p1p2p3 . . . pk = q1q2q3 . . . qm

contain the same primes

The only difference might be that a prime p could occur a
greater number of times on one side then on the other

In this case we cancel p on both sides sufficient number of
times and get equation with p on one side, not the other

This contradicts just proven the fact that both sides of the
equation contain the same primes



Main Factorization Theorem

We re-write our Theorem in a more formal way as follows

Main Factorization Theorem

For any n ∈ N, n > 1, there are αi ∈ N, αi ≥ 1, and prime
numbers p1 , p2 , . . . , pr r ≥ 1, 1 ≤ i ≤ r , such that

n = p1
α1 · p2

α2 · pr
αr =

r∏
k=1

pk
αk

and this representation is unique

pi ’ s are different prime factors of n

αi is the multiplicity , i.e. the number of times pi occurs in
the prime factorization



Main Factorization Theorem; General Form

We write our Theorem shortly in a more general form, as in
the Book (page 107)

Main Factorization Theorem General Form

n =
∏

p

pαp for p ∈ P, αp ≥ 0

and this representation is unique

This is an infinite product, bur for any particular n all but few
exponents αp = 0, and p0 = 1

Hence for a given n it is a finite product



Some Consequences of Main Factorization Theorem

We know, by the Main Factorization Theorem that any n > 1
has a unique representation

n =
∏

p

pnp for p ∈ P, np ≥ 0

Consider now the poset (P,≤), i.e. we have that all prime
numbers in P are in the sequence

p1 < p2 < . . . pn < . . .

2 < 3 < 5 < 7 < 11 < 13 < . . .

and we write
n =
∏
i≥1

pi
ni for ni ≥ 0

Because of the uniqueness of the representation we can
represent n as

n =< n1, n2, n3, . . . nk , . . . >



Example

Example

Reminder
2 < 3 < 5 < 7 < 11 < 13 < . . .

Here are few representations

7 = 7 so 7 =< 0, 0, 0, 1, 0, . . . = < 0, 0, 0, 1 >

12 = 2 · 2 · 3 = 22 · 3 so 12 =< 2, 1, 0, 0, . . . >= < 2, 1 >

18 = 2 · 3 · 3 = 2 · 32 so 18 =< 1, 2, 0, 0, . . . >= < 1, 2 >



Some Consequences of Factorization Theorem

Observe that when we have the general representations

k =
∏

p

pkp , n =
∏

p

pnp and m =
∏

p

pmp

then we evaluate

k = n ·m =
∏

p

pnp ·
∏

p

pmp =
∏

p

pnp+mp =
∏

p

pkp

We have hence proved the following

Fact 6

k = n ·m if and only if kp = np + mp , for all p ∈ P



Some Consequences of Factorization Theorem

Fact 7

Let
m =

∏
p

pmp and n =
∏

p

pnp

Then

m | n if and only if mp ≤ np for all p ∈ P

Proof

m | n iff there is k, such that n = mk and k =
∏

p

pkp

By Fact 6 we get that n = mk iff np = kp + mp iff
mp ≤ np and it ends the proof



Some Consequences of Factorization Theorem

Directly from Fact 7 and definitions we get the following

Fact 8

k = gcd(m, n) if and only if kp = min{mp , np}

k = lcd(m, n) if and only if kp = max{mp , np}



Example

Example 1

Let
12 = 22 · 31 18 = 21 · 32

gcd(12, 18) = 2min{2,1} · 3min{2,1} = 21 · 31 = 6

lcm(12, 18) = 2max{2,1} · 3max{2,1} = 22 · 32 = 36

Example 2

Let
m = 26 · 32 · 51 · 70 n = 25 · 33 · 50 · 70

gcd(m, n) = 2min{6,5} · 3min{2,3} · 5min{1,0} · 7min{0,0} = 25 · 32

lcm(m, n) = 26 · 33 · 5 · 7



Exercises

1. Use Facts 6-8 to prove

Theorem 5

For any a, b ∈ Z+ such that lcm(a,b) and gcd(a, b) exist

lcm(a, b) · gcd(a, b) = ab

2. Use Theorem 5 and the BOOK version of Euclid
Algorithm to express lcm(n mod m, m) when nmodm , 0

This is Ch4 Problem 2


