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Chapter 1: Generalized Josephus
Binary and Relaxed Binary Solutions



From Recursive Formula to Closed Form Formula

Often the problem with a recurrent solution is in its

computational complexity;

Observe that for any recursive formula Rn, in order to

calculate its value for a certain n one needs to calculate

(recursively) all values for Rk , k = 1, . . . , n − 1.

It’s easy to see that for large n, this can be quite complex.

So we would like to find (if possible) a non- recursive

function with a formula f = f(n),

Such formula is called a Closed Form Formula

Provided that the Closed Form Formula computes the same

function as our original recursive one.



From Recursive Formula to Closed Form Formula

We examine classes of Recursive Formula functions for

which the it is possible to find corresponding equivalent

Closed Form Formula function

Of course we have always to prove that

Recursive Formula functions and Closed Form Formula

functions we have found are equal, i.e. their corresponding

formulas are equivalent.



Original Josephus Recurrence Formula

The Recurrence Formula RF J(n) is:

J(1) = 1

J(2n) = 2J(n) − 1

J(2n + 1) = 2J(n) + 1

where J(k) is a position of the survivor in Josepus Problem.



Generalized Josephus GF

We generalized the function J to function f : N − {0} −→ N
defined as follows

f(1) = α

f(2n) = 2f(n) + β, n ≥ 1

f(2n + 1) = 2f(n) + γ, n ≥ 1

Observe that J = f for α = 1, β = −1, γ = 1

We call the function f a Generalized Josephus GJ



Original Josepus Binary Solution

We proved that the original J-recurrence:

J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1

has a beautiful binary CF solution

J((bm, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, bm)2,

move bm !

where bm = 1, as n = 2m + l

Question: Does the Generalized Josephus GJ admits a
similar solution?

Answer: YES.



Generalized Josephus GJ

We generalized the function J to function f : N − {0} −→ N
defined as follows

f(1) = α

f(2n) = 2f(n) + β, n ≥ 1

f(2n + 1) = 2f(n) + γ, n ≥ 1

Observe that Josephus function J = f for
α = 1, β = −1, γ = 1

We call the function f a Generalized Josephus GJ



GJ in Binary Representation

We write the Generalized Josephus GJ function as follows

f(1) = α;
f(2n + j) = 2f(n) + βj

for j = 0, 1, n ≥ 1

We use Binary Representation to find CF for GJ.

In order to do so, for a given k ∈ N and its binary

representation k = (bm, bm−1, ...b1, b0)2, we first examine

f(k) = f((bm, bm−1, ...b1, b0)2)

as follows.



Binary Representation for k=2n

Consider RF: f(2n + j) = 2f(n) + βj for j = 0, i.e

k = 2n + 0, j = 0

The binary representation of k = 2n is given as:

2n = (bm, bm−1, ...b1, b0)2

2n = 2mbm + 2m−1bm−1 + ...+ 2b1 + b0



Binary Representation for k=2n

We get bm = 1 and b0 = 0

Hence,
n = 2m−1bm + ...+ b1

n = (bm,bm−1, ...b1)2

Question: What happens when RF: f(2n + j) = 2f(n) + βj

for j = 1, i.e the the case k = 2n + 1



Binary Representation for k=2n+1

The binary representation of k=2n +1 is given as:

2n + 1 = (bm, bm−1, ...b1, b0)2

2n + 1 = 2mbm + 2m−1bm−1 + ...+ 2b1 + b0

b0 = 1, bm = 1



Binary Representation for k=2n+1

We get

2n + 1 = 2mbm + 2m−1bm−1 + ...+ 2b1 + 1

2n = 2mbm + 2m−1bm−1 + ...+ 2b1

n = 2m−1bm + 2m−1bm−1 + ...+ b1

n = (bm,bm−1, ...b1)2



Binary Representation

We have proved that whether we have a binary
representation of 2n = (bm, bm−1, ...b1, b0)2

or a binary representation of 2n+1 = (bm, bm−1, ...b1, b0)2,

the corresponding representations of n are the same:

n = (bm,bm−1, ...b1)2



Binary Fact

Binary Fact

When dealing with binary representation for arguments of

RF: f(1) = α, f(2n) = 2f(n) + β0, f(2n + 1) = 2f(n) + β1

we do not need to consider cases of n ∈ odd and n ∈ even

and we rewrite RF as

f((bm, bm−1, ...b1, b0)2) = 2f((bm, bm−1, ...b1)2) + βbi

where

βbj =

{
β0 bj = 0
β1 bj = 1

j = 0...m − 1



CF in Binary Representation

Given the GJ recursive formula

RF: f(1) = α, f(2n) = 2f(n) + β0, f(2n + 1) = 2f(n) + β1

In order to find its CF in Binary Representation we write, by

Binary Fact, the RF using n in binary representation as

f((bm, bm−1, ...b1, b0)2) = 2f((bm, bm−1, ...b1)2) + βbi

where

βbj =

{
β0 bj = 0
β1 bj = 1

j = 0...m − 1

and we evaluate it recursively as follows.



CF in Binary Representation

f((bm,bm−1, ...b1,b0)2) = 2f((bm, bm−1, ..., b1)2) + βb0

= 2(2f((bm, bm−1, ..., b2)2) + βb1) + βb0

= 4f((bm, bm−1, ..., b2)2) + 2βb1 + βb0

...

= 2mf((bm)2) + 2m−1βbm−1 + ...+ 2βb1 + βb0

= 2mf(1) + 2m−1βbm−1 + ...+ 2βb1 + βb0



CF in Binary Representation

We know that f(1) = α

So we get (almost) CF formula

f((bm,bm−1, ...b1,b0)2) = 2mα+ 2m−1βbm−1 + ...+ 2βb1 + βb0

where

βbj =

{
β0 bj = 0
β1 bj = 1

j = 0...m − 1



Relaxed Binary CF

We define a relaxed binary representation as follows

2mα+ 2m−1βbm−1 + ...+ βb0 = (α, βbm−1 , ...βb0)2

where now βbk are now any numbers, not only 0,1

We write the relaxed binary CF as

f((bm,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)2

”normal” = relaxed

βbj =

{
β0 bj = 0
β1 bj = 1

j = 0, ...,m − 1



Example: Original Josephus

The GJ function f becomes the original Josephus when
β0 = −1, β1 = 1
Example
Let n = 100
Use the relaxed binary CF to show that f(100) = 73 =J(n)
as we have already evaluated

n = ( 1 1 0 0 1 0 0 )2

(b6b5b4b3b2b1b0)

Relaxed coordinates are

βbj =

{
β0 bj = 0
β1 bj = 1 and hence

βbj =

{
−1 bj = 0
1 bj = 1



Example

We have
n = ( 1 1 0 0 1 0 0 )2

(b6b5b4b3b2b1b0)

f((bm,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)2

”normal” = relaxed

βbj =

{
−1 bj = 0
1 bj = 1

We evaluate

f(n) = f(( 1 1 0 0 1 0 0 )2)) =
relax (α, βb5 , . . . βb0)

= (1, 1,−1,−1, 1,−1,−1)2 = 64 + 32 − 16 − 8 + 4 − 2 − 1 = 73



Cyclic - Shift Property

We proved that the original J-recurrence:

J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1

has a beautiful binary CF solution, called cyclic - shift
property, namely

J((bm, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, bm)2

We prove now that the cyclic - shift property holds also for
the GF function f in the case when β0 = −1, β1 = 1, i.e.

f((bm, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, bm)2

We know that bm = 1, so we have to prove that:

f(1, bm−1, ...b1, b0)2) = (bm−1, bm−2, ...b0, 1)2,

for f such that β0 = −1, β1 = 1



Cyclic - Shift Property for GJ

We have proved the relaxed binary CF solution for GJ:

CF : f((1, bm−1, ...b1, b0)2) = (1, βbm−1 , ...βb0)2

where f(n) contains now 1 and -1 as defined by

βbj =

{
−1 bj = 0
1 bj = 1



Example

EXAMPLE

Consider n = (1, 0, 0, 1, 0, 0, 1)2

By CF we have that

f((1, 0, 0, 1, 0, 0, 1)2) = (1,−1,−1, 1,−1,−1, 1)2

General Observation

f transforms a BLOCK of 0’s in normal binary
representation into a BLOCK of -1’s in the relaxed
representation

f((1, 0, 0...0)2) = (1,−1,−1... − 1)2



ONE BLOCK Transformation

We prove now the following relationship between relaxed and
normal representation

ONE BLOCK transformation

(1,−1,−1...,−1)2 = (0, 0, 0..., 0, 1)2

Proof: Let n = ((−1,−1...,−1)2

n = (1,−1,−1...,−1)2 =def 2m − 2m−1 − 2m−2 − ... − 21 − 20

= 2m−1 − 2m−2 − ... − 21 − 20

= 2m−2 − 2m−3 − ... − 21 − 20

...

= 21 − 20

= 2 − 1
= 1 = (0, 0, 0, 0,1)2



Many Blocks Transformation

Example for TWO BLOCKS transformation plus binary
shift

f((1, 0, 0, 1, 1, 0, 0, 1)2) = (1,−1,−1, 1, 1,−1,−1, 1)2

=1bt (0, 0, 1, 1, 1,−1,−1, 1)2

=1bt (0, 0, 1, 1, 0, 0, 1, 1)2

= (0, 0, 1, 1, 0, 0, 1, 1)2

We know that f((bm, ..., b1, b0)2) = (α, βbm−1 , ..., βb0)2

OBSERVE that each block of binary digits (1, 0..0)2 is
transformed by f into (1,−1, ...)2 and multiple applications
of one block transformation transforms them back to
(1, 0..0)2, so

((α, βbm−1 , . . . , βb0)2 =mbt (bm−1, ...b1,b0, 1)2

where mbt denotes multiple BLOK transformations, and we
know that α = 1



Cyclic - Shift Property

We now evaluate:

f((1, bm−1, ..., b1, b0)2) = (α, βbm−1 , ..., βb0)2

=mbt (bm−1, ..., b1, b0, 1)2

This ends the proof of the Cyclic - Shift Property for
Generalized Josephus f with α = 1, β0 = −1, β1 = 1



Exercise 1

Given
f(1) = 5
f(2n) = 2f(n) − 10
f(2n + 1) = 2f(n) + 83

Exercise 1

Evaluate f(100)

Solution: just apply proper formulas!

f((bm,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)2

”normal” = relaxed

βbj =

{
β0 bj = 0
β1 bj = 1

j = 0, ...,m − 1



Exercise 2

Given
f(1) = 5
f(2n) = 3f(n) − 10
f(2n + 1) = 3f(n) + 83

Exercise 2

Evaluate f(100)

Observe that now we don’t have proper formulas! The GJ
solution works only for the case 2f(n)

Goal: Generalize GJ to cover this case and develop new
closed formula CF



Relaxed Binary Representation for GJ

We proved while solving the Generalized Josephus GJ that

RF: f(1) = α, f(2n + j) = 2f(n) + βj

where j = 0, 1 and n ≥ 0

has a relaxed binary CF formula

CF : f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)2

where βbj are defined by

βbj =

{
β0 bj = 0
β1 bj = 1

j = 0, ...,m − 1



GJ Generalization k-GJ and k- Representation

We generalize GJ to k-GJ as follows

RF: f(1) = α, f(2n + j) = k f(n) + βj ,

where j = 0, 1 and k ≥ 2

In order to find closed formula for k-GJ we use a following
generalization of the binary representation

n = (bm, bm−1, ...b1, b0)k = k mbm + k m−1bm−1 + ...+ kb1 + b0

where k ≥ 2, bm , 0, each bi < k

We call it a k- representation of n (representation of n to

the base k )



Closed Formula CF for k-GJ

We are going to show that RF has a k - representation
closed formula

CF : f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)k

for βbj are defined as in GJ by

βbj =

{
β0 bj = 0
β1 bj = 1

; j = 0, ...,m − 1

and where (α, βbm−1 , ..., βb0)k = αkm + km−1βm−1 + ...+ βb0

is called a relaxed k- representation



k- Representation Closed Formula

Observe that Binary Fact of General Josephus GJ holds in
our case and we can rewrite

RF: f(1) = α, f(2n + j) = k f(n) + βj ,

using n in binary representation as

RF f((bm, bm−1, ...b1, b0)2) = k f((bm, bm−1, ...b1)2) + βbi

We evaluate it recursively as in the GJ case and get the proof

of the k - representation closed formula for RF

CF : f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)k



PROOF of the k- Representation CF

We evaluate
f((bm, bm−1, ..., b1, b0)2) = k f((bm, bm−1, ..., b1)2) + βb0

= k(k f((bm, bm−1, ..., b2)2) + βb1) + βb0

= k 2f((bm, bm−1, ..., b2)2) + kβb1 + βb0

= k 3f((bm, bm−1, ..., b3)2) + k 2βb2 + kβb1 + βb0

...
= k mf((bm)2) + k m−1βbm−1 + ...+ kβb1 + βb0

= k mα+ k m−1βbm−1 + ...+ k 2βb2 + kβb1 + βb0

= (α, βbm−1 , ..., βb1 , βb0)k

f((bm, bm−1, ..., b1, b0)2) = (α, βbm−1 ...βb1 , βb0)k

base 2 → base k



Example

Given RF:
f(1) = 5
f(2n) = 6f(n) + 3
f(2n + 1) = 6f(n) − 10

Evaluate: f(100) by the use of the k- representation and
closed formula

CF : f((1,bm−1, ...b1,b0)2) = (α, βbm−1 , ...βb0)k

where βbj are defined as before by

βbj =

{
β0 bj = 0
β1 bj = 1

; j = 0, ...,m − 1



Example Solution

Given
f(1) = 5
f(2n) = 6f(n) + 3
f(2n + 1) = 6f(n) − 10

We evaluate
α = 5
β0 = 3
β1 = −10



Example Solution

Evaluate: f(100)

α = 5, β0 = 3, β1 = −10, k = 6, n = ( 1 1 0 0 1 0 0 )2

(b6b5b4b3b2b1b0)

βbj =

{
β0 bj = 0
β1 bj = 1

, j = 0, ...,m − 1,

βb0 = 3, βb1 = 3, βb2 = −10, βb3 = 3; βb4 = 3,

βb5 = −10, α = 5

f(100) = f(( 1 1 0 0 1 0 0 )2) = (5,−10, 3, 3,−10, 3, 3)6



More General GJ Function

Further Generalization of GJ

RF:

f(i) = αi , i = 1, ..., d − 1
f(dn + j) = cf(n) + βj , n ≥ 1, 0 ≤ j < d

We prove the following closed formula
CF:

f((bm,bm−1, ...,b1,b0)d) = (αbm , βbm−1 ...βb1 , βb0)c



Example

f(1) = 34
f(2) = 5
f(3n) = 10f(n) + 76
f(3n + 1) = 10f(n) − 2
f(3n + 2) = 10f(n) + 8

βbj =


β0 bj = 0
β1 bj = 1
β2 bj = 2

, j = 0, ..., d − 1,



Example Solution

We evaluate:
i = 1, 2
j = 0, 1, 2

d = 3
c = 10

α1 = 34
α2 = 5
β0 = 76
β1 = −2
β2 = 8



Example

Evaluate: f(19)

19 = (201)3 = 2 · 32 + 0 · 3 + 1

αb2 = α2 = 5
βb0 = β0 = 76
βb1 = β1 = −2

f(19) = f((201)3)
= (5, 76,−2)10

= 5 · 102 + 76 · 10 − 2
= 500 + 760 − 2
= 1258



Short Solution

f((bm,bm−1, ...,b1,b0)d) = (αbm , βbm−1 ...βb1 , βb0)c

Take
19 = (2 0 1)3

Corresponding solution is

(α2, β0, β1)10

we evaluate α2 = 5, β0 = 76, β1 = −2 and get

Solution:

(5, 76, −2)10


