
cse581
Computer Science Fundamentals: Theory

Professor Anita Wasilewska



CM - Lecture 1
Chapter 1: Recurrent Problems - Tower of Hanoi, Josephus

Problem, Binary Expansion Solution



Concrete and Discrete Mathematics

The Concrete Mathematics book B3 was written

as an antidote to what authors call an Abstract Mathematics

The Abstract Mathematics is is now called

Discrete Mathematics and was developed as a part of building

the Foundations of Mathematics

Both Concrete and Discrete Mathematics play crucial role in

building the Foundations of Computer Science



Concrete and Discrete Mathematics

The classical Discrete Mathematics approach includes

development of such mathematics fields as Set Theory,

Model Theory, Theory of Boolean Algebras, as well as

Classical and Non-classical Logics, Number Theory

or Graph Theory and many others

We introduce some basic notions of the classical Discrete

Mathematics in our Lectures as and when needed



What is Concrete Mathematic?
Book Definition

Concrete Mathematics is a controlled manipulation of

some mathematical formulas using a collection of techniques

developed for solving problems

We will learn various techniques to evaluate horrendously
looking finite sums, to solve complex recurrences, and
specific manipulations methods for certain classes of them

The. original text of the book was an extension of the chapter
”Mathematical Preliminaries” of Knuth’s classic book

”Art of Computer Programming”



Concrete and Discrete Mathematics

Concrete Mathematics is supposed (and hopefully will) to help

you in the art of writing programs

Discrete Mathematics is supposed to help you to think about

the art and correctness of programming



B3 - CHAPTER 1
Recurrent Problems

Tower of Hanoi

Josephus Problem

Recurrent Problems in General

We follow the following steps

Abstraction: find a mathematical model for a problem

Recursion: find a recurrent formula describing the problem

Closed Form Formula: find it for a given recurrent one

(if exists) and prove their equivalency



B3 - CHAPTER 1
PART ONE: Tower of Hanoi



The Tower of Hanoi

Tower of Hanoi puzzle is attributed to the French
mathematician Edouard Lucas, who came up with it in 1883

His formulation involved three pegs and eight distinctly-sized

disks stacked on one of the pegs from the biggest on the

bottom to the smallest on the top



The GOAL

The puzzle goal is to move the stack of disks to one of the
other pegs with the following rule:

L - rule

must move one disk at a time

a larger disk cannot be on top of any smaller disks at any time

do it in as few moves as possible

Lucas furnished his puzzle with a romantic legend about
Tower of Brahma (64 disks) with monks, gold, diamond
needles etc...



The Tower of Hanoi GENERALIZED

Tower has now n disks, all stacked in decreasing order from
bottom to top on one of three pegs,

Question
what is the minimum number of (legal) moves needed to
move the stack to one of the other pegs?

Plan
1. we start by expressing the minimum number of moves
required to move a stack of n disks as a recurrence relation,
i.e. we find and prove a recursive (recurrent) formula

2. we find a closed-form formula for the number of moves
required;

3. we prove that the closed-form and recurrent formulas
are equivalent



The Tower of Hanoi GENERALIZED to n disks

We denote by

Tn - the minimum number of moves that will transfer n disks
from one peg to another under the

L - rule:

must move one disk at a time;

a larger disk cannot be on top of any smaller disks at any time

do it in as few moves as possible

n = 1 - we have 1 disk- and 1 move, i.e. T1 = 1

n = 2 - we have 2 disks- and 3 moves: top (smaller) disk from
peg 1 to peg 2, remaining (larger) disk from peg 1 to peg 3,
the disk from peg 2 (smaller) on the top of the disk (larger) on
peg 3 so L - rule holds and hence T2 = 3



A Strategy for n = 3 disks

1. transfer top 2 disks as in previous case for n = 2 – we use
T2 moves;

2. move remaining (largest) disk to empty peg – we use 1
move;

3. bring the 2 disks to the top of the largest disk as in previous
case for n = 2 – we use T2 moves;

together we have

T2 + T2 + 1 = 3 + 3 + 1 = 7 moves



Recurrent Strategy to evaluate Tn

1. In order to move the bottom disk, we need to move all the
n − 1 disks above it to a empty peg first

2. Then we can move the bottom disk to the remaining empty
peg, and

3. move the n − 1 smaller disks back on top of it



Recurrent Strategy to evaluate Tn

1. we move all the n − 1 disks above bottom disk to a different
(empty) peg - we do it in Tn−1 moves;

2. we move the bottom disk to the remaining empty peg - we
do it in 1 moves

3. we move n − 1 disks from peg resulting in 1. to the peg
resulting in 2. - another Tn−1 moves;

How many moves? together we have at most
Tn−1 + Tn−1 + 1 = 2Tn−1 + 1 moves i.e we have that

Tn ≤ 2Tn−1 + 1, where n ≥ 1



Recursive Formula for Tn

We have proven that Tn ≤ 2Tn−1 + 1.

We show (next slide) that there is no better way, i.e. that

Tn ≥ 2Tn−1 + 1

and hence we get the Recursive Formula that gives us the
solution for the minimum number of moves Tn required to
move a tower with n disks to another peg.

Tn =

 0 , if n = 0;

2Tn−1 + 1 , if n > 0.



Recursive Formula for Tn - end of the proof

Observe that in order to move the largest bottom disk
anywhere, we have to first get the n − 1 smaller disks on top
of it onto one of the other pegs

This will take at least Tn−1 moves

Once this is done, we have to move the bottom disk at least
once; we may move it more than once!

After we’re done moving the bottom disk, we have to move
the n − 1 other disks back on top of it eventually, which will
take again at least Tn−1 moves;

all together we get that Tn ≥ 2Tn−1 + 1 and hence we proved
our Recursive Formula

Tn =

 0 , if n = 0;

2Tn−1 + 1 , if n > 0.



From Recursive Formula to Closed Form Formula

Often the problem with a recurrent solution is in its

computational complexity;

Observe that for any recursive formula Rn, in order to

calculate its value for a certain n one needs to calculate

(recursively) all values for Rk , k = 1, . . . , n − 1.

It’s easy to see that for large n, this can be quite complex.

So we would like to find (if possible) a non- recursive

function with a formula f = f(n),

Such formula is called a Closed Form Formula

Provided that the Closed Form Formula computes the same

function as our original recursive one.



From Recursive Formula to Closed Form Formula

We will examine classes of Recursive Formula functions for

which the it is possible to find corresponding equivalent

Closed Form Formula function

Of course we have always to prove that

Recursive Formula functions and Closed Form Formula

functions we have found are equal, i.e. their corresponding

formulas are equivalent.



Definition of Equality of Functions

Given two functions f and g such that

f : A −→ B and g : A −→ B

we say that f and g are equal, or their formulas are equivalent

and write symbolically as

f = g if and only if f(a) = g(a), for all a ∈ A , i.e.

∀a∈A f(a) = g(a)



Proving Equality of Functions

Observe that when the domain of f and g are

natural numbers N (or a subset of N), i.e.

f : N −→ B and g : N −→ B

then proving that they are equal, or their formulas are

equivalent means proving that

∀n∈N f(n) = g(n)

We usually carry such proofs by Mathematical Induction over

the common domain of both functions



Back to Tower of Hanoi

We proved that the solution for the Tower of Hanoi is given by

a Recursive Formula

Tn =

 0 , if n = 0;

2Tn−1 + 1 , if n > 0.

Mathematically it means that we have defined a function

T : N −→ N

such that

T(0) = 0, T(n) = 2T(n − 1) + 1, for all n > 0



From Recursive Formula to Closed Form Formula

For functions with natural numbers N as the domain we use,
as in a case of any sequences a notation T(n) = Tn

We write our recursively defined function T : N −→ N

T(0) = 0, T(n) = 2T(n − 1) + 1, for all n > 0

as
T0 = 0, Tn = 2Tn−1 + 1, for all n > 0

and call it, for short a recursive formula

Our goal now is to find a Closed Form Formula equivalent
to the obove recursive formula

One way to get such a solution is to first come up with a

guess, and then prove that the guess is in fact a

correct solution



From Recursive Formula to Closed Form Formula

Given our Recursive Formula

RF : T0 = 0, Tn = 2Tn−1 + 1, for n > 0

We evaluate few values for Tn:
T0 = 0, T1 = 1, T2 = 3, T3 = 7, T4 = 15, T5 = 31, T6 = 63, . . .
It is easy to observe that values of Tn follows the pattern

Tn = 2n − 1, for all n ≥ 0

We hence guess that Tn = 2n − 1 is a Closed Form Formula
CF equivalent to our Recursive Formula RF .



Proving RF = CF

We use, after the book, that same ”name” (in this case Tn ) for
both functions representing Recursive Formula RF and
Closed Form Formula CF.

We distinguish them here and in the future investigations by
using different colors and notation: RF and CF, respectively.

As both functions has the natural numbers N as their common
domain, we carry the proof here (and in the future
investigations) by Mathematical Induction over the domain of
the functions (always a subset of N).



Proof of RF = CF for Tower of Hanoi Solution

RF: T0 = 0, Tn = 2Tn−1 + 1, n > 0

CF: Tn = 2n − 1, n ≥ 0

We prove by Mathematical Induction that RF = CF, i.e. that

∀n∈N Tn = Tn = 2n − 1

Base Case n = 0

We verify: T0 = 0, T0 = 20 − 1 = 0 and we get that Base
Case is true: T0 = T0



Proof of RF = CF for Tower of Hanoi Solution

RF: T0 = 0, Tn = 2Tn−1 + 1, n > 0

CF: Tn = 2n − 1, n ≥ 0

Inductive Assumption: Tn−1 = Tn−1 = 2n−1 − 1

Inductive Thesis: Tn = Tn = 2n − 1

Proof:

Tk =def 2Tk−1 + 1

=ind 2(2k−1 − 1) + 1

= 2k − 2 + 1

= 2k − 1 = Tk



Another Proof of RF = CF for Tower of Hanoi Solution

Here is an interesting way to find a closed-form solution
without having to guess that the solution is Tn = 2n − 1.
Consider what happens when we add 1 to the recursive
formula RF

Tn + 1 =

 1 , if n = 0;

2Tn−1 + 2 = 2(Tn−1 + 1) , if n > 0.

Now, letting Un = Tn + 1, we get the following recurrence:

Un =

 1 , if n = 0;

2Un−1 , if n > 0.

It’s pretty easy (in any case easier than for the Tn) to see that
the solution (proof by Mathematical Induction) to this
recurrence is Un = 2n. Since Un = Tn + 1, we get

Tn = Un − 1 = 2n − 1.



Book3 - CHAPTER 1
PART TWO: The Josephus Problem

Josephus Story

Flavius Josephus was a historian of 1st century

During Jewish-Roman war Josephus was among 41 Jewish

rebels captured by the Romans

They preferred suicide to the capture and decided to form

a circle and to kill every third person until no one was left

Josephus with with one friend wanted none of this suicide

nonsense and he calculated where he and his friend should

stand to avoid being killed and they were saved



The Josephus Problem - Our variation

n people around the circle and we eliminate each second
remaining person until one survives
We denote by J(n) the position of a surviver
Example n = 10

Elimination order: 2, 4, 6, 8, 10, 3, 7, 1, 9.
As a result, number 5 survives, i.e. J(10) = 5



Problem: Determine survivor number J(n)

We evaluate now J(n) for n=1,2, . . . 6
J(1)=1, J(2) = 1, J(3):

We get that J(3)=3



Determine survivor number J(n)

Picture for J(4):

We get J(4)=1



Determine survivor number J(n)

Picture for J(5):

We get J(5)=3



Problem: Determine survivor number J(n)

Picture for J(6):

We get J(6)=5



Determine survivor number J(n)

We put our results in a table:

n 1 2 3 4 5 6
J(n) 1 1 3 1 3 5

Observation

All our J(n) after the first run are odd numbers

Fact

First trip eliminates all even numbers



Determine survivor number J(n)

Fact

First trip eliminates all even numbers

Observation

If n ∈ EVEN we arrive to a similar situation we started with

with half as many people (numbering has changed)



Determine survivor number J(n)

ASSUME that we START with 2n people

After first trip we have

3 goes out next
This is like starting with n except each person has been
doubled and decreased by 1



Determine survivor number J(n)

Case n=2n
We get J(2n)=2J(n) -1 (each person has been doubled and
decreased by 1)
We know that J(10)=5, so J(20) = 2J(10)-1 = 2*5-1 = 9
Re-numbering

J(2n) = newnumber J(n)
newnumber k = 2k-1



Determine survivor number J(n)

Case n=2n+1
ASSUME that we start with 2n+1 people:
First looks like that

1 is wipped out after 2n
We want to have n-elements after first round



Determine survivor number J(n)

After the first trip we have

This is like starting with n except that now each person is
doubled and increased by 1



Determine survivor number J(n)

CASE n=2n + 1 c.d.
Re-numbering

Formula: new number k = 2k+1
J(2n+1)=new number J(n)
J(2n+1)=2J(n)+1



Recurrence Formula for J(n)

The Recurrence Formula RF for J(n) is:

J(1) = 1

J(2n) = 2J(n) − 1

J(2n + 1) = 2J(n) + 1

Remember that J(k) is a position of the survivor

This formula is more efficient then getting F(n) from F(n-1)

It reduces n by factor 2 each time it is applied

We need only 19 application to evaluate J(106)



From Recursive Formula to Closed Form Formula

In order to find a Closed Form Formula (CF) equivalent to given
Recursive Formula RF we ALWAYS follow the the Steps 1 - 4
listed below.

Step 1 Compute from recurrence RF a TABLE for some
initial values. In our case RF is:
J(1) = 1, J(2n) = 2J(n)− 1, J(2n + 1) = 2J(n) + 1

Step 2 Look for a pattern formed by the values in the
TABLE

Step 3 Find - guess a closed form formula CF for the
pattern

Step 4 Prove by Mathematical Induction that RF = CF



TABLE FOR J(n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

G1 G2 G3 G4 G5

Observation: J(n) = 1 for n = 2k , k = 0, 1, ..

Next step: we form groups of J(n) for n consecutive powers
of 2 and observe that

J(n) G1 G2 G3 G4 G5 ...
n 20 21 + l 22 + l 23 + l 24 + l ...

for 0 ≤ l < 2(k−1) and k = 1, 2, ...5,



Computation of J(n)

Observe that for each group Gk the corresponding n are

n = 2k−1 + l for all 0 ≤ l < 2(k−1)

and the value of J(n) for n = 2k + l i.e. J(n) = J(2k + l)

increases by 2 within the group

Let’s now make a TABLE for the group G3

J(n) 1 3 5 7 = 2l+1
n 22 22 + l 22 + 2 22 + 3

l=0 l=1 l=2 l=3



Guess for CF formula for J(n)

Given n = 2k−1 + l we observed that J(n) = 2l + 1

We guess that our CF formula is

J(2k + l) = 2l + 1,

for any k ≥ 0, 0 ≤ l < 2k



Representation of n

n = 2k + l is called a representation of n when

l is a remainder by dividing n by 2k and

k is the largest power of 2 not exceeding n

Observe that 2k ≤ n < 2k+1, l = n − 2k and so

0 ≤ l < 2k+1 − 2k = 2m, i.e.

0 ≤ l < 2k



Proof RF = CF

RF: J(1) = 1, J(2n) = 2J(n) − 1, J(2n + 1) = 2J(n) + 1

CF: J(2k + l) = 2l + 1, for n = 2k + l, k ≥ 0, 0 ≤ l < 2k

Proof: by Mathematical Induction on k

Base Case: k=0.

Observe that 0 ≥ l < 20 = 1, and l = 0 , n = 20 + 0 = 1, i.e.
n = 1.

We evaluate J(1) = 1, J(20) = 1 , i.e.

RF = CF



Proof RF = CF

Induction Step over k has two cases

c1: n ∈ even and J(2n) = 2J(n) − 1

c2: n ∈ odd and J(2n + 1) = 2J(n) + 1

Induction Assumption for k is

J(2k−1 + l) = 2l + 1, for 0 ≤ l < 2k−1

case c1: n ∈ even

put n:= 2n, i.e. 2k + l = 2n, 0 ≤ l < 2k

Observe that

2k + l = 2n iff l ∈ even, i.e. l = 2m, and

l/2 = m ∈ N and 0 ≤ l
2 < 2k−1.



Proof RF = CF

We evaluate n from 2k + l = 2n as follows

n = 2k+l
2 ,

n = 2k−1 + l
2 , for 0 ≤ l

2 < 2k−1, l
2 ∈ N

Proof in case c1: n ∈ even and J(2n) = 2J(n) − 1

Reminder: CF: J(2k + l) = 2l + 1 for n = 2k + l

J(2k + l) =reprn 2J(2k−1 + l
2) − 1

=ind 2(2 l
2 + 1) − 1 = 2l + 2 − 1

= 2l + 1



Proof RF = CF

Proof in case c2: n ∈ odd and J(2n + 1) = 2J(n) + 1

Inductive Assumption: J(2k−1 + l) = 2l + 1, for

0 ≤ l < 2k−1

Inductive Thesis: J(2k + l) = 2l + 1, for 0 ≤ l < 2k

We put n := 2n + 1 and observe that

2k + l = 2n + 1 iff l ∈ odd, i.e.

l = 2m+1, for certain m ∈ N, l -1 = 2m, and l−1
2 = m ∈ N



Proof of RF = CF

Let J(2n + 1) = 2J(n) + 1

We evaluate, as before n from 2k + l = 2n + 1

2k + l − 1 = 2n and we get the representation of n

n = 2k−1 + l−1
2

Reminder: CF: J(2k + l) = 2l + 1 for n = 2k + l

Proof RF = CF in case c2: n ∈ odd and

J(2n + 1) = 2J(n) + 1 is now as follows

J(2k + l) =reprn 2J(2k−1 + l−1
2 ) + 1

=ind 2(2 l−1
2 + 1) + 1 = 2(l − 1 + 1) + 1

= 2l + 1



Some Facts

Fact 1 ∀m J(2m) = 1

Proof by induction over m

Observe that 2m ∈ even, so we use the formula

J(2n) = 2J(n) − 1, and get

J(2m) = J(2 ∗ 2m−1) =Jdef 2J(2m−1) − 1 =ind 2 ∗ 1 − 1 = 1

Hence we also have

Fact 2

First person will always survive whenever n is a power of 2



General Case

Fact 3

Let n = 2m + l

The first remaining person, the survivor is number 2l + 1

Our solution for the proof

Observe that the number of people is reduced to power of 2
after there have been l executions

J(2m + l) = 2l + 1

where n = 2m + l and 0 ≤ l < 2m depends heavily on
powers of 2

Let’s look now at the binary expansion of n and see how we
can simplify the computations



Binary Expansion of n

Definition
n = (bmbm−1...b1b0)2

stands for
n = bm2m + bm−12m−1 + ..b12 + b0

for
bi ∈ 0, 1, bm = 1



Binary Expansion of n

EXAMPLE: n=100

n = (1 1 0 0 1 0 0)2

26252423222120

n = 26 + 25 + 22 = 64 + 32 + 4 + 100



Binary Expansion of n

Let now :

n = 2m + l, 0 ≤ l < 2m

we have the following binary expansions:

1) l = (0, bm−1, .., b1, b0)2 as l < 2m

2) 2l = (bm−1, .., b1, b0, 0)2 as
l = bm−12m−1 + ..+ b12 + b0

2l = bm−12m + ..+ b122 + b02 + 0

3) 2m = (1, 0, ..., 0)2, 1 = (0...1)2

4) n = 2m + l

n = (1, bm−1, .., b1, b0)2 from 1 + 3

5) 2l + 1 = (bm−1, bm−2, .., b0, 1)2 from 2 + 3



Binary Expansion Josephus

Consider now a closed formula

CF : J(n) = 2l + 1, for n = 2m + l

We use

5) 2l + 1 = (bm−1, bm−2, .., b0, 1)2

and re-write the closed formula CF as a binary expansion
formula BF as follows

BF : J((bm, bm−1, .., b1, b0)2) = (bm−1, .., b1, b0, bm)2

because bm = 1 in the binary expansion of n, we get

BF : J((1, bm−1, .., b1, b0)2) = (bm−1, .., b1, b0, 1)2



Binary Expansion Josephus

Example: Find J(100)

n = 100 = (1100100)2

J(100) = J((1100100)2) =
BF (1001001)2

J(100) = 64 + 8 + 1 = 73

BF : J((1, bm−1, .., b1, b0)2) = ((bm−1, .., b1, b0, 1)2



Josephus Generalization

Our function J : N − {0} −→ N is defined as

J(1) = 1, J(2n) = 2J(n) - 1, J(2n+1) = 2J(n) + 1 for n > 1

We generalize it to function f : N − {0} −→ N defined as
follows

f(1) = α

f(2n) = 2f(n) + β, n ≥ 1

f(2n + 1) = 2f(n) + γ, n ≥ 1

Observe that J = f for α = 1, β = −1, γ = 1

NEXT STEP: Find a Closed Formula for f


