CSE541 EXERCISE 01

EQUIVALENCE RELATIONS

QUESTION 1 Given a set $A \neq \emptyset$ and two relations defined in A, i.e. $R_1, R_2 \subseteq A \times A$.

Determine whether the following relations are, or are not equivalence relations: $R_1 \cap R_2, R_1 \cup R_2, \neg R_1 = \subseteq A \times A - R_1$.

In case when a given relation is an equivalence find its equivalence classes.

- **QUESTION 2** Given an indexed family of EQUIVALENCE Relations $\{R_t\}_{t \in T}$ defined in a set $A \neq \emptyset$. Determine whether
- **1.** $\bigcap_{t \in T} R_t$ is an equivalence relation,
- **2.** $\bigcup_{t \in T} R_t$ is an equivalence relation, and if it is not, give a counter-example.
- QUESTION 3] Given sets $X, Y \neq \emptyset$ and a function $f: X \longrightarrow Y$. We define a relation \sim_f on X as follows: for any $x, y \in X$

$$x \sim_f y$$
 iff $f(x) = f(y)$.

Prove that \sim_f is an equivalence. Describe the equivalence classes. Formulate the conditions for \sim_f to be identity.

QUESTION 3

1. Prove the following

- **Theorem 1** For any $A \neq \emptyset$, and any equivalence relation \approx on A, the family A/\approx of sets is a partition of A, i.e.
- ∀ [a] ∈ A/ ≈ ([a] ≠ Ø)
 i.e. all equivalence classes are non-empty.
- (ii) ∀ [a] ≠ [b] ∈ A/ ≈ ([a] ∩ [b] = Ø)
 i.e. all equivalence classes are disjoint.
- (iii) $\bigcup A \approx A$ i.e sum of all equivalence classes (sets from $A \approx$) is the set A.
- 2. Prove the following "inverse" theorem to the Theorem 1.
- **Theorem 2** For any $A \neq \emptyset$ and any partition $\mathbf{P} \subseteq \mathcal{P}(A)$ of A, there is an equivalence relation on A such that its equivalence classes are exactly the sets of the partition \mathbf{P} .

3.

Sets $\mathbf{R}(\mathbf{a})$ Observe that we can consider, for ANY relation R on A sets that "look" like equivalence classes i.e. are defined as follows:

 $R(a) = \{ b \in A; aRb \} = \{ b \in A; (a,b) \in R \}.$

Fact 1 R is an equivalence on A iff the family $\{R(a)\}_{a \in A}$ is a partition of A.

QUESTION 4 Given a family \mathcal{F} of the following intervals of real numbers R,

$$\mathcal{F} = \{ [a, a+1) : a \in Z \}.$$

Define an equivalence relation \sim on R such that its equivalence classes are exactly the sets of \mathcal{F} . Prove that such equivalence exists.

CONSTRUCTION OF INTEGERS and RATIONAL NUMBERS

QUESTION 5 Consider the following relation \approx defined on the set $N \times N$, where N is the set on natural numbers.

 $(m_1, n_1) \approx (m_2, n_2)$ iff $m_1 + n_2 = m_2 + n_1$.

- 1. Prove that it is an equivalence and find equivalence classes.
- 2. Describe how the equivalence classes define positive and negative integers.
- **3** We have the following definitions of operations of multiplication and addition on those numbers:

$$[(m_1, n_1)] + [(m_2, n_2)] = [(m_1 + m_2, n_1 + n_2)]$$

$$[(m_1, n_1)] \cdot [(m_2, n_2] = [(m_1m_2 + n_1 + n_2, m_1n_2 + n_1m_2)]$$

Show that they comply with all basic laws in the arithmetic of natural numbers; moreover, that the substraction can always be defined in the domain of such defined integers.

QUESTION 6 Consider the following relation \approx defined on the set $Z \times Z - \{0\}$, where N is the set on natural numbers.

$$(m_1, n_1) \approx (m_2, n_2)$$
 iff $m_1 n_2 = m_2 n_1$.

- 1. Prove that it is an equivalence and find equivalence classes.
- 2. Describe how the equivalence classes define rational numbers.
- **3** We have the following definitions of operations of multiplication and addition on those numbers:

$$[(m_1, n_1)] + [(m_2, n_2)] = [(m_1n_2 + n_1m_2, n_1n_2)]$$

$$[(m_1, n_1)] \cdot [(m_2, n_2)] = [(m_1 m_2 m n_1 n_2)]$$

Show that they comply with all basic laws in the arithmetic of natural numbers; moreover, that the division by a rational number other than 0, i.e., other than [(m, n)], where m = 0, can always be defined in the domain of such defined rational numbers.

NOTE on Cantor's Theory of Real Numbers

Let X be the set of all sequences with rational terms satisfying Cauchy's condition of convergence. Thus, a sequence $\{a_n\}_{n \in N}$ is in X iff the following condition is satisfied: for every rational number $\varepsilon > 0$ there is natural number n_0 such that for every natural number n and for every natural number k the condition $n > n_0$ implies $|a_n - a_{n+k}| < \varepsilon$. Let \sim be an equivalence relation on X defined as:

 ${a_n}_{n \in N} \sim {b_n}_{n \in N}$ iff $\lim_{n \to \infty} (a_n - b_n) = 0.$

The real numbers are defined its the equivalence classes .

POSETS and LATTICES

QUESTION 7 Prove the following

- **Theorem 1** In any poset (A, \preceq) , if a greatest and a least elements exist, then they are unique.
- QUESTION 8 Prove the following
- **Theorem 2** If (A, \preceq) is a finite poset (i.e. A is a finite set), then a unique maximal (if exists) is the largest element and a unique minimal (if exists) is the least element. item[Theorem 3] In any poset, the largest element is a unique maximal element and the least element is the unique minimal element.
- **QUESTION 9** Show that it is possible to to order an infinite set A in such a way that the poset (A, \preceq) has a unique maximal element (minimal element) and no largest element (least element).
- **QUESTION 10** Show examples of a set $B \subseteq A$ of a poset (A, \preceq) such that it can have none, finite or infinite number of lower or upper bounds, depending of ordering.
- **QUESTION 11** Prove the following theorem:
- **Theorem 4** If (A, \cup, \cap) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.
- **QUESTION 12** Show that if (A, \cup, \cap) is an infinite lattice (i.e. the set A is infinite), then 1 or 0 might or might not exist.