
CSE541 EXERCISE 01

EQUIVALENCE RELATIONS

QUESTION 1 Given a set A 6= ∅ and two relations defined in A, i.e. R1, R2 ⊆ A×A.

Determine whether the following relations are, or are not equivalence relations: R1∩R2, R1∪R2,¬R1 =⊆
A×A−R1.

In case when a given relation is an equivalence find its equivalence classes.

QUESTION 2 Given an indexed family of EQUIVALENCE Relations {Rt}t∈T defined in a set A 6= ∅.
Determine whether

1.
⋂

t∈T Rt is an equivalence relation,

2.
⋃

t∈T Rt is an equivalence relation, and if it is not, give a counter-example.

QUESTION 3] Given sets X, Y 6= ∅ and a function f : X −→ Y . We define a relation ∼f on X as follows:
for any x, y ∈ X

x∼fy iff f(x) = f(y).

Prove that ∼f is an equivalence. Describe the equivalence classes. Formulate the conditions for ∼f to
be identity.

QUESTION 3

1. Prove the following

Theorem 1 For any A 6= ∅, and any equivalence relation ≈ on A, the family A/ ≈ of sets is a partition
of A, i.e.

(i) ∀ [a] ∈ A/ ≈ ([a] 6= ∅)
i.e. all equivalence classes are non-empty.

(ii) ∀ [a] 6= [b] ∈ A/ ≈ ([a] ∩ [b] = ∅)
i.e. all equivalence classes are disjoint.

(iii)
⋃

A/ ≈= A
i.e sum of all equivalence classes (sets from A/ ≈) is the set A.

2. Prove the following ”inverse” theorem to the Theorem 1.

Theorem 2 For any A 6= ∅ and any partition P ⊆ P(A) of A, there is an equivalence relation on A such
that its equivalence classes are exactly the sets of the partition P.

3.

Sets R(a) Observe that we can consider, for ANY relation R on A sets that ”look” like equivalence
classes i.e. are defined as follows:

R(a) = {b ∈ A; aRb} = {b ∈ A; (a, b) ∈ R}.

Fact 1 R is an equivalence on A iff the family {R(a)}a∈A is a partition of A.

1



QUESTION 4 Given a family F of the following intervals of real numbers R,

F = {[a, a + 1) : a ∈ Z}.

Define an equivalence relation ∼ on R such that its equivalence classes are exactly the sets of F . Prove
that such equivalence exists.

CONSTRUCTION OF INTEGERS and RATIONAL NUMBERS

QUESTION 5 Consider the following relation ≈ defined on the set N ×N , where N is the set on natural
numbers.

(m1, n1) ≈ (m2, n2) iff m1 + n2 = m2 + n1.

1. Prove that it is an equivalence and find equivalence classes.

2. Describe how the equivalence classes define positive and negative integers.

3 We have the following definitions of operations of multiplication and addition on those numbers:

[(m1, n1)] + [(m2, n2)] = [(m1 + m2, n1 + n2)]

[(m1, n1)] · [(m2, n2] = [(m1m2 + n1 + n2, m1n2 + n1m2)]

Show that they comply with all basic laws in the arithmetic of natural numbers; moreover, that the
substraction can always be defined in the domain of such defined integers.

QUESTION 6 Consider the following relation ≈ defined on the set Z × Z − {0}, where N is the set on
natural numbers.

(m1, n1) ≈ (m2, n2) iff m1n2 = m2n1.

1. Prove that it is an equivalence and find equivalence classes.

2. Describe how the equivalence classes define rational numbers.

3 We have the following definitions of operations of multiplication and addition on those numbers:

[(m1, n1)] + [(m2, n2)] = [(m1n2 + n1m2, n1n2)]

[(m1, n1)] · [(m2, n2)] = [(m1m2mn1n2)]

Show that they comply with all basic laws in the arithmetic of natural numbers; moreover, that the
division by a rational number other then 0, i.e., other then [(m,n)], where m = 0, can always be defined
in the domain of such defined rational numbers.

NOTE on Cantor’s Theory of Real Numbers

Let X be the set of all sequences with rational terms satisfying Cauchy’s condition of convergence.
Thus, a sequence {an}n∈N is in X iff the following condition is satisfied:
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for every rational number ε > 0 there is natural number n0 such that for every natural number n and
for every natural number k the condition n > n0 implies |an − an+k| < ε.
Let ∼ be an equivalence relation on X defined as:

{an}n∈N ∼ {bn}n∈N iff limn→∞(an − bn) = 0.

The real numbers are defined its the equivalence classes .

POSETS and LATTICES

QUESTION 7 Prove the following

Theorem 1 In any poset (A,¹), if a greatest and a least elements exist, then they are unique.

QUESTION 8 Prove the following

Theorem 2 If (A,¹) is a finite poset (i.e. A is a finite set), then a unique maximal (if exists) is the
largest element and a unique minimal (if exists) is the least element. item[Theorem 3] In any poset,
the largest element is a unique maximal element and the least element is the unique minimal element.

QUESTION 9 Show that it is possible to to order an infinite set A in such a way that the poset (A,¹)
has a unique maximal element (minimal element) and no largest element (least element).

QUESTION 10 Show examples of a set B ⊆ A of a poset (A,¹) such that it can have none, finite or
infinite number of lower or upper bounds, depending of ordering.

QUESTION 11 Prove the following theorem:

Theorem 4 If (A,∪,∩) is a finite lattice (i.e. A is a finite set), then 1 and 0 always exist.

QUESTION 12 Show that if (A,∪,∩) is an infinite lattice (i.e. the set A is infinite ), then 1 or 0 might
or might not exist.
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