
1 Completeness Theorem for First Order Logic

There are many proofs of the Completeness Theorem for First Order Logic. We
follow here a version of Henkin’s proof, as presented in the Handbook of Mathe-
matical Logic. It contains a method for reducing certain problems of first-order
logic back to problems about propositional logic. We give independent proof of
Compactness Theorem for propositional logic. The Compactness Theorem for
first-order logic and Löwenheim-Skolem Theorems and the Gödel Completeness
Theorem fall out of the Henkin method.

1.1 Compactness Theorem for Propositional Logic

Let L = L(P,F,C) be a first order language with equality. We assume that
the sets P, F, C are infinitely enumerable. We define a propositional logic
within it as follows.

Prime formulas We consider a subset P of the set F of all formulas of L.
Intuitively these are formulas of L which are not direct propositional com-
bination of simpler formulas, that is, atomic formulas (AF) and formulas
beginning with quantifiers.

Formally, we have that

P = {A ∈ F : A ∈ AF or A = ∀xB, A = ∃xB for B ∈ F}.

Example 1.1 The following are primitive formulas.

R(t1, t2), ∀x(A(x) ⇒ ¬A(x)), (c = c), ∃x(Q(x, y) ∩ ∀yA(y)).

The following are not primitive formulas.

(R(t1, t2) ⇒ (c = c)), (R(t1, t2) ∪ ∀x(A(x) ⇒ ¬A(x)).

Given a set P of primitive formulas we define in a standard way the set PF of
propositional formulas as follows.

Propositional formulas The smallest set PF ⊂ F such that

1. P ⊂ PF
2. If A,B ∈ PF , then (A ⇒ B), (A ∪B), (A ∩B), and ¬A ∈ PF

is called a set of propositional formulas of the first order language L.

We define propositional semantics for propositional formulas in PF as follows.
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Truth assignment Let P be a set of prime formulas and {T, F} be a two
element set, thought as the set of logical values ”true” and ”false”. Any
function

v : P −→ {T, F}
is called truth assignment (or variable assignment).

Let B = ({T, F},⇒,∪,∩,¬) be a two-element Boolean algebra and PF =
(PF ,⇒,∪,∩,¬) a similar algebra of propositional formulas.

We extend v to a homomorphism

v∗ : PF −→ B

in a usual way, i.e. we put v∗(A) = v(A) for A ∈ P , and for any A,B ∈ PF ,

v∗(A ⇒ B) = v∗(A) ⇒ v∗(B),

v∗(A ∪B) = v∗(A) ∪ v∗(B),

v∗(A ∩B) = v∗(A) ∩ v∗(B),

v∗(¬A) = ¬v∗(A).

Propositional Model A truth assignment v is called a propositional model
for a formula A ∈ PF iff v∗(A) = T .

Propositional Tautology A formula A ∈ PF is a propositional tautology if
v∗(A) = T for all v : P −→ {T, F}.

For the sake of simplicity we will often say model, tautology instead propositional
model, propositional tautology.

Model for the Set Given a set S of propositional formulas. We say that v
is a model for the set S if v is a model for all formulas A ∈ S.

Consistent Set A set S of propositional formulas is consistent (in a sense
of propositional logic) if it has a (propositional) model.

Theorem 1.1 (Compactness Theorem for Propositional Logic) A set S
of propositional formulas is consistent if and only if every finite subset of S is
consistent.

proof If S is a consistent set, then its model is also a model for all its finite
subsets and all its finite subsets are consistent.

We prove the nontrivial half of the Compactness Theorem in a slightly modified
form. To do so, we introduce the following definition.
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Finitely Consistent Set (FC) Any set S such that all its subsets are con-
sistent is called finitely consistent.

We use this definition to re-write the Compactness Theorem as: A set S of
propositional formulas is consistent if and only it is finitely consistent. The
nontrivial half of it is:

Every finitely consistent set of propositional formulas is consistent.

The proof of the nontrivial half of the Compactness Theorem, as stated above,
consistes of the following four steps.

Step 1 We introduce the notion of a maximal finitely consistent set.

Step 2 We show that every maximal finitely consistent set is consistent by
constructing its model.

Step 3 We show that every finitely consistent set S can be extended to a
maximal finitely consistent set S∗. I.e we show that for every finitely consistent
set S there is a set S∗, such that S ⊂ S∗ and S∗ is maximal finitely consistent.

Step 4 We use steps 2 and 3 to justify the following reasoning. Given a
finitely consistent set S. We extend it, via construction defined in the step 2 to
a maximal finitely consistent set S∗. By the step 2, S∗ is consistent and hence
so is the set S, what ends the proof.

Step 1: Maximal Finitely Consistent Set We call S maximal finitely con-
sistent if S is finitely consistenst and for every formula A, either A ∈ S.

We use notation MFC for maximal finitely consistent set, and FC for the finitely
consistent set.

Step 2: Any MFC set is consistent Given a MFC set S∗, we prove its
consistency by constructing a truth assignment v : P −→ {T, F} such
that for all A ∈ S∗, v∗(A) = T .

Observe that the MFC sets have the following property.

MCF Property For any MFC set S∗, for every A ∈ PF , exactly one of the
formulas A¬A belongs to S∗.

In particular, for any P ∈ PF , we have that exactly one of P,¬P ∈ S∗. This
justify the correctness of the following definition.

Let v : P −→ {T, F} be a mapping such that
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v(P ) =
{

T if P ∈ S∗

F if P 6∈ S∗

We extend v to v∗ : PF −→ B in a usual way. In order to prove that v is a
model for S∗ we have to show that for any A ∈ PF ,

v∗(A) =
{

T if A ∈ S∗

F if A 6∈ S∗

We prove it by induction on the degree of the formula A. The base case of
A ∈ P follows immediately from the definition of v.

Case A = ¬C Assume that A ∈ S∗. This means ¬C ∈ S∗ and by MCF
Property we have that C 6∈ S∗. So by the inductive assumption v∗(C) =
F and v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T.

Assume now that A 6∈ S∗. By MCF Property we have that C ∈ S∗. By
the inductive assumption v∗(C) = T and v∗(A) = v∗(¬C) = ¬v∗(T ) =
¬T = F.

This proves that for any formula A,

v∗(¬A) =
{

T if ¬A ∈ S∗

F if ¬A 6∈ S∗

Case A = (B ∪ C) Let (B ∪ C) ∈ S∗. It is enough to prove that in this
case B ∈ S∗ and C ∈ S∗, because then from the inductive assumption
v∗(C) = v∗(D) = T and v∗(B ∪ C) = v∗(B) ∪ v∗(C) = T ∪ T = T .

Assume that (B∪C) ∈ S∗, B 6∈ S∗ and C 6∈ S∗. Then by MCF Property
we have that ¬B ∈ S∗, ¬C ∈ S∗ and consequently the set

{(B ∪ C),¬B,¬C}

is a finite inconsistent subset of S∗, what contradicts the fact that S∗ is
finitely consistent.

Assume now that (B ∪ C) 6∈ S∗. By MCF Property, ¬(B ∪ C) ∈ S∗

and by the A = ¬C we have that v∗(¬(B ∪C)) = T . But v∗(¬(B ∪C)) =
¬v∗((B ∪ C)) = T means that v∗((B ∪ C)) = F , what end the proof of
this case.

The remaining cases of A = (B∩C), A = (B ⇒ C) are similar to the above and
are left to the reader as an exercise.
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Step 3: Maximal finitely consistent extention Given a finitely consis-
tent set S, we construct its maximal finitely consistent extension S∗ as
follows.

The set of all formulas of L is countable, so is PF . We assume that all propo-
sitional formulas form a one-to-one sequence

A1, A2, ...., An, ..... (1)

We define a chain
S0 ⊂ S1 ⊂ S2.... ⊂ Sn ⊂ .... (2)

of extentions of the set S by

S0 = S;

Sn+1 =
{

Sn ∪ {An} if Sn ∪ {An} is finitely consistent
Sn ∪ {¬An} otherwise.

We take

S∗ =
⋃

n∈N
Sn. (3)

Clearly, S ⊂ S∗ and for every A, either A ∈ S∗ or ¬A ∈ S∗. To finish the proof
that S∗ is MCF we have to show that it is finitely consistent.

First, let observe that if all sets Sn are finitely consistent, so is S∗ =
⋃

n∈N Sn.
Namely, let SF = {B1, ..., Bk} be a finite subset of S∗. This means that there
are sets Si1 , ...Sik

in the chain ( 2) such that Bm ∈ Sim , m = 1, ..k. Let
M = max(i1, ...ik). Obviously SF ⊂ SM and SM is finitely consistent as an
element of the chain ( 2). This proves the if all sets Sn are finitely consistent,
so is S∗.

Now we have to prove only that all Sn in the chain ( 2) are finitely consistent.
We carry the proof by induction over the length of the chain. S0 = S , so it is
FC by assumption of the Compactness Theorem. Assume now that Sn is FC,
we prove that so is Sn+1. We have two cases to consider.

Case 1 Sn+1 = Sn ∪ {An}, then Sn+1 is FC by the definition of the chain
( 2).
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Case 2 Sn+1 = Sn∪{¬An}. Observe that this can happen only if Sn∪{An}
is not FC, i.e. there is a finite subset S

′
n ⊂ Sn, such that S

′
n ∪{An} is not

consistent.

Suppose now that Sn+1 is not FC. This means that there is a finite subset
S
′′
n ⊂ Sn, such that S

′′
n ∪ {¬An} is not consistent.

Take S
′
n ∪ S

′′
n . It is a finite subset of Sn so is consistent by the inductive

assumption. Let v be a model of S
′
n ∪ S

′′
n . Then one of v∗(A), v∗(¬A)

must be T. This contradicts the inconsistency of both S
′
n ∪ {An} and

S
′
n ∪ {¬An}.

Thus, in ether case, Sn+1, is after all consistent. This ends the proof of the Step
3 and of the Compactness Theorem via the argument presented in the Step 4.

1.2 Reduction of first-order logic to propositional logic

Propositional tautologies as defined in the previous section barely scratch the
surface of the collection of first -order tautologies, or first order valid formulas,
as they are often called. For example the following first-order formulas are
propositional tautologies,

(∃xA(x) ∪ ¬∃xA(x)),

(∀xA(x) ∪ ¬∀xA(x)),

(¬(∃xA(x) ∪ ∀xA(x)) ⇒ (¬∃xA(x) ∩ ¬∀xA(x))),

but the following are first order tautologies (valid formulas) that are not propo-
sitional tautologies:

∀x(A(x) ∪ ¬A(x)),

(¬∀xA(x) ⇒ ∃x¬A(x)).

The first formula above is just a prime formula, the second is of the form (¬B ⇒
C), for B and C prime.

To stress the difference between the propositional and first order tautologies
some books reserve the word tautology for the propositional tautologies alone,
using the notion of valid formula for the first order tautologies. We use here
both notions, with the preference to first-order tautology or tautology for short
when there is no room for misunderstanding.

To make sure that there is no misunderstandings we remind the following defi-
nitions.
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Given a first order language L with the set of variables V AR and the set of
formulas F . Let M = [M, I] be a structure for the language L, with the
universe M and the interpretation I and let s : V AR −→ M be a valuation of
L in M .

A is true in M Given a structure M = [M, I], we say that a formula A is
true in M if there is a valuation s : V AR −→ M such that

(M, s) |= A.

A is valid in M Given a structure M = [M, I], we say that a formula A is
valid in M if

(M, s) |= A

for all valuations s : V AR −→ M .

Model M If A is valid in a structure M = [M, I], then M is called a model
of A.

A is valid A formula A called is valid if it is valid in all structures M =
[M, I], i.e. if all structures are models of A.

A is a first-order tautology A valid formula A is also called a first-order
tautology, or tautology, for short.

Case: A is a sentence If A is a sentence, then the truth or falsity of
(M, s) |= A is completely independent of s. Thus we write

M |= A

and read M is a model of A, if for some (hence every) valuation s,
(M, s) |= A.

Model of a set of sentences M is a model of a set S of sentences ifM |= A
for all A ∈ S. We write it

M |= S.

7


