
CHAPTER 13

Gentzen Style Proof System for Classical
Predicate Logic - The System QRS

Part Two

1 Completeness Theorem for QRS

Given a first order language L with the set of variables V AR and the set of
formulas F . We have defined a notion of a model and counter- model of a
formula A of L as follows.

Definition 1.1 (Model) A structure M = [M, I] is called a model of A ∈ F
if and only if

(M, v) |= A

for all valuations v : V AR −→ M .

M is called a universe of the model, I the interpretation.

Definition 1.2 (Counter - Model) A structureM = [M, I] is called a counter-
model of A ∈ F if and only if there is a valuation v : V AR −→ M , such that

(M, v) 6|= A.

The definition of the first order logic tautology is the following.

Definition 1.3 (Tautology) For any A ∈ F , A is called a tautology and de-
noted by |= A, if and only if all structures M = [M, I] ate models of A, i.e.

|= A if and only if (M, v) |= A

for all structures M = [M, I] and all valuations v : V AR −→ M .

Directly from the above definition we get the following, simple fact.
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Fact 1.1 (Not Tautology) For any A ∈ F , A is not a tautology (6|= A) if and
only if there is a counter - model M = [M, I] of A, i.e. we can define M, I, and
v such that ([M, I], v) 6|= A.

As our proof system is fixed, we will continue to use the notation ` A (` Γ) to
denote that a formula A ( a sequence Γ ) has a proof in QRS.

Our goal now is to prove the Completeness Theorem for QRS. We do it, as in
the propositional case, in two steps. First, we will prove the Soundness Lem-
mma:

Lemma 1.1 (Soundness Lemmma for QRS) For any Γ ∈ F∗,

if ` Γ then |= Γ,

and in particular, for any A ∈ F ,

if ` A then |= A.

The proof is by step by step verification, similar to the propositional case and
is left as an exercise. To complete the proof of the following

Theorem 1.1 (Completeness Theorem for QRS) For any Γ ∈ F∗,

` Γ if and only if |= Γ,

and in particular, for any A ∈ F ,

` A if and only if |= A.

we have to prove the inverse implication to the Soundness Lemmma. We prove
the formula case only and show that the case of sequences can be reduced to
the formula case. I.e. we prove that the implication: If |= A then ` A is
true. We do it, as in the propositional case, by proving the opposite implication
to it, instead. I. e. we prove that the implication:

If 6` A then 6|= A

is true. This means that we prove that for any formula A, if we know that
from the fact that A does not have a proof in QRS (6` A ), we will be able to
define its counter- model. The counter- model is defined, as in the propositional
case, via the proof search (decomposition) tree. As we know, each formula A,
generates its unique decomposition tree TA and A has a proof only if this tree
is finite and all its end sequences (leaves) are axioms. It means that if 6` A
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then we have two cases to consider: tree TA contains a leaf which is not axiom
or is infinite. We will show how in both cases to construct a counter- model for
A, determined by the infinite branch or non-axiom leaf of the decomposition
tree TA. Before describing a general method of constructing the counter-models
determined by the decomposition tree let’s look at some examples. Example
1

Let’s consider a particular case of the formula

(∃xA(x) ⇒ ∀xA(x)),

i.e. let A be a formula

(∃x(P (x) ∩R(x, y)) ⇒ ∀x(P (x) ∩R(x, y)))

for P , R one and two argument predicate symbols, respectively. The decom-
position tree TA is the following:

(∃x(P (x) ∩R(x, y)) ⇒ ∀x(P (x) ∩R(x, y)))

| (⇒)

¬∃x(P (x) ∩R(x, y)),∀x(P (x) ∩R(x, y))

| (¬∃)
∀x¬(P (x) ∩R(x, y)),∀x(P (x) ∩R(x, y))

| (∀)
¬(P (x1) ∩R(x1, y)), ∀x(P (x) ∩R(x, y))

where x1 is a first free variable in ?? such that x1 does not appear in

∀x¬(P (x) ∩ R(x, y)), ∀x(P (x) ∩ R(x, y))

| (¬∩)

¬P (x1),¬R(x1, y),∀x(P (x) ∩R(x, y))

| (∀)
¬P (x1),¬R(x1, y), (P (x2) ∩R(x2, y))

where x2 is a first free variable in the sequence ?? such that x2 does not appear in

¬P (x1),¬R(x1, y), ∀x(P (x) ∩ R(x, y)), the sequence ?? is one-to- one, hence x1 6= x2

∧
(∩)

¬P (x1),¬R(x1, y), P (x2)

x1 6= x2, Non-axiom

¬P (x1),¬R(x1, y), R(x2, y)

x1 6= x2, Non-axiom
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There are two non-axiom leaves, to define a counter- model for A we need to
chose only one of them, for example, let’s choose

¬P (x1),¬R(x1, y), P (x2).

We define a counter - model for A, i.e. a structure M = [M, I] and a valuation
v, such that (M, v) 6|= A as follows.

1. M = T , i.e. the universe is the set of all terms of our language.

2. We define the relations PI and RI in the set of all terms T as follows: for
any term t ∈ T ,

PI(t) HOLDS iff the negation ¬P (t) of the formula P (t) appears on the non-
axiom leaf, and PI(t) DOES NOT HOLD otherwise.

RI is defined similarly: for any terms t, s ∈ T ,

RI(t, s) HOLDS iff the negation ¬R(t, s) of the formula R(t, s) appears on the
non-axiom leaf, and RI(t, s) DOES NOT HOLD otherwise.

It is easy to see that in particular case of our non-axiom leaf: PI(x1) holds,
R(x1, y) holds for any variable y, and P (x2) does not hold.

3. We define the valuation v : V AR −→ T as IDENTITY, i.e., we put v(x) = x
for any x ∈ V AR.

Obviously, for such defined structure [M, I] and valuation v we have that ([M, I], v) |=
P (x1), ([M, I], v) |= R(x1, y), and ([M, I], v) 6|= P (x2) and hence we obtain that

([M, I], v) 6|= ¬P (x1),¬R(x1, y), P (x2).

This proves that such defined structure [M, I] is a counter model for a non-
axiom leaf, and hence, by the fact that if one premiss of a rule of inference is
false, so is the conclusion, it is a counter-model for all sequences on the branch
which ends with this leaf, and hence in particular, it is a counter - model for A.

The case of the infinite tree is similar, even if a little bit more complicated.
Observe first that the rule (∃) is the the only rule of inference (decomposition)
which can ”produce” an infinite branch. We first show how to construct the
counter-model in the case of the simplest application of this rule, i.e. in the case
of the formula

∃xA(x)

where A is an one argument relational symbol. All other cases are similar
to this one. The infinite branch Bin this case consists elements of the whole
decomposition tree:

∃xA(x)
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| (∃)
A(t1), ∃xA(x)

where t1 is the first term in the sequence ??, such that A(t1) does not appear on the tree above

A(t1), ∃xA(x)

| (∃)

A(t1), A(t2), ∃xA(x)

where t2 is the first term in the sequence ??, such that A(t2) does not appear on the tree above

A(t1), A(t2), ∃xA(x), i.e. t2 6= t1

| (∃)

A(t1), A(t2), A(t3),∃xA(x)

where t3 is the first term in the sequence ??, such that A(t3) does not appear on the tree above

A(t1), A(t2), A(t3), ∃xA(x), i.e. t3 6= t2 6= t1

| (∃)

A(t1), A(t2), A(t3), A(t4), ∃xA(x)

| (∃)
.....

| (∃)
.....

i.e.
B = {∃xA(x), A(t1), A(t2), A(t2), A(t4), .....}

where t1, t2, .... is a one - to one sequence of all elements of the set of terms T .

This means that the infinite branch B contains with the formula ∃xA(x) all its
instances A(t), for all terms t ∈ T .

We define the structure [M, I] and valuation v in a similar way as in the previous
example, i.e. we take as the universe M the set of all terms T , we define AI as
follows: AI(t) HOLDS if ¬A(t) ∈ B and AI(t) DOES NOT HOLDS if A(t) ∈ B.
We take, as before, the identity function, as the valuation, v(x) = x for any
x ∈ V AR and define the interpretation I for functional symbols as follows. For
any constant c, we put cI = c, for any variable x, xI = v(x) = x, and for any
n-argument functional symbol f , we have still to define fI : Tn −→ T . Observe
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that by definition, the function fI has to assign a certain term to a sequence of
terms t1, t2, ...., tn and the interpretation I says how we do it. Let’s define:

fI(t1, t2, ...., tn) = f(t1, t2, ...., tn).

It is easy to see that for any formula A(t) ∈ B,

([T, I], v) 6|= A(t).

But the A(t) ∈ B are all instances ∃xA(x), hence

([T, I], v) 6|= ∃xA(x).

HOMEWORK

1. Give an example of 4 formulas with finite or infinite proof search trees
(decomposition trees). 2. Construct counter-models for the formulas in 1. Do
it in two ways: find your own structure, follow the above examples, i.e. give a
counter-model determined by the proof search tree.

2. Write the proof of completeness theorem for QRS. I.e. Follow the above
examples to show the implication:

If 6` A then 6|= A

for ANY formula A.
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