
CHAPTER 13

Gentzen Style Proof System for Classical
Predicate Logic - The System QRS

Part One

1 System QRS Definition

Let F denote a set of formulas of a Predicate (first Order) Logic Language

L(P,F,C) = L{∩,∪,⇒,¬}(P,F,C)

for P, F, C countably infinite sets of predicate, functional, and constant symbols
respectively.

The rules of inference of our system QRS will operate, as in the propositional
case, on finite sequences of formulas, i.e. elements of F∗, instead of just plain
formulas F , as in Hilbert style formalizations. We will denote the sequences of
formulas by Γ,∆, Σ, with indices if necessary.

that the truth assignment v makes it true if and only if it makes the formula of
the form of thetrue.

The intuitive meaning of a sequence Γ ∈ F∗ is that it represents a disjunction
of all formulas of Γ, i.e. if Γ is a sequence

A1, A2, ..., An

then by δΓ we will understand the disjunction of all formulas of Γ.

As we know, the disjunction in classical logic is commutative, i.e., for any for-
mulas A,B, C, A∪(B∪C) ≡ (A∪B)∪C, we w will denote any of those formulas
by A ∪B ∪ C = δ{A,B,C}. Similarly, we will write δΓ = A1 ∪A2 ∪ ...,∪An.

The sequence Γ is said to be satisfiable (falsifiable) if the formula δΓ = A1 ∪
A2 ∪ ...,∪An is satisfiable (falsifiable).

The sequence Γ is said to be a tautology if the formula δΓ = A1 ∪A2 ∪ ...,∪An

is a tautology.

The system QRS consists of one axiom and eleven rules of inference. They
form two groups. First is similar to the propositional case and called propo-
sitional connectives group. Each rule of this group introduces a new logical

1

connective or its negation, so we will name them, as in the propositional case:
(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬). The second group deals with the
quantifiers. It consists of four rules. Two of them introduce the universal and
existential quantifiers, and are named (∀) and (∃), respectively. The two others
correspond to the De Morgan Laws and deal with the negation of the universal
and existential quantifiers, and ere named (¬∀) and (¬∃), respectively.

As the axiom we adopt, as in propositional case, any sequence which contains
any formula and its negation, i.e any sequence of the form

Γ1, A, Γ2,¬A, Γ3

or of the form
Γ1,¬A, Γ2, A, Γ3,

for any formula A ∈ F and any sequences of formulas Γ1,Γ2, Γ3 ∈ F∗.
We will denote the axioms by

AX ∗.

The proof system

QRS = (F∗,AX ∗, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬), (¬∀), (¬∃), (∀), (∃))

will be called a Gentzen- style formalization of classical predicate calculus.

In order to define the rules of inference of QRS we need to introduce some def-
initions. They are straightforward modification of the corresponding definitions
for the propositional logic.

We will form now, as in the propositional case, a special subset LIT ⊆ F of
formulas, called a set of all literals, which is defined now as follows.

LIT = {A ∈ F : A ∈ AF} ∪ {¬A ∈ F : A ∈ AF},

where AF ⊆ F is the set of all atomic (elementary) formulas of the first order
language, i.e. AF = {P (t1,, tn) : P ∈ P is any n-argument predicate
symbol, and ti ∈ T are terms }.
The elements of the first set of the above union are called positive literals and
the elements of the second set of the above union are called negative literals. I.e
atomic (elementary) formulas are called positive literals and the negation of an
atomic (elementary) formula is called a negative literal.

Indecomposable formulas

2

Literals are also called the indecomposable formulas.

Now we form finite sequences out of formulas (and, as a special case, out of
literals). We need to distinguish the sequences formed out of literals from the
sequences formed out of other formulas, so we adopt exactly the same notation
as in the propositional case. We will denote by Γ

′
, ∆

′
, Σ

′
finite sequences

(empty included) formed out of literals i.e. out of the elements of LIT i.e. we
assume that Γ

′
, ∆

′
, Σ

′ ∈ LIT ∗.
We will denote by Γ, ∆, Σ the elements of F∗ i.e the finite sequences (empty
included) formed out of elements of F .

We define the inference rules of QRS as follows.

Group 1: Propositional Inference rules

Disjunction rules

(∪)
Γ
′
, A,B, ∆

Γ′ , (A ∪B), ∆
, (¬∪)

Γ
′
,¬A,∆ : Γ

′
,¬B, ∆

Γ′ ,¬(A ∪B), ∆

Conjunction rules

(∩)
Γ
′
, A, ∆ ; Γ

′
, B, ∆

Γ′ , (A ∩B), ∆
, (¬∩)

Γ
′
,¬A,¬B, ∆

Γ′ ,¬(A ∩B),∆

Implication rules

(⇒)
Γ
′
,¬A,B, ∆

Γ′ , (A ⇒ B), ∆
, (¬ ⇒)

Γ
′
, A, ∆ : Γ

′
,¬B, ∆

Γ′ ,¬(A ⇒ B), ∆

Negation rule

(¬¬)
Γ
′
, A, ∆

Γ′ ,¬¬A,∆

where Γ
′ ∈ F∗, ∆ ∈ F ′∗, A, B ∈ F .

Group 2: Quantifiers Rules

3

(∃)
Γ
′
, A(t), ∆, ∃xA(x)
Γ′ , ∃xA(x), ∆

where t is an arbitrary term.

(∀)
Γ
′
, A(y),∆

Γ′ , ∀xA(x), ∆

where y is a free individual variable which
does not appear in any formula in the con-
clusion, i.e. in the sequence Γ

′
, ∀xA(x), ∆.

(¬∀)
Γ
′
, ∃x¬A(x), ∆

Γ′ ,¬∀xA(x), ∆

(¬∃)
Γ
′
, ∀x¬A(x), ∆

Γ′ ,¬∃xA(x), ∆

Γ
′ ∈ LIT ∗, ∆ ∈ F∗, A, B ∈ F .

Note that A(t), A(y) denotes a formula obtained from A(x) by writing t, y,
respectively, in place of all occurrences of x in A. The variable y in (∀) is called
the eigenvariable. The condition: where y is a free individual variable which
does not appear in any formula in the conclusion is called the eigenvariable
condition.

All occurrences of y in A(y) of the rule (∀) are fully indicated.

We define the notion of a formal proof in QRS as in any proof system, i.e., by
a formal proof of a sequence Γ in the proof system

QRS = (F∗,AX ∗, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬), (¬∃), (¬∀),∃), (∀))

we understand any sequence Γ1Γ2....Γn of sequences of formulas (elements of
F∗, such that Γ1 ∈ AX ∗, Γn = Γ, and for all i (1 < i ≤ n) Γi ∈ AX ∗, or Γi is a
conclusion of one of the inference rules of QRS with all its premisses placed in
the sequence Γ1Γ2....Γi−1.

4

As the proof system under consideration is fixed, we will write, as usual,

` Γ

to denote that Γ has a formal proof in QRS.

As the proofs in QRS are sequences (definition of the formal proof) of sequences
of formulas (definition of GQ) we will not use ”,” to separate the steps of the
proof, i.e. will write the sequence the formal proof as a sequence Γ1Γ2....Γn

instead of Γ1, Γ2,, Γn, but usually we will use, as in the propositional case,
the proof trees to represent the formal proofs. The leafs of the proof-tree are
axioms, nodes are sequences such that each sequence on the tree follows from
the ones immediately preceding it by one of the rules. The root is a sequence
(formula). We will picture, and write our proof-trees with the node on the top,
and leafs on the very bottom, instead of more common way, where the leafs are
on the top and root is on the bottom of the tree.

In particular cases, as in the propositional case, we will write our proof- trees
indicating additionally the name of the inference rule used at each step of the
proof. For example, if the proof of a theorem from 3 axioms used subsequently
the rules (∩), (∃), (∀), (∩), (¬∃), (¬¬), and (⇒), we will represent it as the fol-
lowing tree

Sequence(Formula)

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (¬∃)
| (¬∃)

conclusion of (∩)
∧

(∩)

conclusion of (∩)

| (∀)
axiom

conclusion of (∃)

| (∃)
conclusion of (∩)

∧
(∩)

axiom axiom

5

Remark that the derivation trees don’t represent a different definition of a
formal proof. This remains the same in the Gentzen - style systems. Trees
represent a certain visualization for those proofs and any formal proof in any
system can be represented in a tree form. It is easy to define the tree-proofs
precisely, as well as a general transformation procedure between the tree and
the sequence form of the proofs, but we will explain it here on few examples
only.

2 QRS Decomposition Trees

Given a formula A ∈ F , we define its decomposition tree TA in a similar way
as in the propositional case. Observe that the inference rules of QRS can be
divided in two groups: propositional connectives rules and quantifiers rules. The
propositional connectives rules are: (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬).
The quantifiers rules are: (∀), (∃), (¬∀) and (¬∃). We define the decomposition
tree in the case of the propositional rules and the rules (¬∀), (¬∃) in the exactly
the same way as in the propositional case. The case of the rules (∀) and (∃) is
more complicated, as the rules contain the specific conditions under which they
are applicable.

To define the way of decomposing the sequences of the form Γ
′
, ∀xA(x), ∆ or

Γ
′
,∃xA(x), ∆, i.e. to deal with the rules (∀) and (∃) in a way which would

preserve the property of the uniqueness of the decomposition tree, we assume
that all terms form a one-to one sequence

t1, t2,, tn, (1)

Observe, that by the definition, all free variables are terms, hence all free vari-
ables appear in the sequence 1. Let Γ be a sequence on the tree with ∀ as a main
connective, i.e. Γ is of the form Γ

′
, ∀xA(x), ∆. We write a sequence Γ

′
, A(x), ∆

below it on the tree, as its child, where the variable x has to fulfill the following

Condition 2.1 (∀) : x is the first free variable in the sequence 1 such that x
does not appear in any formula in Γ

′
,∀xA(x),∆.

Observe, that the condition 2.1 corresponds to the restriction put on the appli-
cation of the rule (∀).
If the main connective of Γ, i.e. the main connective of the first formula in
Γ which is not an literal, is (∃). In this case Γ is of the form Γ

′
, ∃xA(x), ∆,

we write a sequence Γ
′
, A(t),∆ as its child, where the term t has to fulfill the

following

Condition 2.2 (∃) :

6

t is the first term in the sequence 1 such that the formula A(t) does not appear
in any sequence which is placed above Γ

′
, A(t), ∆ on the tree.

The fact that the sequence 1 is one- to - one and the fact that, by the condi-
tions 2.1 and 2.2, we always chose the first appropriate term (variable) from
this sequence, guarantee that the decomposition process is also unique in the
case of the quantifiers rules (∀) and (∃).
From all above, and we conclude the following.

Theorem 2.1 (Uniqueness) For any formula A ∈ F , its decomposition tree
TA is unique. If TA is finite and all its leaves are axioms, then ` A and TA is
a tree-proof of A in QRS. If TA is finite and contains a non-axiom leaf or is
infinite, then 6` A.

2.1 Examples of Decomposition Trees

In all the examples below, the formulas A(x), B(x) represent any formula. But
there is no indication about their particular components, so they are treated as
indecomposable formulas.

The decomposition tree of the de Morgan Law (¬∀xA(x) ⇒ ∃x¬A(x)) is the
following.

(¬∀xA(x) ⇒ ∃x¬A(x))

| (⇒)

¬¬∀xA(x),∃x¬A(x)

| (¬¬)

∀xA(x),∃x¬A(x)

| (∀)
A(x1),∃x¬A(x)

where x1 is a first free variable in the sequence 1 such that x1 does not appear in

∀xA(x), ∃x¬A(x)

| (∃)
A(x1),¬A(x1), ∃x¬A(x)

where x1 is the first term (variables are terms) in the sequence 1 such that ¬A(x1) does not

appear on a tree above A(x1),¬A(x1), ∃x¬A(x)

Axiom

7

The above tree ended with an axiom, so it represents a proof of (¬∀xA(x) ⇒
∃x¬A(x)) in QRS, i.e.

`(¬∀xA(x) ⇒ ∃x¬A(x))

The decomposition tree of (∀xA(x) ⇒ ∃xA(x)) is the following.

(∀xA(x) ⇒ ∃xA(x))

| (⇒)

¬∀xA(x),∃xA(x)

| (¬∀)
¬∀xA(x),∃xA(x)

∃x¬A(x),∃xA(x)

| (∃)
¬A(t1), ∃xA(x), ∃x¬A(x)

where t1 is the first term in the sequence 1, such that ¬A(t1) does not appear on the tree above

¬A(t1), ∃xA(x), ∃x¬A(x)

| (∃)

¬A(t1), A(t1), ∃x¬A(x), ∃xA(x)

where t1 is the first term in the sequence 1, such that A(t1) does not appear on the tree above

¬A(t1), A(t1), ∃x¬A(x), ∃xA(x)

Axiom

The above tree also ended with the axiom, hence

` (∀xA(x) ⇒ ∃xA(x))

The decomposition tree of (∃xA(x) ⇒ ∀xA(x)) is the following.

8

(∃xA(x) ⇒ ∀xA(x))

| (⇒)

¬∃xA(x),∀xA(x)

| (¬∃)
∀x¬A(x),∀xA(x)

| (∀)
¬A(x1),∀xA(x)

where x1 is a first free variable in 1 such that x1 does not appear in ∀x¬A(x), ∀xA(x)

| (∀)

¬A(x1), A(x2)

where x2 is a first free variable in 1 such that x2 does not appear in ¬A(x1), ∀xA(x), the

sequence 1 is one-to- one, hence x1 6= x2

Non - axiom

The decomposition tree, for any formula A is unique, so we conclude from the
fact that the above tree has a non-axiom branch that

6 `(∃xA(x) ⇒ ∀xA(x)).

The decomposition tree of ∃xA(x) is the following.

∃xA(x)

| (∃)
A(t1), ∃xA(x)

where t1 is the first term in the sequence 1, such that A(t1) does not appear on the tree above

A(t1), ∃xA(x)

| (∃)

A(t1), A(t2), ∃xA(x)

9

where t2 is the first term in the sequence 1, such that A(t2) does not appear on the tree above

A(t1), A(t2), ∃xA(x), i.e. t2 6= t1

| (∃)

A(t1), A(t2), A(t3),∃xA(x)

where t3 is the first term in the sequence 1, such that A(t3) does not appear on the tree above

A(t1), A(t2), A(t3), ∃xA(x), i.e. t3 6= t2 6= t1

| (∃)

A(t1), A(t2), A(t3), A(t4), ∃xA(x)

| (∃)
.....

| (∃)
.....

Obviously, the above decomposition tree is infinite, what proves that

6 `∃xA(x).

We will find now the proof of the distributivity law (∃x(A(x)∩B(x)) ⇒ (∃xA(x)∩
∃xB(x))) and show that we can’t prove in QRS the inverse implication ((∃xA(x)∩
∃xB(x)) ⇒ ∃x(A(x) ∩ B(x))). The decomposition tree of the first formula is
the following.

(∃x(A(x) ∩B(x)) ⇒ (∃xA(x) ∩ ∃xB(x)))

| (⇒)

¬∃x(A(x) ∩B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∃)
∀x¬(A(x) ∩B(x)), (∃xA(x) ∩ ∃xB(x))

| (∀)
¬(A(x1) ∩B(x1)), (∃xA(x) ∩ ∃xB(x))

10

where x1 is a first free variable in the sequence 1 such that x1 does not appear in

∀x¬(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∩)

¬A(x1),¬B(x1), (∃xA(x) ∩ ∃xB(x))
∧

(∩)

¬A(x1),¬B(x1), ∃xA(x)

| (∃)
¬A(x1),¬B(x1), A(t1),∃xA(x)

where t1 is the first term in the sequence 1, such

that A(t1) does not appear on the tree above

¬A(x1),¬B(x1), A(t1), ∃xA(x) Observe, that it

is possible that t1 = x1, as A(x1) does not ap-

pear on the tree above. By the definition of the

sequence 1, x1 is placed somewhere in it, i.e.

x1 = ti, for certain i ≥ 1. It means that after i

applications of the step (∃) in the decomposition

tree, we will get a step:

| (∃)

¬A(x1),¬B(x1), ...A(x1), ∃xA(x)

¬A(x1),¬B(x1),∃xB(x)

| (∃)
¬A(x1),¬B(x1), B(t1), ∃xB(x)

| (∃)
...

| (∃)
¬A(x1),¬B(x1), ...B(x1), ∃xB(x)

All leaves of the above tree are axioms, what means that

`(∃x(A(x) ∩B(x)) ⇒ (∃xA(x) ∩ ∃xB(x))).

Let’s now construct, as the last example, a decomposition tree of

((∃xA(x) ∩ ∃xB(x)) ⇒ ∃x(A(x) ∩B(x))).

We will adopt, as on the right branch of the above tree, the shorthand notation
used on this branch instead of the reasoning performed on the left branch, when
the reasoning is similar to the one presented above. The decomposition tree is
the following.

((∃xA(x) ∩ ∃xB(x)) ⇒ ∃x(A(x) ∩B(x)))

11

| (⇒)

¬(∃xA(x) ∩ ∃xB(x))∃x(A(x) ∩B(x))

| (¬∩)

¬∃xA(x),¬∃xB(x),∃x(A(x) ∩B(x))

| (¬∃)
∀x¬A(x),¬∃xB(x),∃x(A(x) ∩B(x))

| (∀)
¬A(x1),¬∃xB(x),∃x(A(x) ∩B(x))

| (¬∃)
¬A(x1), ∀x¬B(x),∃x(A(x) ∩B(x))

| (∀)
¬A(x1),¬B(x2),∃x(A(x) ∩B(x))

By the reasoning similar to the reasonings in the previous examples we get that x1 6= x2

| (∃)

¬A(x1),¬B(x2), (A(t1) ∩B(t1)), ∃x(A(x) ∩B(x))

where t1 is the first term in the sequence 1, such that (A(t1) ∩ B(t1)) does not appear on the tree

above ¬A(x1),¬B(x2), (A(t1) ∩ B(t1)), ∃x(A(x) ∩ B(x)) Observe, that it is possible that t1 = x1,

as (A(x1) ∩ B(x1)) does not appear on the tree above. By the definition of the sequence 1, x1 is

placed somewhere in it, i.e. x1 = ti, for certain i ≥ 1. For simplicity, we assume that t1 = x1 and

get the sequence:

¬A(x1),¬B(x2), (A(x1) ∩B(x1)),∃x(A(x) ∩B(x))
∧

(∩)

12

¬A(x1),¬B(x2),

A(x1),∃x(A(x) ∩B(x))

Axiom

¬A(x1),¬B(x2),

B(x1), ∃x(A(x) ∩B(x))

| (∃)
¬A(x1),¬B(x2), B(x1),

(A(x2) ∩B(x2)),∃x(A(x) ∩B(x))

where x2 = t2 (x1 6= x2) is the

first term in the sequence 1, such that

(A(x2) ∩ B(x2)) does not appear on the

tree above ¬A(x1),¬B(x2), (B(x1), (A(x2) ∩
B(x2)), ∃x(A(x) ∩ B(x)). We assume that t2 =

x2 for the reason of simplicity.

∧
(∩)

¬A(x1),

¬B(x2),

B(x1), A(x2),

∃x(A(x) ∩B(x))

| (∃)
...

∧
(∩)

...

| (∃)
...

| (∃)
Infinite branch

¬A(x1),

¬B(x2),

B(x1), B(x2),

∃x(A(x) ∩B(x))

Axiom

The above decomposition tree contains an infinite branch what means that

6` ((∃xA(x) ∩ ∃xB(x)) ⇒ ∃x(A(x) ∩B(x))).

13

