
Logic in Computer Science

The design is [...] to investigate the fundamental laws
of the operations of the mind by which reasoning is

performed; to give expression to them in the symbolic
language of a calculus, and upon this foundation to

establish the science of logic ...

George Boole, An Investigation of the Laws of
Thought, 1854

It is reasonable to expect that the relationship between
computer science and mathematical logic will be as
fruitful in the next century as that between physics

and analysis in the last.

John McCarthy, 1963



Logic
Logic deals with the formalization of natural language
and reasoning methods.

A variety of logical systems have been developed, in-
cluding

propositional logic,
predicate logic,
temporal logics, and
modal logics.

In this course we will discuss several logical systems rel-
evant for applications to computing, with an emphasis
on their computational aspects.

Typical applications of logic in computing include

logic programming,
automated verification, and
reasoning about knowledge

We will begin with a brief review of propositional logic.



From the Files of
Inspector Craig

The following facts are known about a robbery:

1. If A is guilty and B is innocent, then C is guilty.

2. C never works alone.

3. A never works with C.

4. No one other than A, B, or C was involved, and at
least one of them is guilty.

Can one infer from these facts who is guilty and who is
innocent?



The Case of McGregor’s Shop
Mr. McGregor phoned Scotland Yard that his shop had
been robbed. Three suspects A, B, C were rounded up
for questioning and the following facts were established:

1. Each of A, B, C had been in the shop on the day of
the robbery, and no one else had been in the shop
that day.

2. If A was guilty, then he had exactly one accomplice.

3. If B is innocent, so is C.

4. If exactly two are guilty, then A is one of them.

5. If C is innocent, so is B.

Whom did Inspector Craig indict?

For other cases see What Is the Name of This Book?
by Raymond Smullyan.



Fundamental Notions in Logic
The above examples can be formalized in propositional
logic, a system based on well-known logical connectives,
such as negation, conjunction, disjunction, and implica-
tion. Most applications of logic to computing require
richer logical languages with special logical operators.

Some of the key questions in the study of logical systems
are:

When is a given logical formula true? (Valid-
ity)

Do given assumptions logically imply a given
formula? (Logical consequence)

How can we deduce a desired conclusion from
given axioms? (Provability)

The relationship between the concepts of truth and
proof within specified a logical system often plays a
central role.



Propositional Logic

Propositional logic is a formal system in which the ba-
sic units are propositions. These represent statements
and can be combined via logical connectives into more
complex propositions.

The basic assumption is that

each proposition is either true or false (but not
both).

Simple propositions are denoted by (propositional) vari-
ables or by constants representing true and false.

The connectives used to form more complex proposi-
tions include negation (¬, read “not”), conjunction (∧,
read “and”), disjunction (∨, read “or”), and implication
(→, read “implies”).



Syntax of Propositional Logic
The syntax of propositional formulas is specified by the
following rules:

〈proposition〉 ::= ⊥ | > | 〈variable〉

| (¬〈proposition〉)

| (〈proposition〉 ∧ 〈proposition〉)

| (〈proposition〉 ∨ 〈proposition〉)

| (〈proposition〉 → 〈proposition〉)

〈variable〉 ::= P | Q | R | . . .

We use the letters α and β to denote propositional for-
mulas.

Other common connectives are exclusive disjunction (⊕,
read “either-or”) and biconditional (↔, read “if and only
if”).

Parentheses are often omitted to increase readability
(provided the intended expression remains unambigu-
ous).

The notion of a subformula can be defined in the ex-
pected way. For example, P and (P → Q) are both
subformulas of (¬(P → Q)).



Semantics of Propositional
Logic

The constants > and ⊥ are also called truth values and
represent truth and falsity, respectively.

The semantics of propositional logic formulas rests on
so-called truth functions for the logical connectives.

Traditionally truth functions are given by way of truth
tables, though they can also be defined by suitable iden-
tities:

¬> ≈ ⊥ > → > ≈ >
¬⊥ ≈ > > → ⊥ ≈ ⊥

⊥ → > ≈ >
⊥ → ⊥ ≈ >

> ∧> ≈ > > ∨> ≈ >
> ∧⊥ ≈ ⊥ > ∨⊥ ≈ >
⊥ ∧> ≈ ⊥ ⊥ ∨> ≈ >
⊥ ∧⊥ ≈ ⊥ ⊥ ∨⊥ ≈ ⊥

Formally, these identities define an equivalence (in fact,
a congruence) relation on propositional formulas. We
define:

α ≈ β

if, and only if, β can be obtained from α by repeat-
edly using the above identities to replace a subformula
matching a right-hand side by the corresponding left-
hand side.



For example,

(> ∨⊥) → ⊥ ≈ > → ⊥ ≈ ⊥.

If a propositional formula contains no variables it is
equivalent either to > or ⊥ (but not both).



One of Inspector Craig’s Cases
The known facts can be represented by the formulas

1. P ∧ ¬Q → R

2. R → P ∨ Q

3. P → ¬R

4. P ∨ Q ∨ R

where P represents the statement “A is guilty,” Q the
statement “B is guilty,” and R the statement “C is
guilty.”

Let α be the conjunction of the above four formulas.
We get the following truth table for α:

P Q R α
⊥ ⊥ ⊥ ⊥
⊥ ⊥ > ⊥
⊥ > ⊥ >
⊥ > > >
> ⊥ ⊥ ⊥
> ⊥ > ⊥
> > ⊥ >
> > > ⊥



Truth Valuations
A (truth) valuation is a mapping from propositiona) vari-
ables to truth values.

It is usually sufficient to consider truth valuations with
a finite domain; various notations are used to denote
such mappings, e.g.,

[P 7→ >, Q 7→ >, R 7→ ⊥]

or

[>/P,>/Q,⊥/R].

If α = α(P1, . . . , Pn) is a formula containing variables
P1, . . . , Pn, and σ is a truth valuation, then by ασ we
denote the result of replacing in α each occurrence of a
variable Pi by its truth value, as specified by σ.



Propositional Equivalence
Two propositional formulas α and β are said to be (propo-
sitionally) equivalent, written α ∼ β, if and only if ασ ≈
βσ, for all truth valuations σ whose domain includes all
variables occurring in α or β.

Basically, one may check equivalence of propositional
formulas by inspecting truth tables.

Examples.

¬P → Q ∼ P ∨ Q
P ∧ ¬P ∼ ¬(P → P )
P → P ∼ >

Note that ∼ extends ≈ in the sense that for all variable-
free propositional formulas α and β, we have α ∼ β if,
and only if, α ≈ β.



Some Basic Equivalences

P ∨ P ∼ P

P ∧ P ∼ P

P ∨ Q ∼ Q ∨ P

P ∧ Q ∼ Q ∧ P

P ∧ (P ∨ Q) ∼ P

P ∧ (Q ∨ Z) ∼ (P ∧ Q) ∨ (P ∧ Z)

P ∨ ¬P ∼ >

P ∧ ¬P ∼ ⊥

¬¬P ∼ P

P ∨ > ∼ >

P ∧ > ∼ P

P ∨ ⊥ ∼ P

P ∧ ⊥ ∼ ⊥

¬(P ∨ Q) ∼ ¬P ∧ ¬Q

¬(P ∧ Q) ∼ ¬P ∨ ¬Q

P → Q ∼ ¬P ∨ Q



Substitution
Valuations are a special kind of substitutions. In general,
by a (propositional) substitution we mean a mapping
from (propositional) variables to (propositional) formu-
las.

We will use the letters σ and τ to denote substitutions,
and write ασ to denote the result of applying the sub-
stitution σ to the formula α.

Note that applying a substitution means to simultane-
ously replace all occurrences of variables by the indi-
cated formulas.

For example, if

σ = [P 7→ P ∧ Q, Q 7→ ¬R]

then ((P ∨ Q) → P )σ is ((P ∧ Q) ∨ ¬R) → (P ∧ Q).

Substitution Theorem.

For all propositional formulas α and β and propo-
sitional substitutions σ, if α ∼ β, then ασ ∼ βσ.



Replacement
We write α[β] to indicate that β occurs as a subformula
of α, and (ambiguously) denote by α[β ′] the result of
replacing a particular occurrence of β in α by β ′.

If necessary, one indicates the occurrence by writing
α[β]p, where p specifies the position of the subformula,
e.g., in Dewey decimal notation. (The subformula of α
at position p is often denoted by α|p.)

For example, if α is (P ∧Q)∨R, then α1.2 is Q and α[P ]1.2

is (P ∧ P ) ∨ R.

Replacement Theorem.

If α, β and β ′ are propositional formulas with
β ∼ β′, and p is a position in α, then α[β]p ∼
α[β′]p.



Tautologies and Contradictions
A propositional formula α is said to be satisfiable if ασ ≈
>, for some truth valuation σ.

A propositional formula α is called a tautology if it al-
ways evaluates to true, i.e., if ασ ≈ > for every truth
valuation σ whose domain contains all variables occur-
ring in α.

Similarly, α is called a contradiction (or unsatisfiable) if
it always evaluates to false.

For example, P ∨ ¬P is a tautology, whereas P ∧ ¬P is
a contradiction.

Theorem. [Tautology and contradiction]

A propositional formula α is a tautology if and
only if its negation ¬α is a contradiction.

Theorem. [Tautology and equivalence]

Two propositional formulas α and β are logi-
cally equivalent if and only if the formula (α →
β| ∧ (β → α) is a tautology.



Logical Consequence

A (propositional) formula α is called a logical conse-
quence of a set of formulas N, written

N |= α

if α is true for every valuation σ under which each for-
mula in N is true.

For instance, α is a logical consequence of a finite set
N = {α1, . . . , αn} if

ασ ≈ > whenever α1σ ≈ · · · ≈ αnσ ≈ >.

Theorem [Tautology and logical consequence]

A formula α is a logical consequence of α1, . . . , αn

if, and only if, the implication

α1 ∧ · · · ∧ αn → α

is a tautology.

We call a set of formulas N satisfiable if there is a
valuation σ that makes each formula α in N true. A set
of formulas is unsatisfiable if it is not satisfiable.

Theorem [Logical consequence and unsatisfiability]

A propositional formula α is a logical conse-
quence of a set of propositional formulas N if,
and only if the set N ∪ {¬α} is unsatisfiable.



Adequacy
The logical system we have discussed so far is based
on a few selected connectives. Suppose we extend the
language by introducing additional logical connectives;
for instance, an (ternary) if-then-else operator.

Does this extension increase the expressiveness of our
system? That is, can we express statements that could
not have been expressed (in equivalent form) before?

It turns out that the three connectives ¬, ∧ and ∨
form what is called an adequate set, in that every other
propositional operator can be expressed in terms of these
three.

For instance,

if P then Q else R ≈ (¬P ∨ Q) ∧ (P ∨ R).

The sets {¬,∧} and {¬,∨} are adequate as well, as is the
set consisting of a single connective, the Sheffer stroke,
which is defined by:

>|> ≈ ⊥
>|⊥ ≈ >
⊥|> ≈ >
⊥|⊥ ≈ >



Proving Inadequacy
To prove that a set of connectives is not adequate, one
essentially has to prove that some standard connective
cannot be expressed by its connectives.

For example, the set {¬} is not adequate. A formula
that uses only negation and two variables, say P and Q,
is equivalent to P or ¬P , or Q or ¬Q; hence none of the
standard binary connectives can be expressed with just
negation.

The set {∧} is also not adequate. If α = α(P ) is a
formula that uses only conjunction, then

α[P 7→ ⊥] ≈ ⊥,

so that negation cannot be expressed via conjunction.

Is the ternary connective below adequate?

C(>,>,>) ≈ >
C(>,>,⊥) ≈ >
C(>,⊥,>) ≈ ⊥
C(>,⊥,⊥) ≈ ⊥
C(⊥,>,>) ≈ >
C(⊥,>,⊥) ≈ ⊥
C(⊥,⊥,>) ≈ >
C(⊥,⊥,⊥) ≈ ⊥



The Satisfiability Problem:
Computational Aspects

The satisfiability problem and the tautology problem are
computationally hard problems, and are relevant to the
famous P = NP question.

The satisfiability problem is in the class NP : one can
check in polynomial time (in terms of the size of the
given formulas) whether a given truth assignment sat-
isfies the formulas, so that there is a nondeterministic
polynomial-time procedure for solving the problem.

No polynomial-time algorithm for the satisfiability is known,
though. In fact the problem is NP -complete, so that
the existence of a polynomial-time algorithm would im-
ply that P = NP (i.e., if the satisfiability problem can
be solved in polynomial time, then all problems in NP
have a polynomial-time algorithm).



An Example
Is the implication M → ¬F a logical consequence of the
following formulas?

A ∧ B ∧ C → D (1)

¬A ∧ M → L (2)

F ∧ E → ¬D (3)

G ∧ M → C (4)

¬B ∧ F → ¬H (5)

¬D ∧ B ∧ E → G (6)

M ∧ ¬I → J (7)

H ∧ M → K (8)

K ∧ J ∧ ¬L → E (9)

¬H ∧ F → L (10)

M ∧ L → ¬F (11)

K ∧ I ∧ A → E (12)

Checking validity via the corresponding truth table is
possible, but rather time consuming, considering that
the table has 213 = 8192 rows.


