Function and Predicate Symbols

We next extend the language of propositional logic by *function* and *predicate symbols*.

We use the letters f, g, h, \ldots to denote function symbols, and the letters P, Q, R, \ldots to denote predicate symbols.

We also associate with each function and predicate symbol a non-negative integer, called its *arity*.

Function symbols, as we shall see, denote functions over a certain domain; predicate symbols, relations. The arity indicates the number of arguments a function or relation takes.

A (function or predicate) symbol of arity 0 is called a *constant*. Sometimes we use superscripts to indicate the arity of a symbol, e.g., we may write f^2 for a binary function symbol.

Finally, we use the letters x, y, z, ... to denote (individual) *variables*, ranging over elements of a specified domain.

Terms and Atoms

Let ${\mathcal F}$ and ${\mathcal P}$ be sets of function and predicate symbols, respectively, and ${\mathcal X}$ be a set of variables.

The set $\mathcal{T}(\mathcal{F}, \mathcal{V})$ of *terms* (over \mathcal{F} and \mathcal{X}) is defined inductively by:

- every variable x in \mathcal{X} is a term, and
- if f is a function symbol in \mathcal{F} of arity n, and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is also a term.

For example, if f is a binary function symbol, a is a constant, and x is a variable, then a, f(a, x), and f(a, a) are all terms.

Similarly, we define:

• if P is a predicate symbol in \mathcal{P} of arity n, and t_1, \ldots, t_n are terms, then $P(t_1, \ldots, t_n)$ is an *atomic formula*, or *atom* for short.

Thus, if P is a binary predicate symbol, then P(x,x) and P(a, f(x, a)) are atomic formulas.

Parentheses are not necessary, but increase the readability.

If a term or atom contains no variables, it is said to be *variable-free* or *ground*.

First-Order Languages

The language of predicate logic uses the propositional connectives as well as additional logical operators called *quantifiers*, more specifically, a *universal* quantifier \forall and an *existential* quantifier \exists .

The symbols of (predicate) logic are thus the following:

connectives: $\land, \lor, \neg, \rightarrow$ quantifiers: \forall, \exists function symbols: f, g, \ldots predicate symbols: P, Q, R, \ldots variables: x, y, z, \ldots

A first-order language \mathcal{L} is specified by its sets of function and predicate symbols and variables.

Syntax of Predicate Logic

In predicate logic there are two kinds of expressions: We have already given (recursive) definitions of the sets of terms and atomic formulas.

The definition of arbitrary formulas extends the definition of propositional formulas:

We usually use Greek letters, ϕ, ψ, \ldots to denote predicate logic formulas.

If ϕ is a quantified formula $\forall x \psi$ or $\exists x \psi$ we say that the quantifier *binds* the variable x and called ϕ the *scope* of the quantifier expression $\forall x$ or $\exists x$, respectively.

For example, in $\forall x \exists y P(x, y)$ the first quantifier binds x and the second binds y. The scope of the second quantifier is the formula $\exists y P(x, y)$.

Free and Bound Variables

The same variable may occur several times in a formula. We distinguish between *free* and *bound* occurrences of variables.

Each occurrence of a variable x that is in the scope of a quantifier expression $\forall x$ or $\exists x$ is said to be *bound*. An occurrence of x that is not bound is said to be *free*.

For example, in $\forall x \exists y P(x, y)$ all variable occurrences are bound, whereas in $\exists y P(x, y)$ the occurrence of x is free.

The same variable may have both free and bound occurrences in a formula, e.g., the variable x in $Q(x) \vee \exists x \neg R(x)$.

Formulas without free occurrences of variables are called *sentences*. Thus, $\forall x \exists y P(x, y)$ is a sentence but $\exists y P(x, y)$ is not.

Semantically, sentences are formulas that can be true or false, whereas the truth value of a formula with free occurrences of variables depends on the assignment of values to these variables.

Substitution

Terms may be substituted for variables, but only for *free* occurrences of variables in a formula.

Definition.

If ϕ is a formula, t is a term, and x is a variable, then we denote by $\phi[t/x]$ the formula obtained by replacing each free occurrence of x in ϕ by t.

We also use the letters σ and τ to denote substitutions.

For example, if σ is the substitution [f(a)/x], then $P(x, x)\sigma$ is P(f(a), f(a)) and $(Q(x) \lor \exists x \neg R(x))\sigma$ is $Q(f(a)) \lor \exists x \neg R(x)$.

In general, if ϕ contains only bound occurrences of x, then $\phi[t/x]$ is identical to ϕ .

Unfortunately, substitutions may have undesired side effects, and hence their application needs to be constrained.

Definition.

We say that a term t is *free for* a variable x in a formula ϕ if no free occurrence of x is in the scope of a quantifier that binds a variable y occuring in t.

Is f(x,y) free for x in $\forall x [P(x) \land Q(y)]$? Is f(x,y) free for y in $\forall x [P(x) \land Q(y)]$?

Semantics of Predicate Logic

Let ${\mathcal F}$ be a set of function symbols and ${\mathcal P}$ a set of predicate symbols.

A model $\mathcal M$ of $(\mathcal F,\mathcal P)$ consists of the following set of data:

- 1. a non-empty set A (the *universe of concrete values*)
- 2. for each *n*-ary function symbol $f \in \mathcal{F}$ an *n*-ary function $f^{\mathcal{M}} : A^n \to A$
- 3. for each *n*-ary predicate symbol $P \in \mathcal{P}$ an *n*-ary relation $P^{\mathcal{M}} \subseteq A^n$

For example, let \mathcal{F} be the set $\{0, 1, +, *, -\}$ and \mathcal{P} the set $\{=, \leq, <\}$ We may take the set of real numbers as universe and define $0^{\mathcal{M}}$ as the real number 0, $1^{\mathcal{M}}$ as the real number 1, $+^{\mathcal{M}}$ as addition, $*^{\mathcal{M}}$ as multiplication, $-^{\mathcal{M}}$ as subtraction, $=^{\mathcal{M}}$ as the equality predicate, $\leq^{\mathcal{M}}$ as the less-than-or-equal-to relation, and $<^{\mathcal{M}}$ as the less-than relation.

Environments

In evaluating quantified formulas, $\forall x \phi$ or $\exists x \phi$, intuitively one has to determine whether a formula ϕ is true for some or all values a of the specified universe.

This intuition can not be expressed in the syntax of predicate logic. Therefore we have to interpret formulas relative to an "environment."

Definition.

Let \mathcal{V} be a set of variables and A a non-empty set. By an *environment*, or *look-up table*, for \mathcal{V} and A we simply mean a function

 $l: \mathcal{V} \to A.$

If l is a look-up table (for \mathcal{V} and A) and $a \in A$, we denoted by $l[x \mapsto a]$ the "updated" look-up table l' for which l'(x) = a and, for all variables $y \neq x$, l'(y) = l(y).

Interpretation of Terms

Terms of a first-order language can be interpreted as denoting elements of the universe A. More specifically, a model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ (over universe A) and an environment l for \mathcal{V} and A induce a mapping

$$t_l^{\mathcal{M}} : \mathcal{T}(\mathcal{F}, \mathcal{V}) \to A$$

from the set of terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$ to the set A defined by:

$$t_l^{\mathcal{M}} = \begin{cases} l(x) & \text{if } t \text{ is a variable } x \\ f^{\mathcal{M}}((t_1)_l^{\mathcal{M}}, \dots, (t_k)_l^{\mathcal{M}}) & \text{if } t = f(t_1, \dots, t_k) \end{cases}$$

More generally, one may view a term t as inducing a mapping $t^{\mathcal{M}}$ from environments to the given universe, by defining $t^{\mathcal{M}}(l)$ as $t_l^{\mathcal{M}}$.

Example.

Take the term $t = x \cdot (y + (x + 1) \cdot z)$. If \mathcal{M} is the model above and l(x) = 3, l(y) = 2, and l(z) = 1, then $t_l^{\mathcal{M}} = 18$.

The Satisfaction Relation

Let \mathcal{M} be a model for $(\mathcal{F}, \mathcal{P})$ over universe A and l be an environment for \mathcal{V} and A.

We define a relation

 $\mathcal{M}\models_l\phi$

by structural induction on formulas ϕ over the first-order language defined by \mathcal{F} , \mathcal{P} , and \mathcal{V} :

(i) If $\phi = P(t_1, \dots, t_k)$, then $\mathcal{M} \models_l \phi$ holds iff $(t_1)_l^{\mathcal{M}}, \dots, (t_n)_l^{\mathcal{M}}) \in P^{\mathcal{M}}$. (ii) If $\phi = \neg \psi$, then $\mathcal{M} \models_l \phi$ holds iff $\mathcal{M} \models_l \psi$ does not hold. (iii) If $\phi = \psi_1 \land \psi_2$, then $\mathcal{M} \models_l \phi$ holds iff both $\mathcal{M} \models_l \psi_1$ and $\mathcal{M} \models_l \psi_2$ hold. (iv) If $\phi = \psi_1 \lor \psi_2$, then $\mathcal{M} \models_l \phi$ holds iff at least one of $\mathcal{M} \models_l \psi_1$ and $\mathcal{M} \models_l \psi_2$ holds. (v) If $\phi = \forall x \psi$, then $\mathcal{M} \models_l \phi$ holds iff $\mathcal{M} \models_{l[x \mapsto a]} \psi$ holds for all elements $a \in A$. (vi) If $\phi = \exists x \psi$, then $\mathcal{M} \models_l \phi$ holds iff $\mathcal{M} \models_{l[x \mapsto a]} \psi$ holds for some element $a \in A$.

If ϕ is a sentence we often write

$$\mathcal{M} \models \phi$$

since the choice of an environment l is then irrelevant.

Semantic Entailment

Definition

Let $\phi_1, \ldots, \phi_n, \psi$ be predicate logic formulas. We write

 $\phi_1,\ldots,\phi_n\models\psi$

to indicate that, whenever $\mathcal{M} \models_l \phi_i$ for all i with $1 \leq i \leq n$, then $\mathcal{M} \models_l \psi$, for all models \mathcal{M} and environments l.

If $\models \psi$, then the formula ψ is said to be *valid*.

Note that a formula ψ is valid if $\mathcal{M} \models_l \psi$, for all models \mathcal{M} and environments l.

We will discuss proof systems, such as an extended natural deduction calculus, so that the corresponding notion of provability captures the semantic concept of entailment.