Function and Predicate
Symbols

We next extend the language of propositional logic by
function and predicate symbols.

We use the letters f, g, h,... to denote function symbols,
and the letters P,Q, R, ... to denote predicate symbols.

We also associate with each function and predicate sym-
bol a non-negative integer, called its arity.

Function symbols, as we shall see, denote functions over
a certain domain; predicate symbols, relations. The
arity indicates the number of arguments a function or
relation takes.

A (function or predicate) symbol of arity 0 is called a
constant. Sometimes we use superscripts to indicate
the arity of a symbol, e.g., we may write f? for a binary
function symbol.

Finally, we use the letters z, v, z, ... to denote (individual)
variables, ranging over elements of a specified domain.

Terms and Atoms

Let F and P be sets of function and predicate symbols,
respectively, and X be a set of variables.

The set 7(F,V) of terms (over F and X) is defined
inductively by:

e every variable x in X is a term, and

e if fis a function symbol in F of arity n, and t1,...,t,
are terms, then f(¢1,...,t,) is also a term.

For example, if f is a binary function symbol, a is a
constant, and z is a variable, then a, f(a,x), and f(a,a)
are all terms.

Similarly, we define:

e if P is a predicate symbol in P of arity n, and
t1,...,t, are terms, then P(t1,...,t,) iS an atomic
formula, or atom for short.

Thus, if P is a binary predicate symbol, then P(x,z) and
P(a, f(x,a)) are atomic formulas.

Parentheses are not necessary, but increase the read-
ability.

If a term or atom contains no variables, it is said to be
variable-free or ground.

First-Order Languages

The language of predicate logic uses the propositional
connectives as well as additional logical operators called
quantifiers, more specifically, a universal quantifier V and
an existential quantifier 4.

The symbols of (predicate) logic are thus the following:

connectives: A,V,—, —
quantifiers: V,d

function symboils: f,g,...
predicate symbols: P,Q, R, ...
variables: x,y, z,...

A first-order language L is specified by its sets of func-
tion and predicate symbols and variables.

Syntax of Predicate Logic

In predicate logic there are two kinds of expressions: We
have already given (recursive) definitions of the sets of
terms and atomic formulas.

The definition of arbitrary formulas extends the defini-
tion of propositional formulas:

(formula) = LT | (atom)
| (=(formula))
| ((formula) A (formula))
| ((formula) V (formula))
| ((formula) — (formula))
| (v(variable) (formula))
| (3(variable) (formula))
(variable) = z|y|z] ...

We usually use Greek letters, ¢, 1, ... to denote predicate
logic formulas.

If ¢ is a quantified formula Vx vy or dx1 we say that the
quantifier binds the variable x and called ¢ the scope of
the quantifier expression Yz or dx, respectively.

For example, in Vz3dy P(x,y) the first quantifier binds
x and the second binds y. The scope of the second
quantifier is the formula Jy P(x,vy).

Free and Bound Variables

The same variable may occur several times in a formula.
We distinguish between free and bound occurrences of
variables.

Each occurrence of a variable xz that is in the scope of
a quantifier expression VYx or dx is said to be bound. An
occurrence of x that is not bound is said to be free.

For example, in Vx3y P(x,y) all variable occurrences are
bound, whereas in 3y P(x,y) the occurrence of x is free.

The same variable may have both free and bound oc-
currences in a formula, e.g., the variable z in Q(x) Vv
dz - R(x).

Formulas without free occurrences of variables are called
sentences. Thus, Vx3dy P(z,y) is a sentence but Jy P(x,y)
IS not.

Semantically, sentences are formulas that can be true
or false, whereas the truth value of a formula with free
occurrences of variables depends on the assignment of
values to these variables.

Substitution

Terms may be substituted for variables, but only for free
occurrences of variables in a formula.

Definition.

If ¢ is a formula, t is a term, and x is a variable,
then we denote by ¢[t/x] the formula obtained
by replacing each free occurrence of = in ¢ by
t.

We also use the letters o and 7 to denote substitutions.

For example, if o is the substitution [f(a)/z], then P(x,z)o

s P(f(a), f(a)) and (Q(z) V Jz~R(z))o is Q(f(a)) V
dx —R(x).

In general, if ¢ contains only bound occurrences of z,
then ¢[t/z] is identical to ¢.

Unfortunately, substitutions may have undesired side ef-
fects, and hence their application needs to be constrained.

Definition.

We say that a term t is free for a variable x
in a formula ¢ if no free occurrence of x is in
the scope of a quantifier that binds a variable
y occuring in t.

Is f(x,y) free for x in Vx [P(z) A Q(y)]?
Is f(x,y) free for y in Va [P(x) N Q(y)]?

Semantics of Predicate Logic

Let F be a set of function symbols and P a set of
predicate symbols.

A model M of (F,P) consists of the following set of
data:

1. a non-empty set A (the universe of concrete values)

2. for each n-ary function symbol f € F an n-ary func-
tion fM: A" - A

3. for each n-ary predicate symbol P € P an n-ary
relation PM C A"

For example, let F be the set {0,1,4,%,—} and P the
set {=, <, <} We may take the set of real numbers as
universe and define OM as the real number 0, 1M as the
real number 1, +M as addition, ™ as multiplication, —M
as subtraction, =M as the equality predicate, <M as the
less-than-or-equal-to relation, and <™ as the less-than
relation.

Environments

In evaluating quantified formulas, Vx¢ or dx¢, intuitively
one has to determine whether a formula ¢ is true for
some or all values a of the specified universe.

This intuition can not be expressed in the syntax of
predicate logic. Therefore we have to interpret formulas
relative to an “environment.”

Definition.

Let V be a set of variables and A a non-empty
set. By an environment, or look-up table, for
Y and A we simply mean a function

l: VYV — A.
If [is a look-up table (for YV and A) and a € A, we

denoted by I[x — a] the “updated” look-up table I’ for
which I'(z) = a and, for all variables y #= x, I'(y) = I(y).

Interpretation of Terms

Terms of a first-order language can be interpreted as
denoting elements of the universe A. More specifically,
a model M for (F,P) (over universe A) and an environ-
ment [for V and A induce a mapping

tM e T(F, V) — A
from the set of terms 7(F,V) to the set A defined by:

M { I(x) if ¢ is a variable z
T MM, @M it = f(, e tr)

More generally, one may view a term t as inducing a
mapping t™ from environments to the given universe,
by defining tM(l) as .

Example.
Take thetermt=ax-(y+ (x+1)-2). If M is

the model above and I(z) = 3, I(y) = 2, and
I(z) =1, then tM = 18.

T he Satisfaction Relation

Let M be a model for (F,P) over universe A and [be
an environment for ¥V and A.

We define a relation
M= ¢

by structural induction on formulas ¢ over the first-order
language defined by F, P, and V:

(i) If ¢ = P(t1,...,t;), then M =; ¢ holds iff
M, ..., (t)M) € PM.

(ii) If ¢ = —p, then M [=; ¢ holds iff M |=; ¢
does not hold.

(iii) If ¢ = 11 Ao, then M |=; ¢ holds iff both
M =1 and M =; ¥ hold.

(iv) If ¢ = 1 Vo, then M |=; ¢ holds iff at
least one of M =; 41 and M |=; ¥ holds.

(v) If ¢ = Vap, then M |=; ¢ holds iff M =4
1 holds for all elements a € A.

(vi) If ¢ = Jxp, then M |=; ¢ holds iff M =]
1 holds for some element a € A.
If ¢ is a sentence we often write
ME¢
since the choice of an environment [is then irrelevant.

Semantic Entailment

Definition

Let ¢1,...,¢n,% be predicate logic formulas.
We write

Cbl,---,qbn |:¢
to indicate that, whenever M |=; ¢; for all ¢

with 1 <i <n, then M |=; ¢, for all models M
and environments [.

If =1, then the formula ¢ is said to be valid.

Note that a formula % is valid if M |=; ¢, for all models
M and environments [.

We will discuss proof systems, such as an extended natu-
ral deduction calculus, so that the corresponding notion
of provability captures the semantic concept of entail-

ment.

