
Function and Predicate
Symbols

We next extend the language of propositional logic by
function and predicate symbols.

We use the letters f, g, h, . . . to denote function symbols,
and the letters P,Q,R, . . . to denote predicate symbols.

We also associate with each function and predicate sym-
bol a non-negative integer, called its arity.

Function symbols, as we shall see, denote functions over
a certain domain; predicate symbols, relations. The
arity indicates the number of arguments a function or
relation takes.

A (function or predicate) symbol of arity 0 is called a
constant. Sometimes we use superscripts to indicate
the arity of a symbol, e.g., we may write f2 for a binary
function symbol.

Finally, we use the letters x, y, z, . . . to denote (individual)
variables, ranging over elements of a specified domain.



Terms and Atoms
Let F and P be sets of function and predicate symbols,
respectively, and X be a set of variables.

The set T (F ,V) of terms (over F and X ) is defined
inductively by:

• every variable x in X is a term, and

• if f is a function symbol in F of arity n, and t1, . . . , tn
are terms, then f(t1, . . . , tn) is also a term.

For example, if f is a binary function symbol, a is a
constant, and x is a variable, then a, f(a, x), and f(a, a)
are all terms.

Similarly, we define:

• if P is a predicate symbol in P of arity n, and
t1, . . . , tn are terms, then P (t1, . . . , tn) is an atomic
formula, or atom for short.

Thus, if P is a binary predicate symbol, then P (x, x) and
P (a, f(x, a)) are atomic formulas.

Parentheses are not necessary, but increase the read-
ability.

If a term or atom contains no variables, it is said to be
variable-free or ground.



First-Order Languages
The language of predicate logic uses the propositional
connectives as well as additional logical operators called
quantifiers, more specifically, a universal quantifier ∀ and
an existential quantifier ∃.

The symbols of (predicate) logic are thus the following:

connectives: ∧,∨,¬,→
quantifiers: ∀, ∃
function symbols: f, g, . . .

predicate symbols: P,Q,R, . . .

variables: x, y, z, . . .

A first-order language L is specified by its sets of func-
tion and predicate symbols and variables.



Syntax of Predicate Logic
In predicate logic there are two kinds of expressions: We
have already given (recursive) definitions of the sets of
terms and atomic formulas.

The definition of arbitrary formulas extends the defini-
tion of propositional formulas:

〈formula〉 ::= ⊥ | > | 〈atom〉

| (¬〈formula〉)

| (〈formula〉 ∧ 〈formula〉)

| (〈formula〉 ∨ 〈formula〉)

| (〈formula〉 → 〈formula〉)

| (∀〈variable〉 〈formula〉)

| (∃〈variable〉 〈formula〉)

〈variable〉 ::= x | y | z | . . .

We usually use Greek letters, φ, ψ, . . . to denote predicate
logic formulas.

If φ is a quantified formula ∀xψ or ∃xψ we say that the
quantifier binds the variable x and called φ the scope of
the quantifier expression ∀x or ∃x, respectively.



For example, in ∀x∃y P (x, y) the first quantifier binds
x and the second binds y. The scope of the second
quantifier is the formula ∃y P (x, y).



Free and Bound Variables
The same variable may occur several times in a formula.
We distinguish between free and bound occurrences of
variables.

Each occurrence of a variable x that is in the scope of
a quantifier expression ∀x or ∃x is said to be bound. An
occurrence of x that is not bound is said to be free.

For example, in ∀x∃y P (x, y) all variable occurrences are
bound, whereas in ∃y P (x, y) the occurrence of x is free.

The same variable may have both free and bound oc-
currences in a formula, e.g., the variable x in Q(x) ∨
∃x¬R(x).

Formulas without free occurrences of variables are called
sentences. Thus, ∀x∃y P (x, y) is a sentence but ∃y P (x, y)
is not.

Semantically, sentences are formulas that can be true
or false, whereas the truth value of a formula with free
occurrences of variables depends on the assignment of
values to these variables.



Substitution
Terms may be substituted for variables, but only for free
occurrences of variables in a formula.

Definition.

If φ is a formula, t is a term, and x is a variable,
then we denote by φ[t/x] the formula obtained
by replacing each free occurrence of x in φ by
t.

We also use the letters σ and τ to denote substitutions.

For example, if σ is the substitution [f(a)/x], then P (x, x)σ
is P (f(a), f(a)) and (Q(x) ∨ ∃x¬R(x))σ is Q(f(a)) ∨
∃x¬R(x).

In general, if φ contains only bound occurrences of x,
then φ[t/x] is identical to φ.

Unfortunately, substitutions may have undesired side ef-
fects, and hence their application needs to be constrained.

Definition.

We say that a term t is free for a variable x
in a formula φ if no free occurrence of x is in
the scope of a quantifier that binds a variable
y occuring in t.

Is f(x, y) free for x in ∀x [P (x) ∧Q(y)]?

Is f(x, y) free for y in ∀x [P (x) ∧Q(y)]?



Semantics of Predicate Logic
Let F be a set of function symbols and P a set of
predicate symbols.

A model M of (F ,P) consists of the following set of
data:

1. a non-empty set A (the universe of concrete values)

2. for each n-ary function symbol f ∈ F an n-ary func-
tion fM : An → A

3. for each n-ary predicate symbol P ∈ P an n-ary
relation PM ⊆ An

For example, let F be the set {0,1,+, ∗,−} and P the
set {=,≤, <} We may take the set of real numbers as
universe and define 0M as the real number 0, 1M as the
real number 1, +M as addition, ∗M as multiplication, −M

as subtraction, =M as the equality predicate, ≤M as the
less-than-or-equal-to relation, and <M as the less-than
relation.



Environments
In evaluating quantified formulas, ∀xφ or ∃xφ, intuitively
one has to determine whether a formula φ is true for
some or all values a of the specified universe.

This intuition can not be expressed in the syntax of
predicate logic. Therefore we have to interpret formulas
relative to an “environment.”

Definition.

Let V be a set of variables and A a non-empty
set. By an environment, or look-up table, for
V and A we simply mean a function

l : V → A.

If l is a look-up table (for V and A) and a ∈ A, we
denoted by l[x 7→ a] the “updated” look-up table l′ for
which l′(x) = a and, for all variables y 6= x, l′(y) = l(y).



Interpretation of Terms
Terms of a first-order language can be interpreted as
denoting elements of the universe A. More specifically,
a model M for (F ,P) (over universe A) and an environ-
ment l for V and A induce a mapping

tMl : T (F ,V) → A

from the set of terms T (F ,V) to the set A defined by:

tMl =

{
l(x) if t is a variable x
fM((t1)Ml , . . . , (tk)

M
l ) if t = f(t1, . . . , tk)

More generally, one may view a term t as inducing a
mapping tM from environments to the given universe,
by defining tM(l) as tMl .

Example.

Take the term t = x · (y + (x+ 1) · z). If M is
the model above and l(x) = 3, l(y) = 2, and
l(z) = 1, then tMl = 18.



The Satisfaction Relation
Let M be a model for (F ,P) over universe A and l be
an environment for V and A.

We define a relation

M |=l φ

by structural induction on formulas φ over the first-order
language defined by F, P, and V:

(i) If φ = P (t1, . . . , tk), then M |=l φ holds iff
(t1)Ml , . . . , (tn)

M
l ) ∈ PM.

(ii) If φ = ¬ψ, then M |=l φ holds iff M |=l ψ
does not hold.

(iii) If φ = ψ1 ∧ ψ2, then M |=l φ holds iff both
M |=l ψ1 and M |=l ψ2 hold.

(iv) If φ = ψ1 ∨ ψ2, then M |=l φ holds iff at
least one of M |=l ψ1 and M |=l ψ2 holds.

(v) If φ = ∀xψ, then M |=l φ holds iff M |=l[x 7→a]
ψ holds for all elements a ∈ A.

(vi) If φ = ∃xψ, then M |=l φ holds iff M |=l[x 7→a]
ψ holds for some element a ∈ A.

If φ is a sentence we often write

M |= φ

since the choice of an environment l is then irrelevant.



Semantic Entailment
Definition

Let φ1, . . . , φn, ψ be predicate logic formulas.
We write

φ1, . . . , φn |= ψ

to indicate that, whenever M |=l φi for all i
with 1 ≤ i ≤ n, then M |=l ψ, for all models M
and environments l.

If |= ψ, then the formula ψ is said to be valid.

Note that a formula ψ is valid if M |=l ψ, for all models
M and environments l.

We will discuss proof systems, such as an extended natu-
ral deduction calculus, so that the corresponding notion
of provability captures the semantic concept of entail-
ment.


