CSE 541 - Logic in Computer Science

Solutions for Selected Exercises on Temporal Logic

Exercise 3.4.9

A CTL formula EFp is true for a state if p is true for that state already, wheras EX EFp need not be true if p is true for the present state.

A formula AGp is true for a state s if, and only if, p is true for the present state s and all states reachable from s, wheras AXAGp is true for s and if, and only if, it is true for all states reachable from s.

A formula E[pUq] is true for a state if q is true for that state already. The formula $p \wedge EX E[pUq]$, on the other hand, requires that (i) q be true in a future state, not including the present state, and (ii) p be true in all preceding states, including the present state.

Exercise 3.4.10

a. $EF \phi$ and $EG \phi$ are not equivalent.

Let ϕ be p and \mathcal{M} be a transition system with

States: $S = \{s_0, s_1\}$ Transitions: $s_0 \rightarrow s_1, s_1 \rightarrow s_1$ Labels: $L(s_0) = \{p\}, L(s_1) = \emptyset$

We have $\mathcal{M}, s_0 \models EFp$ but $\mathcal{M}, s_0 \not\models EGp$.

- b. $EF \phi \lor EF \psi$ and $EF(\phi \lor \psi)$ are equivalent.
- c. $AF \phi \lor AF \psi$ and $AF(\phi \lor \psi)$ are not equivalent.

Take $\phi = p$ and $\psi = q$ and let \mathcal{M} be a transition system with

States: $S = \{s_0, s_1, s_2\}$ Transitions: $s_0 \rightarrow s_1, s_0 \rightarrow s_2, s_1 \rightarrow s_1, s_2 \rightarrow s_2$ Labels: $L(s_0) = \emptyset, L(s_1) = \{p\} L(s_2) = \{q\}$

Then $\mathcal{M}, s_0 \models AF(p \lor q)$ but $\mathcal{M}, s_0 \not\models AFp \lor AFq$.

- d. $AF \neg \phi$ is equivalent to $\neg EG \phi$.
- e. $EF \neg \phi$ and $\neg AF \phi$ are not equivalent.

Take the same formula $\phi = p$ and transition system \mathcal{M} as in 1(a). Then $\mathcal{M}, s_0 \models EF \neg p$ and $\mathcal{M}, s_0 \models AF p$ and hence $\mathcal{M}, s_0 \not\models \neg AF p$

f. $\psi = A[\phi_1 U A[\phi_2 U \phi_3]]$ and $\psi' = A[A[\phi_1 U \phi_2]U \phi_3]$ are not equivalent. Take $\phi_1 = p$, $\phi_2 = q$, and $\phi_3 = r$; and let \mathcal{M} be a transition system with

> States: $S = \{s_0, s_1\}$ Transitions: $s_0 \rightarrow s_1, s_1 \rightarrow s_1$ Labels: $L(s_0) = \{p\}, L(s_1) = \{r\}$

Then $\mathcal{M}, s_0 \models A[p U A[q U r]]$ but $\mathcal{M}, s_0 \not\models A[A[p U q] U r].$

Also, let \mathcal{M}' be a transition system with

States: $S = \{s_0, s_1, s_2, s_3, s_4\}$ Transitions: $s_0 \rightarrow s_1, s_1 \rightarrow s_2, s_2 \rightarrow s_3, s_3 \rightarrow s_4, s_4 \rightarrow s_4$ Labels: $L(s_0) = L(s_2) = \{p\}, L(s_1) = L(s_3) = \{q\}, L(s_4) = \{r\}$

Then $\mathcal{M}', s_0 \not\models A[p U A[q U r]]$ but $\mathcal{M}', s_0 \models A[A[p U q] U r].$

- g. $AG \phi \to EG \phi$ is equivalent to \top .
- h. $EG \phi \to AG \phi$ is not equivalent to \top .

Let \mathcal{M} be a transition system with

States: $S = \{s_0, s_1\}$ Transitions: $s_0 \to s_0, s_0 \to s_1, s_1 \to s_1$ Labels: $L(s_0) = \{p\}, L(s_1) = \emptyset$

Then $\mathcal{M}, s_0 \not\models EG p \to AG p$.

Exercise 3.4.11.

- a. $AG(\phi \wedge \psi) \equiv AG \phi \wedge AG \psi$
- b. $EF \neg \phi \equiv \neg AG \phi$

Exercise 3.4.13. Let \mathcal{M} be a CTL model and s be a state of \mathcal{M} . Then

 $s \models \neg AX \phi$ iff $s \not\models AX \phi$ iff not for all s' such that $s \to s'$ we have $s' \models \phi$ iff for some s' such that $s \to s'$ we have $s' \not\models \phi$ iff for some s' such that $s \to s'$ we have $s' \models \neg \phi$ iff $s \models EX \neg \phi$

This proves that $\neg AX \phi \equiv EX \neg \phi$.

Exercise 3.5.1. We express informal statements as formulas.

a. Whenever p is followed by q (after finitely many steps), then the system enters an "interval" in which no r occurs until t.

If "finitely many steps" means "zero or more steps," we may use

$$AG(p \to AG(q \to A[\neg r U t])).$$

If zero steps are not admissible, we get

$$AG(p \to AX AG (q \to A[\neg r U t])).$$

b. Event p precedes s and t on all computation paths.

We express this via negation, that it is not the case that on some computation path p does not precede s and t:

$$\neg E[\neg p U ((s \lor t) \land \neg p)].$$

c. After p, q is never true (on all computation paths).

$$AG(p \to AX AG \neg q)$$

or

$$AG(p \to \neg EX \, EF \, q)$$

d. Between the events q and r, p is never true (on all computation paths).

$$[AG(q \to \neg EF(p \land EFr))] \land [AG(r \to \neg EF(p \land EFq))]$$

e. Transitions to states satisfying p occur at most twice (on all computation paths).

$$\neg(EX EF(p \land EX EF(p \land EX EF p)))$$

Exercise 3.5.3. Let ϕ_1 be the formula $Fp \to Fq$, ϕ_2 be $AFp \to AFq$, and ϕ_3 be $AG(p \to AFq)$.

(a) Let \mathcal{M} be a transition system with

States: $S = \{s\}$ Transitions: $s \to s$ Labels: $L(s) = \emptyset$ (or $L(s) = \{q\}$)

Then $\mathcal{M}, s \not\models p$ and $\mathcal{M}, s \not\models AFp$, and consequently $\mathcal{M}, s \models A[\phi_1] \land \phi_2 \land \phi_3$.

(b) Let \mathcal{M} be a transition system and s be a state in \mathcal{M} . First observe that if $Fp \to Fq$ is satisfied by all paths π starting at s and $\mathcal{M}, s \models AFp$, then $\mathcal{M}, s \models AFq$. In short, if ϕ_1 is satisfied by s, so is ϕ_2 . Thus, ϕ_1 can not be the only formula satisfied \mathcal{M} .

Secondly, if $\mathcal{M}, s \models AG(p \rightarrow AFq)$, then $\mathcal{M}, s \models AFp \rightarrow AFq$, and hence ϕ_3 can not be the only formula satisfied either.

Finally, if \mathcal{M} is a transition system with

States: $S = \{s_0, s_1, s_2\}$ Transitions: $s_0 \to s_1, s_0 \to s_2, s_1 \to s_1, s_2 \to s_2$ Labels: $L(s_0) = L(s_1) = \emptyset$ and $L(s_2) = \{p\}$

then $\mathcal{M}, s \not\models AFp$ and, hence, $\mathcal{M}, s_0 \models AFp \to AFq$. On the other hand, s_0 satisfies neither $Fp \to Fq$ (because the path $s_0 \to s_2 \to s_2 \cdots$ satisfies Fp but not Fq) nor $AG(p \to AFq)$ (because $s_0 \to s_2$ and s_2 satisifies p but not AFq). Thus, s_0 satisfies only ϕ_2 (but note that s_2 does not satisfy ϕ_2). (c) Let \mathcal{M} be a transition system with

States: $S = \{s\}$ Transitions: $s \to s$ Labels: $L(s) = \{p\}$

Then $\mathcal{M}, s \models p$ and $\mathcal{M}, s \models AFp$, but $\mathcal{M}, s \not\models AFq$. Since there is only one computation path in this system, we may conclude that s_0 satisfies none of the formulas $A[\phi_1], \phi_2$, and ϕ_3 .

Exercise 3.5.4. In terms of the order of occurrences of events p, s, and t, the formula $AG(p \rightarrow AF(s \land AX(AFt)))$ expresses that event p is accompanied or followed by s, which in turn is followed by t.

Exercise 3.5.6.

- a. See remark 3.18 on pp. 219-220.
- b. AGFp and AGEFp are not equivalent.
 - Let \mathcal{M} be a transition system with

States: $S = \{s_0, s_1\}$ Transitions: $s_0 \to s_0, s_0 \to s_1, s_1 \to s_1$ Labels: $L(s_0) = \emptyset, L(s_1) = \{p\}$

Then $\mathcal{M}, s_0 \models AG EF p$ but $\mathcal{M}, s_0 \not\models AG F p$.

c. $A[(pUr) \lor (qUr)]$ and $A[(p \lor q)Ur]$ are not equivalent.

Let \mathcal{M} be a transition system with

States: $S = \{s_0, s_1, s_2\}$ Transitions: $s_0 \to s_1, s_1 \to s_2, s_2 \to s_2$ Labels: $L(s_0) = \{p\}, L(s_1) = \{q\}, L(s_2) = \{r\}$

Then $\mathcal{M}, s_0 \models A[(p \lor q)Ur]$ but $\mathcal{M}, s_0 \not\models A[(pUr) \lor (qUr)].$

d. $A[Xp \lor XXp]$ and $AXp \lor AXAXp$ are not equivalent.

Let \mathcal{M} be a transition system with

States: $S = \{s_0, s_1, s_2, s_3\}$ Transitions: $s_0 \to s_1, s_0 \to s_2, s_1 \to s_2, s_2 \to s_3, s_3 \to s_3$ Labels: $L(s_0) = L(s_2) = \emptyset, L(s_1) = L(s_3) = \{p\}$

Then $\mathcal{M}, s_0 \models A[Xp \lor XXp]$ but $\mathcal{M}, s_0 \not\models AXp \lor AXAXp$.

e. E(GFp) and EGEFp are not equivalent.

Let \mathcal{M} be a transition system with

States: $S = \{s_0, s_1, s_2\}$ Transitions: $s_0 \rightarrow s_0, s_0 \rightarrow s_1, s_1 \rightarrow s_2, s_2 \rightarrow s_2$ Labels: $L(s_0) = L(s_2) = \emptyset, L(s_1) = \{p\}$

Then $\mathcal{M}, s_0 \models EG EF p$ but $\mathcal{M}, s_0 \not\models E(GF p)$.

Exercise 3.5.8

- We first show that $\neg q U (\neg p \land \neg q) \rightarrow \neg Gp$ is valid.
 - Suppose $\pi \models \neg q U (\neg p \land \neg q)$. Then $\pi^i \models \neg p \land \neg q$, for some *i*. But if $\pi^i \models \neg p \land \neg q$, then $\pi^i \models \neg p$, and hence $\pi^i \not\models p$. Consequently, $\pi \not\models Gp$ and hence $\pi \models \neg Gp$. In sum, we may conclude that $\pi \models \neg q U (\neg p \land \neg q) \rightarrow \neg Gp$, for all paths π .

• We next show that $(G \neg q \land F \neg p) \rightarrow \neg q U (\neg p \land \neg q)$ is valid.

Suppose $\pi \models G \neg q \land F \neg p$. Then $\pi \models G \neg q$ and $\pi \models F \neg p$. The latter assertion implies that $\pi^i \models \neg p$, for some *i*. Since $\pi \models G \neg q$ we obtain, in particular, that $\pi^j \models \neg q$ for all *j* with $j \leq i$. Thus, $\pi^i \models (\neg p \land \neg q)$ and $\pi \models \neg q U (\neg p \land \neg q)$. We conclude that $\pi \models (G \neg q \land F \neg p) \rightarrow$ $\neg q U (\neg p \land \neg q)$, for all paths π .

• Using the above facts and basic propositional and LTL equivalences we obtain:

$$\begin{aligned} &= \neg (p U q) \lor Gp) \\ &\equiv \neg (p U q) \land \neg Gp \\ &\equiv [(\neg q U (\neg p \land \neg q)) \lor \neg Fq] \land \neg Gp \\ &\equiv [(\neg q U (\neg p \land \neg q)) \land \neg Gp] \lor [\neg Fq \land \neg Gp] \\ &\equiv [(\neg q U (\neg p \land \neg q)) \land \neg Gp] \lor [G \neg q \land F \neg p] \\ &\equiv [\neg q U (\neg p \land \neg q)] \lor [G \neg q \land F \neg p] \\ &\equiv \neg q U (\neg p \land \neg q) \\ &\equiv \neg q U (\neg p \land \neg q) \end{aligned}$$

Exercise 3.6.10. The assertion $s \models AG AF \phi$ means that ϕ is true infinitely often along every path starting at s.

Let π be an arbitrary path

$$s = s_1 \rightarrow s_2 \rightarrow \cdots \rightarrow s_n \rightarrow \cdots$$

starting at s.

First note that by the semantics of AG, from $s \models AG AF \phi$ we may infer that $s_i \models AF \phi$, for all $i \ge 1$. Thus, by the definition of AF, for each $i \ge 1$ there exists an index j with $i \le j$, such that $s_j \models \phi$. Furthermore, whenever $s_j \models \phi$ there exists an index k with j < k, such that $s_k \models \phi$. (The latter observation follows from the fact that $s_{j+1} \models AF \phi$.)

Based on these assertions, we can inductively define an infinite sequence k_1, k_2, \ldots such that $k_i < k_{i+1}$ and $s_{k_i} \models \phi$, for all $i \ge 1$. In other words, ϕ is true infinitely often along π .