CSE 541 - Logic in Computer Science

Solutions for Selected Exercises on
Temporal Logic

Exercise 3.4.9

A CTL formula EFp is true for a state if p is true for that state
already, wheras FX EFp need not be true if p is true for the
present state.

A formula AGp is true for a state s if, and only if, p is true
for the present state s and all states reachable from s, wheras
AX AGDp is true for s and if, and only if, it is true for all states
reachable from s.

A formula E[pUgq| is true for a state if ¢ is true for that state
already. The formula pAEX E[pUgq|, on the other hand, requires
that (i) ¢ be true in a future state, not including the present state,
and (ii) p be true in all preceding states, including the present
state.

Exercise 3.4.10

a. EF ¢ and EG ¢ are not equivalent.
Let ¢ be p and M be a transition system with

States: S = {so, s1}
Transitions: sg — s1, S1 — S1
Labels: L(sg) = {p}, L(s1) =0

We have M, sop = EF p but M, s =~ EGp.
b. EF ¢V EF 1 and EF(¢ V 1) are equivalent.

c. AF ¢V AF ¢ and AF(¢V 1) are not equivalent.
Take ¢ = p and v = ¢ and let M be a transition system with

States: S = {so, 1, s2}
Transitions: sg — s1, Sg — S2, S — S1, S2 — So

Labels: L(sg) =0, L(s1) = {p} L(s2) = {q}
Then M, so = AF(pV q) but M,so = AFpV AF q.



d. AF —¢ is equivalent to = FEG ¢.

e. FF—¢ and =AF ¢ are not equivalent.

Take the same formula ¢ = p and transition system M as in 1(a).
Then M, sy | EF —p and M, syp = AF p and hence M, sg = ~AF p

f. = Alp1 U A[p2 U ¢3]] and o' = A[A[p1 U ¢2|U ¢3] are not equivalent.

Take ¢1 = p, ¢2 = ¢, and ¢3 = r; and let M be a transition system
with

States: S = {so, s1}
Transitions: sg — s1, S1 — 1
Labels: L(so) = {p}, L(s1) = {r}

Then M, so = AlpU AlqU r]] but M, sg = A[A[pU q|Ur].
Also, let M’ be a transition system with

States: S = {so, $1, $2, 53,54}

Transitions: sg — s1, S — S2, So — S3, S3 — S4, S4 — S4
Labels: L(so) = L(s2) = {p}, L(s1) = L(s3) = {q}, L(s1) =
{r}

Then M, 5o = AlpU A[qU r]] but M’ s = A[A[pU q] U r].
g. AG ¢ — EG ¢ is equivalent to T.

h. EG ¢ — AG ¢ is not equivalent to T.
Let M be a transition system with

States: S = {so, s1}
Transitions: sg — sg, So — S1, S1 — S1

Labels: L(sg) = {p}, L(s1) =0
Then M, sg £ EGp — AG p.
Exercise 3.4.11.
a. AG(pNY) =AGp NAGY
b. EF -¢ = -AG ¢

Exercise 3.4.13. Let M be a CTL model and s be a state of M. Then



sE-AX ¢
iff 5 b AX ¢
iff not for all s’ such that s — s’ we have s’ = ¢
iff for some s’ such that s — s’ we have s’ }£ ¢

iff for some s’ such that s — s’ we have s’ = —¢
iff s = EX ¢

This proves that “AX ¢ = EX —¢.

Exercise 3.5.1. We express informal statements as formulas.

a. Whenever p is followed by q (after finitely many steps), then the system
enters an “interval” in which no r occurs until t.

If ”finitely many steps” means ”zero or more steps,” we may use
AG(p — AG (¢ — A[-rUt])).
If zero steps are not admissible, we get
AG(p — AX AG (¢ — A[-rUt])).

b. Event p precedes s and t on all computation paths.

We express this via negation, that it is not the case that on some
computation path p does not precede s and t:

_|E[_|pU ((S V t) A\ —\p)]
c. After p, q is never true (on all computation paths).

AG(p — AX AG —q)

or

AG(p — ~EX EF q)

d. Between the events q and r, p is never true (on all computation paths).

[AG(q — —~EF (p N EF 7)) AN[AG(r — —~EF (p AN EF q))]



e. Transitions to states satisfying p occur at most twice (on all computa-
tion paths).

~(EX EF(p A EX EF(p A EX EF p)))

Exercise 3.5.3. Let ¢1 be the formula Fp — Fq, ¢5 be AFp — AFq, and
o3 be AG(p — AFq).
(a) Let M be a transition system with

States: S = {s}
Transitions: s — s

Labels: L(s) =0 (or L(s) = {q})

Then M, s |~ p and M, s = AFp, and consequently M, s |= A[p1] A 2 A ¢3.

(b) Let M be a transition system and s be a state in M. First observe
that if Fp — Fyq is satisfied by all paths 7 starting at s and M, s = AFp,
then M, s = AFq. In short, if ¢; is satisfied by s, so is ¢3. Thus, ¢; can
not be the only formula satisfied M.

Secondly, if M,s = AG(p — AFq), then M,s = AFp — AFq, and
hence ¢3 can not be the only formula satisfied either.

Finally, if M is a transition system with

States: S = {so, 1, s2}
Transitions: sg — s1, Sg — S2, §1 — S1, S92 — S92
Labels: L(sg) = L(s1) =0 and L(s2) = {p}

then M, s = AFp and, hence, M, sy = AFp — AFq. On the other hand,

so satisfies neither Fip — Fq (because the path sg — sy — so--- satisfies

Fp but not Fgq) nor AG(p — AFq) (because sy — s and sy satisifes p but

not AFq). Thus, sg satisfies only ¢ (but note that so does not satisfy ¢2).
(c) Let M be a transition system with

States: S = {s}
Transitions: s — s
Labels: L(s) = {p}

Then M, s = p and M, s = AFp, but M, s = AFq. Since there is only one
computation path in this system, we may conclude that sg satisfies none of
the formulas A[p1], ¢2, and ¢s.

Exercise 3.5.4. In terms of the order of occurrences of events p, s, and ¢, the
formula AG(p — AF(sNAX(AF't))) expresses that event p is accompanied
or followed by s, which in turn is followed by ¢.

Exercise 3.5.6.



a. See remark 3.18 on pp. 219-220.

b. AG Fp and AG EF p are not equivalent.
Let M be a transition system with

States: S = {so,s1}
Transitions: sg — sg, Sg — S1, S1 — S1

Labels: L(sg) =0, L(s1) = {p}
Then M, sy | AGEF p but M, sy = AG F p.
c. A[(pUr)V (qUr)] and A[(p V q)Ur| are not equivalent.
Let M be a transition system with

States: S = {so,s1,s2}
Transitions: sgp — s1, S1 — S92, So — S9

Labels: L(so) = {p}, L(s1) = {q}, L(s2) = {r}
Then M, so = Al(pV q)Ur] but M, sg = Al(pUr) V (qUr)].
d. A[XpV XXp|and AXpV AX AXp are not equivalent.
Let M be a transition system with

States: S = {so, s1, S2, 3}
Transitions: sg — s1, Sg — S2, S| — So2, So — S3, S3 — S3

Labels: L(sg) = L(s2) =0, L(s1) = L(s3) = {p}
Then M, so = A[XpV XXp] but M, sg = AXpV AX AXp.
e. E(GFp)and EG EF p are not equivalent.
Let M be a transition system with

States: S = {so,s1,s2}
Transitions: sg — sg, Sop — S1, S1 — S2, S2 — S2
Labels: L(sg) = L(s2) = 0, L(s1) = {p}
Then M, so = EG EF p but M, sg = E(GF p).
Exercise 3.5.8

e We first show that —qU (—p A —~¢) — —Gp is valid.

Suppose m = =qU (=p A —=q). Then 7 = —p A —q, for some i. But
if 7 = —p A =g, then 7 |= —p, and hence 7* [~ p. Consequently,
m = Gp and hence m = —=Gp. In sum, we may conclude that 7 |=
—qU (=p A —q) — —Gp, for all paths 7.



e We next show that (G—¢ A F—p) — —qU (—p A —q) is valid.

Suppose ™ = G—¢ A F=p. Then 7 = G—q and m = F—p. The latter
assertion implies that 7! |= —p, for some 4. Since 7 = G—¢ we obtain,
in particular, that 7/ |= —q for all j with j < i. Thus, 7 |= (=p A —q)
and m = —qU (-p A =q). We conclude that 7 = (G—¢ A F—p) —
—qU (=p A —q), for all paths 7.

e Using the above facts and basic propositional and LTL equivalences
we obtain:

~((pUq) v Gp)

~(pUq) N —Gp

[(=qU (=p A —q)) V ~Fq] A ~Gp

[(mqU (=p A =q)) A=Gpl| V [~Fq A =Gp]
)
]

[(=qU (=p A =q)) A =Gp] V [G—g A F=p]
[~q U (=p A =q)] V [G—g A Fp]

—qU (=p A —q)

~qU~(pVq)

Exercise 3.6.10. The assertion s = AG AF ¢ means that ¢ is true infinitely
often along every path starting at s.
Let m be an arbitrary path

S=81—>8) — " — 8§y —> -

starting at s.

First note that by the semantics of AG, from s = AG AF ¢ we may infer
that s; = AF ¢, for all i > 1. Thus, by the definition of AF, for each i > 1
there exists an index j with ¢ < j, such that s; = ¢. Furthermore, whenever
sj = ¢ there exists an index k with j < k, such that s; = ¢. (The latter
observation follows from the fact that sj 11 = AF ¢.)

Based on these assertions, we can inductively define an infinite sequence
ki, kg, ... such that k; < ki1 and s, = ¢, for all ¢ > 1. In other words, ¢
is true infinitely often along .



