
CSE 541 - Logic in Computer Science
Solutions for Selected Problems on

Skolemization, Unification, and Resolution

Prenex form.

A possible prenex form of

¬∃x ((∀y ∀z P (y, z)) ∧ ¬P (x, z))

is
∀x∃y∃z (¬P (y, z) ∨ P (x, z)).

Logical equivalence.

The two sentences ∀x ∃y (P (x) ∧Q(y)) and ∃y ∀x (P (x) ∧Q(y))

are equivalent, as the the following proof shows:

∀x ∃y (P (x) ∧Q(y))
∼ ∀x (P (x) ∧ ∃y Q(y))
∼ ∀x P (x) ∧ ∃y Q(y)
∼ ∃y (∀x P (x) ∧Q(y))
∼ ∃y ∀x (P (x) ∧Q(y))

Logical equivalence.

The two sentences ∀x ∃y P (x, y) and ∃y ∀x P (y, x) are not equiva-
lent. Consider a model M with the set of (negative and nonnegative)
integers as universe, where PM is the less-than relation. The first sen-
tence (which asserts that every integer is less than some other integer)
is true in this model, but the second sentence (which states that there
is a smallest integer) is false.

Logical equivalence.

Consider ∀x ∃x P (x, x) and ∃x ∀x P (x, x). Since ∀x ∃x P (x, x) is
logically equivalent to ∃x P (x, x), whereas ∃x ∀x P (x, x) is equivalent
to ∀x P (x, x), the two formulas are not equivalent.

Logical consequence.

The sentence ∃x (P (x)∧R(x)) is not a logical consequence of ∃x (P (x)∧
Q(x)) and ∃x (Q(x) ∧R(x)).



For instance, consider a model M with domain {a, b}, where PM =
{a}, QM = {a, b}, and RM = {b}. Then ∃x (P (x) ∧ Q(x)) is true
in M as P (x) and Q(x) both evaluate to true if a is assigned to x.
Similarly, ∃x (Q(x)∧R(x)) is true in M as Q and R both evaluate to
true if b is assigned to x. But ∃x (P (x) ∧ R(x)) is not true in M, as
there is no assignment to x for which both P (x) and R(x) evaluate to
true at the same time.

Skolemization.

We skolemize various sentences.

1. ∃x ∀y ∃z (P (x, y) ∧ P (y, z) → P (x, z))

Solution: ∀y (P (c, y) ∧ P (y, f(y)) → P (c, f(y)))

2. ∀x ∀y (P (x, y) → ∃z (P (x, z) → P (z, y)))

Solution: ∀x ∀y (P (x, y) → (P (x, f(x, y)) → P (f(x, y), y)))

3. ∀x ∃x P (x, x)

Solution: ∀xP (f(x), f(x))

4. ∃x ∀x P (x, x)

Solution: ∀xP (x, x)

Prenex form and Skolemization.

We convert the following formula to a set of clauses so that satisfiability
is preserved:

¬(∀x∃y P (x, y) → (∀y∃z ¬Q(x, z) ∧ ∀y¬∀z R(y, z))).

First we rename bound variables so that different quantifiers bind dif-
ferent variables and no variable has both free and bound occurrences:

¬(∀u∃v P (u, v) → (∀y∃z ¬Q(x, z) ∧ ∀s¬∀tR(s, t))).

Next observe that this formula is satisfiable if, and only if, its existen-
tial closure is satisfiable:

∃x[¬(∀u∃v P (u, v) → (∀y∃z ¬Q(x, z) ∧ ∀s¬∀tR(s, t)))].

Conversion to prenex form takes several steps; one intermediate for-
mula is

∃x[∀u∃v P (u, v) ∧ (∃y∀z Q(x, z) ∨ ∃s∀tR(s, t))].



A possible prenex formula is

∃x∀u∃v∃y∀z∃s∀t (P (u, v) ∧ (Q(x, z) ∨R(s, t)).

Skolemization yields a universal formula,

∀u∀z∀t (P (u, fv(u)) ∧ (Q(cx, z) ∨R(fs(u, z), t))),

where cx and fs are Skolem symbols. (Other universal sentences can
also be obtained from the given initial formula.) The corresponding
clauses are P (u, fv(u)) and Q(cx, z) ∨R(fs(u, z), t)).

Substitution.

Let σ1 be the substitution [x 7→ y, y 7→ z, z 7→ x], σ2 the substitution
[x 7→ y, y 7→ z, z 7→ y], and σ3 the substitution [x 7→ x + y, y 7→
y + z, z 7→ x+ z].

Since σ2 = σ1[x 7→ y], the substitution σ1 is more general than σ2. We
also have σ3 = σ1[x 7→ x+ z, y 7→ x+ y, z 7→ y + z] so that σ1 is more
general than σ3. (But neither σ2 nor σ3 is more general than σ1.)

We also have

σ1σ2 = [x 7→ z, z 7→ y]
σ2σ2 = [x 7→ z]
σ2σ3 = [x 7→ y + z, y 7→ x+ z, z 7→ y + z]

σ1σ2σ3 = [x 7→ x+ z, y 7→ y + z, z 7→ y + z]

Unification.

The unification problem {x =? f(y, g(y)), g(f(z, a)) =? g(y)} is solv-
able. The derivation,

x =? f(y, g(y)), g(f(z, a)) =? g(y)
⇒Decompose x =? f(y, g(y)), f(z, a) =? y

⇒Orient x =? f(y, g(y)), y =? f(z, a)

⇒Eliminate x =? f(f(z, a), g(f(z, a))), y =? f(z, a)

yields a most general unifier, [x 7→ f(f(z, a), g(f(z, a))), y 7→ f(z, a)].
Another unifer, but not a most general one, is [x 7→ f(f(a, a), g(f(a, a))), y 7→
f(a, a)].



Unification.

The unification problem

f(x, g(a, y)) =? f(h(y), g(y, a)), g(x, h(y)) =? g(z, z)

where x, y, and z are the only variables (and all other symbols denote
functions or constants), is solvable. The derivation,

f(x, g(a, y)) =? f(h(y), g(y, a)), g(x, h(y)) =? g(z, z)
⇒Decompose x =? h(y), g(a, y) =? g(y, a), g(x, h(y)) =? g(z, z)

⇒Decompose x =? h(y), a =? y, y =? a, g(x, h(y)) =? g(z, z)

⇒Eliminate x =? h(a), a =? a, y =? a, g(x, h(a)) =? g(z, z)

⇒Delete x =? h(a), y =? a, g(x, h(a)) =? g(z, z)

⇒Eliminate x =? h(a), y =? a, g(h(a), h(a)) =? g(z, z)

⇒Decompose x =? h(a), y =? a, h(a) =? z

⇒Orient x =? h(a), y =? a, z =? h(a)

yields a most general unifier,

[x 7→ h(a), y 7→ a, z 7→ a].

Unification.

The unification problem {x1 =? f(x2), x2 =? f(x3), g(x4) =? x3, g(x1) =?

x4} is not solvable: after applying several orientation and elimination
steps to the given set, one obtains a unification problem to which the
occurs-check rule applies.

Ground resolution.

We use ground resolution to show that the set of clauses

{P ∨ ¬Q,P ∨R,¬Q ∨R,¬P ∨Q,Q ∨ ¬R,¬P ∨ ¬R}

is unsatisfiable. Here is one possible derivation of a contradiction:

P ∨ ¬Q given (1)
P ∨R given (2)
¬Q ∨R given (3)
¬P ∨Q given (4)



Q ∨ ¬R given (5)
¬P ∨ ¬R given (6)

P ∨Q RES 2,5 (7)
¬P ∨ ¬Q RES 3,6 (8)

P ∨ P RES 1,7 (9)
P FACT 9 (10)

¬P ∨ ¬P RES 4,8 (11)
¬P FACT 11 (12)
⊥ RES 10,12 (13)

Ground resolution.

Let N be the set containing the following (ground) clauses:

¬P ∨Q ∨R (14)
P ∨ ¬R (15)
Q ∨ ¬R (16)
P ∨R ∨ ¬S (17)
¬P ∨ T (18)
¬Q ∨R ∨ T (19)
Q ∨R ∨ S ∨ T (20)
¬Q ∨ ¬T (21)
P ∨ S ∨ ¬T (22)

We derive new clauses by resolution:

P ∨Q ∨R ∨ S ∨ S [7 and 9] (23)
P ∨ ¬Q ∨R ∨ S [6 and 9] (24)
¬Q ∨ ¬Q ∨R [6 and 8] (25)

¬P ∨ ¬Q [5 and 8] (26)
P ∨ P ∨Q ∨R ∨R [10 and 4] (27)

P ∨ ¬Q ∨ ¬Q [12 and 2] (28)
¬P ∨Q ∨Q [1 and 3] (29)

P ∨ ∨P ∨Q ∨Q [14 and 3] (30)
¬P ∨ ¬P [16 and 13] (31)
P ∨ P ∨ P [17 and 15] (32)

⊥ [18 and 19] (33)



Since a contradiction has been derived the initial set N is unsatisfiable.

Ground resolution.

We derive a contradiction from the following clauses using resolution:

P1,1 ∨ P1,2 P2,1 ∨ P2,2 P3,1 ∨ P3,2

¬P1,1 ∨ ¬P2,1 ¬P1,2 ∨ ¬P2,2 ¬P1,1 ∨ ¬P3,1

¬P1,2 ∨ ¬P3,2 ¬P2,1 ∨ ¬P3,1 ¬P2,2 ∨ ¬P3,2

In each inference the maximal literals in each premise were resolved,
where maximality is determined by the following ordering: using the
following order on literals:

¬P3,2 � P3,2 � ¬P3,1 � P3,1 � ¬P2,2 � · · · � ¬P1,1 � P1,1.

(This is also known as “ordered resolution.”) Factoring has been sys-
tematically applied to eliminate multiple occurrences of the same lit-
eral from a clause, and for simplicity only clauses without multiple
occurrences of the same literal are listed. The first nine clauses are
given.

P1,1 ∨ P1,2 [given] (1)
P2,1 ∨ P2,2 [given] (2)
P3,1 ∨ P3,2 [given] (3)

¬P1,1 ∨ ¬P2,1 [given] (4)
¬P1,2 ∨ ¬P2,2 [given] (5)
¬P1,1 ∨ ¬P3,1 [given] (6)
¬P1,2 ∨ ¬P3,2 [given] (7)
¬P2,1 ∨ ¬P3,1 [given] (8)
¬P2,2 ∨ ¬P3,2 [given] (9)
¬P2,2 ∨ P3,1 3 & 9 (10)
¬P1,2 ∨ P3,1 3 & 7 (11)
¬P2,1 ∨ ¬P2,2 10 & 8 (12)
¬P1,1 ∨ ¬P2,2 10 & 6 (13)
¬P1,2 ∨ ¬P2,1 11 & 8 (14)
¬P1,1 ∨ ¬P1,2 11 & 6 (15)
¬P1,2 ∨ P2,1 2 & 5 (16)
¬P1,1 ∨ P2,1 2 & 13 (17)



¬P1,2 16 & 14, plus factoring (18)
¬P1,1 ∨ ¬P1,2 16 & 4 (19)

¬P1,1 17 & 4, plus factoring (20)
P1,1 1 & 18 (21)
⊥ 21 & 20 (22)

Instantiation of clauses.

Consider the following clauses,

¬R(x, x) (1)
¬R(x, y) ∨R(f(x), y) (2)

R(x, f(x)) (3)

Suitable instantiation yields a set of ground clauses,

¬R(f(a), f(a)) (1′)
¬R(a, f(a)) ∨R(f(a), f(a)) (2′)

R(a, f(a)) (3′)

that is unsatisfiable, as one can obtain a contradiction by two steps of
resolution. Hence, the initial set of clauses is also unsatisfiable.

Resolution.

Consider the following clauses:

¬R(x, y) ∨ ¬R(y, x)
R(fx, fx)

We apply resolution to the first clause and a renamed version (renam-
ing x to x′) of the second clause, using most general unifier σ = [x 7→
fx′, y 7→ fx′], to obtain

¬R(fx′, fx′).

From the (original) second clause and the new clause we obtain a
contradiction by applying resolution with most general unifier σ =
[x 7→ x′]. The initial set of clauses is therefore not satisfiable.

Resolution.



We use resolution to show that the set of two clauses,

¬R(x, y) ∨ ¬R(y, x)
R(ffx, fy)

is unsatisfiable. After renaming x to x′ and y to y′ in the second clause,
we apply resolution to the two given clauses to obtain

¬R(fy′, ffx′)

by using the unifier σ = [x 7→ ffx′, y 7→ fy′]. From the second clause
and this new clause we get a contradiction by applying resolution with
unifier σ = [y 7→ fx′, y′ 7→ fx]. The initial set of clauses is therefore
not satisfiable.

Resolution.

Consider the set of three clauses,

¬R(x, y) ∨ ¬R(y, z) ∨R(x, z)
¬R(fx, fffx)

R(x, fx)

We rename x to x′ in the second clause and apply resolution with most
general unifier σ = [x 7→ fx′, z 7→ fffx′] to the renamed clause and
the first clause, to obtain

¬R(fx′, y) ∨ ¬R(y, fffx′).

Applying resolution to the third and fourth clause we get

¬R(ffx′, fffx′)

using the most general unifier [x 7→ fx′, y 7→ ffx′].

From the third and fifth clause we obtain a contradiction by resolu-
tion via most general unifier [x 7→ ffx′]. The initial set of clauses is
therefore not satisfiable.

Resolution.

We use resolution and factoring to show that the following set of
clauses is unsatisfiable:

¬P (x, y) ∨ ¬P (y, x) ∨ ¬P (x, a)
P (x, a) ∨ P (x, f(x))
P (x, a) ∨ P (f(x), x)



where a is a constant and x and y are variables. Here is one possible
derivation of a contradiction:

¬P (x, y) ∨ ¬P (y, x) ∨ ¬P (x, a) given (1)
P (x, a) ∨ P (x, f(x)) given (2)
P (x, a) ∨ P (f(x), x) given (3)
¬P (x, x) ∨ ¬P (x, a) FACT 1 [y 7→ x] (4)

¬P (a, a) FACT 4 [x 7→ a] (5)
P (a, f(a)) RES 2,5 [x 7→ a] (6)
P (f(a), a) RES 3,5 [x 7→ a] (7)

¬P (f(a), y) ∨ ¬P (y, f(a)) RES 1,7 [x 7→ f(a)] (8)
¬P (a, f(a)) RES 7,8 [y 7→ a] (9)

⊥ RES 6,9 (10)

Resolution.

We use resolution to determine whether

η : ∀x∃y∀z[R(f(x), y) ∨R(y, f(z))]

is a logical consequence of

φ : ∀x∃y[R(x, f(y)) → R(y, f(x))]

and
ψ : ∃x∀y∃z[¬R(x, f(y)) → ¬R(y, f(z))].

First note that η is a logical consequence of φ and ψ if, and only if,
the implication φ ∧ ψ → η is valid. The latter problem is equivalent
to determining whether φ ∧ ψ ∧ ¬η is unsatisfiable.

We next skolemize φ, ψ, and ¬η to obtain universal sentences,

φ′ : ∀x[R(x, f(g(x))) → R(g(x), f(x))]
ψ′ : ∀y[¬R(c, f(y)) → ¬R(y, f(h(y)))]

η′ : ∀y¬[R(f(d), y) ∨R(y, f(i(y)))]

where c, d, g, h, and i denote Skolem functions. The formula φ∧ψ∧¬η
is unsatisfiable if, and only if, φ′ ∧ ψ′ ∧ η′ is unsatisfiable. The latter



formula is unsatisfiable if, and only if, the following set of clauses S is
unsatisfiable:

¬R(x, f(g(x))) ∨R(g(x), f(x))
R(c, f(y)) ∨ ¬R(y, f(h(y)))

¬R(f(d), y)
¬R(y, f(i(y)))

Each clause in S contains a negative literal. In general, if both premises
of a resolution inference contain a negative literal, so does the conclu-
sion; and, similarly, if factoring is applied to a clause with a negative
literal, the conclusion also contains a negative literal. Thus, we can
only derive clauses with negative literals from S (by resolution and
factoring), but not the empty clause (a contradiction). We may con-
clude that S is satisfiable and, hence, η is not a logical consequence of
φ and ψ.


