
CSE 541 - Logic in Computer Science
Sample Solutions for Selected Exercises on Modal Logic

Exercise 5.2.1 a

Answer key. (iv) false; (v) true; (vi) true; (vii) false; (viii)
true; (ix) true; (x) true; (xi) false; (xii) true.

Exercises 5.2.1 b,c

i. Only worlds c, d and e satisfy the given formula.

ii. Only world b satisfies the given formula.

iii. Only worlds a, b and d satisfy the given formula.

iv. Only worlds a, b and d satisfy the given formula.

v. Only worlds c, d and e satisfy the given formula.

vi. All worlds satisfy the given formula.

Exercise 5.2.2

Let M = (W,R,L) be a model with W = {s0}, R = ∅, and
L(s0) = ∅. The formula scheme φ → ψ is not valid in M (e.g.,
¬p→ p is false), but has true instances, such as p→ p.

Exercise 5.2.3 b

i. World c satisfies the given formula.

ii. Worlds a and b satisfy the given formula.

iii. Worlds a, b and e satisfy the given formula.

iv. Worlds b, c, d and e satisfy the given formula.

v. All worlds satisfy the given formula.

Exercise 5.2.5

a. LetM = (W,R,L) be a model withW = {s0, s1, s2}, R = {(s0, s1), (s1, s2)},
and L(s0) = L(s2) = ∅ and L(s1) = {p}. Then M, s0 |= 2p but
M, s0 6|= 22p.



c. The formulas 2(p∧ q) and 2p∧2q are equivalent; see the remarks on
page 269.

d. LetM = (W,R,L) be a model withW = {s0, s1, s2}, R = {(s0, s1), (s0, s2)},
and L(s0) = ∅, L(s1) = {p}, and L(s2) = {q}. Then M, s0 |= 3p∧3q
but M, s0 6|= 3(p ∧ q).

e. Taking the same model M, we also find that M, s0 |= 2(p∨q) whereas
M, s0 6|= 2p ∨2q.

f. The formulas 3(p∨q) and 3p∨3q are equivalent; see the next exercise.

g. Take again the same modelM as before and note that M, s0 |= (2p→
2q) but M, s0 6|= 2(p→ q).

h. Let M = (W,R,L) be a model with W = {s0}, R is the empty
relation, and L(s0) = ∅. Then M, s0 |= > but M, s0 6|= 3>.

Exercise 5.2.6

a. We prove that 2(φ ∧ ψ) and 2φ ∧2ψ are true in the same worlds.

Consider first a model M = (W,R,L) and a world x ∈ W , such that
x |= 2(φ∧ψ). By the definition of the 2 operator, we have y |= (φ∧ψ),
for all y ∈W with xRy. By the semantics of conjunction, we obtain (i)
y |= φ, for all y ∈W with xRy, and (ii) y |= ψ, for all y ∈W with xRy.
This implies both x |= 2φ and x |= 2ψ, and hence x |= (2φ ∧ 2ψ),
which completes the first part.

Next consider a model M = (W,R,L) and a world x ∈ W , such that
x |= (2φ ∧ 2ψ). By the semantics of conjunction, we have x |= 2φ
and x |= 2ψ. By the definition of the 2 operator, we obtain y |= φ,
for all y ∈ W with xRy, as well as y |= ψ, for all y ∈ W with xRy.
Thus we also have y |= (φ ∧ ψ), for all y ∈W with xRy. This implies
x |= 2(φ ∧ ψ), which completes the second part.

b. This part can be proved in a similar way.

c. We prove that 2> is true in all worlds of all models. Let M =
(W,R,L) be a model and x ∈ W . To show x |= 2> it suffices to
prove y |= >, for all y ∈ W with xRy. The latter assertion can easily
be seen to be true, as z |= > holds for all z ∈W .



d. Note that 3⊥ is equivalent to ¬2¬⊥ and to ¬2>. By the preceding
part, the last formula is equivalent to ¬>. We thus obtain that 3⊥ is
equivalent to ⊥, which implies that 3⊥ ↔ ⊥ is valid.

e. We prove that 3> → (2φ → 3φ) is a valid formula of basic modal
logic.

Consider an arbitrary model M = (W,R,L) and a world x ∈ W . We
have to show that x |= 3> → (2φ → 3φ). For that purpose, let us
assume x |= 3>. We need to show x |= (2φ→ 3φ). Let us therefore
assume x |= 2φ, and then show x |= 3φ.

To prove x |= 3φ we have to show that there exists a world y ∈ W
such that xRy and y |= φ. Since x |= 3> we know that there exists a
world, say z, with xRz. Furthermore, x |= 2φ implies x′ |= φ, for all
worlds x′ with xRx′. Consequently we have z |= φ, which completes
the proof.

Exercise 5.3.14

The frame (W,R) withW = {x, y} andR = {(x, x), (x, y), (y, y)}
is reflexive and transitive, but not symmetric. If we choose a la-
belling function L with L(x) = {p} and L(y) = ∅, then x does
not satisfy p→ 23p. But x does satisfy p→ 23p if we choose
a labelling function L with L(x) = L(y) = ∅.

Exercise 5.3.15

Any frame (W,R) where R = ∅ is Euclidean. Also the frame
(W1, R1), with W1 = {x, y} and R1 = {(x, y), (y, y)}, and the
frame (W2, R2), withW2 = {x, y, z} andR2 = {(x, y), (x, z), (y, y), (y, z), (z, y), (z, z)},
are Euclidean. The frame (W3, R3), with W3 = {x, y} and
R3 = {(x, y)}, and the frame (W4, R4), with W4 = {x, y, z}
and R4 = {(x, y), (x, z)}, are not Euclidean.

Exercise 5.3.16

1. The relation R corresponding to φ→ 2φ is characterized by the con-
dition that it be a subset of the identity relation (i.e., for all x and y,
if xRy then x = y).

2. The relation corresponding to 2⊥ is the empty relation.



3. The relation R corresponding to 32φ→ 23φ is characterized by the
following condition (also known as “diamond property” or “conflu-
ence”): for all x, y and z such that xRy and xRz, there exists v with
yRv and zRv.

Proof. (i) Suppose R satisfies the diamond property. Let M be an
arbitrary Kripke model (W,R,L). We have to show that 32φ→ 23φ
is true in all worlds of W . Let x ∈ W be such that x |= 32φ. We
need to show that x |= 23φ; or that y |= 3φ, for all y with xRy. Let
y ∈ W be such that xRy. To prove y |= 3φ we need to find a z ∈ W
such that z |= φ.

We know x |= 32φ, from which we may infer that there exists y′ ∈W
such that xRy′ and y′ |= 2φ. Since we also have xRy we may use the
diamond property to infer that there exists a z ∈ W such that yRz
and y′Rz. From y′ |= 2φ and y′Rz we obtain z |= φ, which completes
the first part of the proof.

(ii) Suppose F is a frame (W,R) that satisfies 32φ→ 23φ. In other
words, the latter formula is true in each world of each Kripke model
(W,R,L) based on F .

We have to prove that R satisfies the diamond property. For that
purpose, suppose x, y and z are elements of W such that xRy and
xRz. We need to show that there exists a v ∈ W such that yRv and
zRv.

Now consider a specific Kripke model (W,R,Ly), where the labelling
function Ly is defined (in terms of y) by: Ly(u) = {p}, if yRu, and
Ly(u) = ∅, otherwise. In this Kripke model we obviously have y |= 2p,
and since xRy, also x |= 32p. Since F satisfies the general schema
32φ → 23φ, we get in particular, x |= 32p → 23p. By modus
ponens we obtain x |= 23p and, since xRz, also z |= 3p. Thus there
exists a v ∈ W such that zRv and v |= p. By the definition of Ly we
must also have yRv. This completes the second part of the proof.

Exercise 5.3.17

A binary relation R on a set W is said to be dense if for all x
and y in W with xRy, there exists z ∈ W , such that xRz and
zRy.

We prove that a frame F = (W,R) satisfies the formula (scheme)
22φ→ 2φ iff the accessibility relation R is dense.



(i) Suppose the relationR is dense. LetM be any model (W,R,L)
and x ∈ W . We need to show that x satisfies 22φ → 2φ. For
that purpose, suppose x |= 22φ. We need to show x |= 2φ. In
other words, we have to prove that y |= φ, for all y ∈ W with
xRy. Let y be an arbitrary world in W such that xRy. Since R
is dense, there exists a world z ∈ W , such that xRz and zRy.
We also know x |= 22φ, and hence may infer that z |= 2φ. But
since zRy, this implies y |= φ, which completes this part of the
proof.

(ii) Suppose F is a frame (W,R) that satisfies 22φ → 2φ. We
have to show that R is dense.

Let x and y be arbitrary elements of W with xRy. We need to
show that there is a world z ∈W such that xRz and zRy.

Let now L be a labelling function such that L(u) = {p} if there
exists w ∈W such that xRw and wRu; and L(u) = ∅ otherwise.
Let M be the model (W,R,L). Then M, x |= 22p. Since the
frame (W,R) satisfies 22φ→ 2φ, we may infer thatM, x |= 2p.
In other words, we must have M, x′ |= p, for all worlds x′ with
xRx′. In particular, we obtain M, y |= p, or p ∈ L(y). By the
definition of L, this implies that there exists z ∈ W such that
xRz and zRy, which completes the proof.

Exercise 5.5.3

a. K1p

b. K1 (p ∨ q)

c. K1p ∨ K1q

d. K1p ∨ K1¬p

e. ¬K1(p ∨ q) ∧ ¬K1¬(p ∨ q)

f. K1K2p ∨ K1¬K2p

g. K1(K2p ∨K2¬p) ∨K1(¬K2p ∧ ¬K2¬p)

h. ¬K1p ∧ · · · ∧ ¬Knp

i. ¬(Ep ∨ E¬p)



j. (K1p→ K1q) ∧ · · · ∧ (Knp→ Knq)

k. (K1p ∧ ¬K1q) ∨ · · · ∨ (Knp ∧ ¬Knq)

l. E(K1p ∨ · · · ∨Knp)

Exercise 5.5.4
Consider the KT453 model in Figure 5.13.

a. We have x1 6|= K1p, as x1R1x1 but x1 6|= p.

b. We have x3 |= K1(p ∨ q).

c. We have x1 |= K2q.

d. We have x3 |= E(p ∨ q).

e. We have x1 6|= Cq, as x1 6|= Eq.

f. We have x1 6|= D{1,3}p, because x1R1x1 and x1R3x1, yet x1 6|= p.

g. For similar reasons we also have x1 6|= D{1,2}p.

h. We have x6 |= E¬q.

i. We have x6 6|= K3K1¬q and hence x6 6|= EE¬q. Therefore, we obtain
x6 6|= C¬q.

j. We have x6 |= C{3}¬q, as x6 |= K3¬q.

Exercise 5.5.5

Let M = (W,R,L) be a KT452 model with W = {s0, s1, s2},

R1 = {(s0, s0), (s0, s1), (s1, s0), (s1, s1), (s2, s2)}
R2 = {(s0, s0), (s1, s1), (s1, s2), (s2, s1), (s2, s2)}

and such that φ is true in s0 and s1, but not in s2.

Then Eφ is true in s0, but not in s1. Consequently, s0 does not
satisfy Eφ→ EEφ, while s1 does not satisfy ¬Eφ→ E¬Eφ.

Aces and Eights
You play a card game, aces and eights, with Alice and Bob. The game is
played with eight cards, four aces and four eights. Each player is dealt two
cards and raises them up so that the other players can see them but he or



she cannot. The remaining two cards are left face down. The players take
turns trying to determine which cards they are holding: (i) two aces, (ii)
two eights, or (iii) and ace and an eight. (Assume all players are intelligent,
perceptive, and truthful.)

• In the first game Alice, who holds two aces, goes first and Bob, who
holds two eights, goes second. They both cannot determine what cards
they are holding. This implies that you are holding neither two eights
(for then Alice would know that she is holding a pair of aces) nor two
aces (for then Bob would know he is holding a pair of eights), but an
ace and an eight.

• In the second game you go first. Alice, who goes second, holds two
eights, and Bob, who goes third, holds an ace and an eight. No one
is able to give a definite answer in the first turn. Since Alice and Bob
hold three of the four eights, you hold either a pair of aces or else an
ace and an eight. If you had a pair of aces, then Bob, culd have used
similar arguments as in the first game to deduce that he is holding
an ace and an eight. The fact that he does not know what cards he
is holding allows you to conclude that you are holding an ace and an
eight.


