Introduction to Predicate Logic Part 2

CSE541
Professor Anita Wasilewska
Lecture Notes (2)

Predicate Logic Introduction Part 2

- Predicate Logic Tautologies;
- Basic Laws of Quantifiers

Intuitive Semantics for Predicate Logic

Basic Laws of Quantifiers Predicate Logic Tautologies

De Morgan Laws

- $\neg \forall x A(x) \equiv \exists x \neg A(x)$
- $\neg \exists x A(x) \equiv \forall x \neg A(x)$

where A(x) is any formula with free variable x,

≡ means "logically equivalent"

Definability of Quantifiers

- $\neg \forall x A(x) \equiv \exists x \neg A(x)$
- $\neg \exists x A(x) \equiv \forall x \neg A(x)$

Example

De Morgan and other Laws Application in Mathematical Statements

$$\neg \forall x((x>0 \Rightarrow x+y>0) \land \exists y (y>0))$$
≡ (by De Morgan's Law)
$$\exists x \neg ((x>0 \Rightarrow x+y>0) \land \exists y (y>0))$$
≡ (by De Morgan's Law and 1., 2., 3., 4.)
$$\exists x((x>0 \land x+y \le 0) \lor \forall y(y \ge 0))$$

We used

1.
$$\neg (A \Rightarrow B) \equiv (A \land \neg B), 2. \neg (A \land B) \equiv (\neg A \lor \neg B)$$

3. $\neg (x + y) > 0) \equiv x + y \le 0$
4. $\neg \exists y (y > 0) \equiv \forall y \neg (y < 0)$
 $\equiv \exists y (y \ge 0)$

Math Statement--- Logic Formula

Mathematical statement

$$\neg \forall x((x>0 \Rightarrow x+y>0) \land \exists y (y>0))$$

Corresponding Logic Formula is

$$\neg \forall x((P(x,c) \Rightarrow R(f(x,y),c)) \land \exists y P(y,c))$$

More general; A(x), B(x) any formulas

$$\neg \forall x((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x \neg ((A(x) \Rightarrow B(x,y)) \land \exists y A(y))$$

$$\equiv \exists x((A(x) \land \neg B(x,y)) \lor \neg \exists y A(y))$$

$$\equiv \exists x ((A(x) \land \neg B(x,y)) \lor \forall y \neg C(y))$$

Distributivity Laws

- 1. $\exists x(A(x) \lor B(x)) \equiv (\exists x A(x) \lor B(x))$ Existential quantifier is distributive over \lor , $(\exists x, \lor)$
- 2. $\forall x (A(x) \land B(x)) \equiv (\forall x A(x) \land B(x))$

Universal quantifier is distributive over Λ , $(\forall x, \Lambda)$

3. Existential quantifier is distributive over ∧ only in one direction

```
\exists x(A(x) \land B(x)) \Rightarrow (\exists x \ A(x) \land \exists x \ B(x))
It is not true, that for any X \neq \varphi and any A(x), B(x)
(\exists x \ A(x) \land \exists x \ B(x)) \Rightarrow \exists x(A(x) \land B(x))
Example: for X = R, A(x) = x > 0, B(x) = x^2 we get \exists x \ (x>0) \land \exists x(x>0) is a true statement! in R(real numbers) and \exists x(x>0 \land x<0) is a false statement in R!
```

Distributivity Laws

4. Universal quantifier is distributive over \wedge in only one direction:

$$((\forall x \ A(x) \lor \forall x \ B(x)) \Rightarrow \forall x (A(x) \lor B(x)))$$

Other direction counter example: take X=R (real numbers) and

$$A(x) = x < 0 B(x) = x \ge 0$$

 $\forall x (x>0 \lor x \ge 0)$ is a **true** statement in R and

$$\forall x(x<0) \lor \forall x(x \ge 0)$$
 is false

5. Universal quantifier is distributive over \Rightarrow in one direction:

$$(\forall x (A(x) \Rightarrow B(x)) \Rightarrow (\forall x \ A(x) \Rightarrow \forall x \ B(x)))$$

Other direction counter example:

Take
$$x \in R$$
, $A(x) = x < 0$, $B(x) = x+1 > 0$

$$(\forall x(x < 0)) \Rightarrow \forall x(x+1 > 0)$$
 is a False statement

Take
$$x=-2$$
, we get $(-2 < 0 \Rightarrow -2+1 > 0)$ False

Introduction and Elimination Laws

- **B** Formula without free variables
- 6. $\forall x(A(x) \Rightarrow B) \equiv (\exists x A(x) \Rightarrow B)$
- 7. $\exists x(A(x) \Rightarrow B) \equiv (\forall x A(x) \Rightarrow B)$
- 8. $\forall x (B \Rightarrow A(x)) \equiv (B \Rightarrow \forall x A(x))$
- 9. $\exists x (B \Rightarrow A(x)) \equiv (B \Rightarrow \exists x A(x))$
- 10. $\forall x(A(x) \lor B) \equiv (\forall x A(x) \lor B)$
- 11. $\forall x(A(x) \land B) \equiv (\forall x A(x) \land B)$
- 12. $\exists x(A(x) \lor B) \equiv (\exists x A(x) \lor B)$
- 13. $\exists x(A(x) \land B) \equiv (\exists x A(x) \land B)$

Remark: we prove 6 -9 from 10 – 13 + de Morgan + definability of implication

TRUTH SETS, Interpretations

We use truth sets for predicates in a set $X \neq \varphi$ to define an intuitive semantics for predicate logic.

Given a set $X \neq \varphi$ and a predicate P(x),

 $\{x \in X: P(x)\}\$ is called a truth set for the predicate P(x) in the domain $X \neq \emptyset$

Example1:

```
Given P(x): x+1 = 3 is called an interpretation of P(x) in X.
```

 $X=\{1, 2, 3\}$ then the truth set $\{x \in X: P(x)\} = \{x \in X: x+1=3\} = \{2\}$, and we say that P(x) In TRUE in X under the interpretation P(x): x+1=3

Example2:

$$P(x): x^2 \le 0$$
 - Interpretation of $P(x)$

$$x = N$$

$$x = N-\{0\}$$

$${x: P(x)} = {0}$$
 ${x:P(x)} = {\phi}$

TRUTH SETS

We use truth sets for predicates always for $X \neq \phi$

Conjunction:

$$\{x \in X: (P(x) \land Q(x))\} = \{x: P(x)\} \land \{x: Q(x)\}$$

Truth set for conjunction $(P(x) \land Q(x))$ is the set intersection of truth sets for its components.

Disjunction:

$$\{x \in X: (P(x) \lor Q(x))\} = \{x: P(x) \lor \{x: Q(x)\}\}$$

Truth set for disjunction $(P(x) \lor Q(x))$ is the set union of truth sets for its components.

Negation:

$${x \in X: \neg P(x)} = X - {x \in X: P(x)}$$

¬ is the negation and − is the set complement

Truth sets for Implication

Implication:

```
\{x \in X: (P(x) \Rightarrow Q(x))\} = X - \{x:P(x)\} \lor \{x:Q(x)\}
   = -\{ x: P(x) \} \lor \{ x: Q(x) \}
   = \{x: \neg P(x)\} \lor \{x: Q(x)\}
```

Example:

```
\{x \in \mathbb{N}: n>0 \Rightarrow n^2 < 0\} = \{x \in \mathbb{N} | x \le 0\} \vee \{\{x \in \mathbb{N}: n \le 0\} \mid x \in \mathbb{N}\} 
     n^2 < 0
     =\{0\} \lor \Phi = \{0\}
```

Truth Sets Semantics for Quantifiers

Definition:

$$\forall x A(x) = T \quad \text{iff} \quad \{x \in X: A(x)\} = X$$

 $X \neq \varphi$ and A(x) is any formula with x-free variable

Definition:

$$\forall x A(x) = F \quad \text{iff} \quad \{x \in X: A(x)\} \neq X$$

where $X \neq \varphi$ and A(x) is any formula with x-free variable

Truth Sets for Quantifiers

Definition:

$$\exists x \ A(x) = T \ (in \ x \neq \varphi) \ iff \{x \in X : A(x)\} \neq \varphi$$

Definition:

$$\exists x \ A(x) = F \ (in \ x \neq \varphi) \ iff \{x \in X : A(x)\} = \varphi$$

A(x) is a formula (complex) with free variable x.

Venn Diagrams For Quantifiers

$$\exists x(A(x) \land B(x)) = T \text{ iff } \{x:A(X)\} \land \{x:B(x)\} \neq \Phi$$

Picture

$\exists x(A(x) \land B(x)) = F \quad \text{iff} \quad \{x:A(x) \land \{x:B(x)\} = \Phi$

Picture

Remember {x:A(x)}, {x:B(x)} Can be Φ!

Х≠Ф

IMPLICATION

Observe that

$$\forall x (A(x) \Rightarrow B(x)) = T \text{ iff } \{x \in X : A(x) \Rightarrow B(x)\} = X$$

Iff
$$\{x:A(x)\}\subseteq \{x:B(x)\}$$

Picture

Venn Diagrams For Implication

Example:

Draw a picture for a situation where (in $X \neq \Phi$)

```
1. \exists x P(x) = T,
2. \exists x \, Q(x) = T,
3. \exists x(P(x) \land Q(x)) = F and
4. \forall x (P(x) \lor Q(x) = F
1. \exists x P(x) = T iff \{x:P(x)\} \neq \Phi
2. \exists x Q(x) = T iff \{x:Q(x)\} \neq \Phi
3. \{x:P(x)\} \land \{x:Q(x)\} \neq \Phi
4. \{x:P(x)\} \lor \{x:Q(x)\} \neq X
```

Picture:

Proving Predicate Tautologies with TRUTH Sets

```
Prove that
|= (\forall x A(x) \Rightarrow \exists x A(x))
Proof:
Assume that not True
(Proof by contradiction) i.e. that there are X \neq \Phi, A(x) such that.
(\forall x \ A(x) \Rightarrow \exists x \ A(x)) = \mathbf{F}
iff \forall x \ A(x) = T \ and \ \exists x \ A(x) = F (A \RightarrowB) = F
iff (def) x \neq \phi
\{x \in X : A(x)\} = X \text{ and } \{x \in X : A(x)\} = \Phi
iff X= Φ
Contradiction with x \neq \phi, hence proved.
```

Prove:

```
\neg \forall x \ A(x) \equiv \exists x \ \neg A(x)
\exists x \ \neg A(x) = T \quad \text{in } X \neq \varphi \quad \text{iff} \quad \{x: \neg A(x)\} \neq \varphi \quad \text{iff}
X - \{x: A(x)\} \neq \varphi \quad \text{iff} \quad \{x: A(x)\} \neq X \quad \text{iff} \quad \forall x \ A(x) = F
\quad \text{iff} \quad \neg \ \forall x \ A(x) = T
```

We assume that for any A(x), the TRUTH set $\{x \in X: A(x)\}$ exists .

Russell Antinomy showed that that technique of TRUTH sets is not sufficient.

This is why we need a proper semantics!

Prove

$$\exists x(A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$$

$$\exists x(A(x) \lor B(x)) = T \text{ iff}$$

 $\{x: (A(x) \lor B(x)) \neq \varphi \text{ (definition)}$
 $= \{x: (A(x)) \lor \{x: (B(x)) \neq \varphi \text{ iff}$
 $\{x: A(x)\} \neq \varphi \text{ or } \{x: B(x)\} \neq \varphi \text{ iff}$
 $= \exists x A(x) = T \text{ or } \exists x B(x) = T$
We used: for any sets, $A \lor B \neq \varphi \text{ iff}$
 $A \neq \varphi \text{ and } B \neq \varphi$