Introduction to

Predicate Logic
Part 2

CSE541

Professor Anita Wasilewska
Lecture Notes (2)



Predicate Logic Introduction
Part 2

* Predicate Logic Tautologies;
e Basic Laws of Quantifiers
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Basic Laws of Quantifiers
Predicate Logic Tautologies

De Morgan Laws

- Vx A(x) = 3x -A(x)

- Ix A(x) = Vx -A(x)

where A(x) is any formula with free variable x,
= means “logically equivalent”

Definability of Quantifiers

- Vx A(x) = 3x -A(x)

- Jx A(x) = Vx -A(x)



Example

De Morgan and other Laws Application in Mathematical Statements

- Vx((x>0 = x+y > 0) A Ty (y>0))
= (by De Morgan’s Law)

Ix - ((x>0 = x+y > 0) A Ty (y > 0))
= (by De Morgan’s Law and 1., 2., 3., 4.)
Ix((x>0 A x+y <0) V Vy(y 2 0))

We used
1.-(A=B)=(AA-B),2.-(AAB)= (-AV -B)
3.-(x+y)>0)=x+y <0
4. -3y (y>0)=Vy-(y<0)

=3y (y20)



Math Statement--- Logic Formula

Mathematical statement

- Vx((x>0 = x+y > 0) A 3y (y>0))
Corresponding Logic Formula is

- Vx((P(x,c) =R( f(x,y),c) )A Iy P(y,c))
More general; A(x), B(x) any formulas

- Vx((A(x) =B( x,y)) A 3y A(y))

= dx -((A(x) = B(x,y)) A 3y Aly))

= Ix((A(x) A -B(x,y) ) V - 3y Aly))

= Ix ((A(x) A -B(x,y)) V Vy -C(y))



Distributivity Laws

1. Ix(A(x) V B(x)) = (Ix A(x) V B(x))

Existential quantifier is distributive over v, (3x, V)
2. Vx (A(x) A B(x)) = (Vx A(x) A B(x))
Universal quantifier is distributive over A, (Vx, A)

3. Existential quantifier is distributive over A only in one
direction

Ix(A(x) A B(x) ) = (Ix A(x) A Ix B(x))

It is not true, that for any X # & and any A(x), B(x)

(Ix A(x) A Ix B(x)) = Ix(A(x) A B(x) )

Example: for X=R, A(x) = x>0, B(x) = x"2 we get

Ix (x>0) A Ix(x>0) is a true statement! in R(real numbers) and
Ix(x>0 A x< 0) is a false statement in R!



Distributivity Laws

4. Universal quantifier is distributive over A in only one direction:
((Vx A(x) V Vx B(x)) = Vx(A(x) V B(x)))
Other direction counter example: take X=R (real numbers ) and
A(x)=x<0 B(x)=x20
Vx (x>0 V x 20) is a true statement in R and
Vx(x<0) V Vx(x 20) is false
5. Universal quantifier is distributive over = in one direction:
(Vx(A(x) =B(x)) = (Vx A(x) = Vx B(x)))

Other direction counter example:

Take x € R, A(x) =x <0, B(x) = x+1>0

(Vx(x <0) = Vx(x+1 >0) is a False statement
Take x=-2, we get (-2 < 0 = -2+1 > 0) False



Introduction and Elimination Laws

B- Formula without free variables
6. Vx(A(x) = B) = (Ix A(x) = B)
7. Ax(A(x) = B) = (Vx A(x) = B)
8. Vx(B = A(x)) = (B = Vx A(x))
9. 3x(B = A(x)) = (B = 3x A(x))
10. Vx(A(x) V B) = (Vx A(x) V B)
11. Vx(A(x) A B) = (Vx A(x) A B)
12. Ix(A(x) V B) = (Ix A(x) V B)
13. Ix(A(x) A B) = (Ix A(x) A B)

Remark: we prove 6 -9 from 10 — 13 + de Morgan +
definability of implication



TRUTH SETS, Interpretations

We use truth sets for predicates in a set X # ¢ to define an intuitive
semantics for predicate logic.

Given a set X # ¢ and a predicate P(x),

{x € X: P(x)} is called a truth set for the predicate P(x) in the domain X # ¢

Examplel.:

Given P(x): x+1 = 3 is called an interpretation of P(x) in X.

X={1, 2, 3} then the truth set {x € X: P(x)} ={x € X: x+1 =3 }={2}, and we

say that P(x) In TRUE in X under the interpretation P(x): x+1 =3
Example2.:

P(x): x*2 <0 - Interpretation of P(x)

x=N x = N-{0}

{x: P(x) }= {0} {xP(x)}=0



TRUTH SETS

We use truth sets for predicates always for X # ¢
Conjunction:
{x€ X: (P(x) A Q(x))} = {x: P(x)} A {x: Q(x)}

Truth set for conjunction (P(x) A Q(x)) is the set intersection of
truth sets for its components.

Disjunction:
{xe X: (P(x) V Q(x))} = {x: P(x) V {x: Q(x)}

Truth set for disjunction (P(x) V Q(x)) is the set union of truth
sets for its components.

Negation:
{x€ X: =P(x)} = X - {x€ X: P(x)}
- is the negation and — is the set complement



Truth sets for Implication

Implication:

{xe X: (P(x) = Q(x))} =X-{x:P(x)} Vv {x:Q(x)}
=-{x:P(x)} V {x : Q(x)}
={x: =P(x)} V {x : Q(x)}

Example:

IXEN:n>0 = n?<0}={x ENx<0}V {{xEN:
n%<0}

=10}V ¢ =10}



Truth Sets Semantics for Quantifiers

Definition:

VxA(x)=T iff {xe€X:A(x)}=X

X # ¢ and A(x) is any formula with x-free variable
Definition:

VxA(x)=F iff {xeX:A(x)}=X

where X # ¢ and A(x) is any formula with x-free variable



Truth Sets for Quantifiers

Definition:
Ix A(x) =T (in x# ¢) iff {x€X:A(x)} =P

Definition:
Ix A(x) =F (inx # ) iff {xEX: A(x)}=¢

A(x) is a formula (complex) with free variable x.



Venn Diagrams For Quantifiers

Ix(A(x) A B(x))=T iff {x:A(X)}A{x:B(x)}z®D

Picture

X# (

D




Ix(A(X) AB(x))=F iff {CA(X) A{:B(x)}= O

Picture
Xz @
Remember {x:A(x)},
{x:B(x)}
Can be Q!

Xz O




IMPLICATION
Observe that

Vx (A(x) = B(x))=T iff {xeX:A(x)= B(x)}=X

Iff {x:A(x)} & {x:B(x)}

Picture

Xz QO

B(x)

Venn Diagrams For
Implication



Example:

Draw a picture for a situation where (in Xz O©)
1. IAx P(x) =T,

2. IAxQ(x) =T,

3. 3IAx(P(x) A Q(x)) =F and

4. Vx(P(x)vQ(x)=F

1.3IxP(x) =T iff {x:P(x)}z®

2.3xQ(x)=T iff {x:Q(x)}z O

3. {x:P(x)} A{x:Q(x)} # ©

4. {x:P(x)} V{ x:Q(x)} # X



Picture:

Xz O

Denotes P(x) # ®




Proving Predicate Tautologies with TRUTH Sets

Prove that

|= (Vx A(x) = 3Ix A(x))

Proof:

Assume that not True

(Proof by contradiction) i.e. that there are X# ®©,A(x) such that.
(Vx A(x) = Ix A(x)) = F

iff Vx A(x)=T and 3x A(x)=F (A=>B)=F
iff (def)x#d
{xeX:A(x)}=Xand{xEX:A(x)}=¢

iff X= ¢

Contradiction with x # &, hence proved.



Prove:
- Vx A(x) = Ix -A(x)
Ax -A(x) =T inXzd¢ iff {x:=A(x)}# ¢ iff

X—={x:A(x)}# ¢ iff {x:A(x)}#X iff VxA(x)=F
iff —VxA(x)=T

We assume that for any A(x),
the TRUTH set {x €X: A(x)} exists .

Russell Antinomy showed that that technique of
TRUTH sets is not sufficient.

This is why we need a proper semantics!



Prove
Ix(A(x) V B(x)) = Ix A(x) V Ix B(x)

Ax(A(x) V B(x)} =T iff

{x: (A(x) V B(x)} # ¢ (definition)
= {x: (A(x)} V {x: (B(x)} # ¢ iff
{x: A(x)} # d or {x: B(x)} # ¢ iff
= 3Ax A(x)=T or Ix B(x)=T

We used: for any sets, AV B # ¢ iff
A#zdandB =z



