Chapter 3 REVIEW
Some Definitions and Problems
SOME DEFINITIONS: Part One

There are some basic **DEFINITIONS** from Chapter 3

You have to **KNOW** them for **Q1** and **MIDTERM**

Knowing all basic **Definitions** is the first step for understanding the material
Definition 1

Given a propositional language \mathcal{L}_{CON} for the set $\text{CON} = C_1 \cup C_2$, where C_1, C_2 are respectively the sets of unary and binary connectives.

Let V be a non-empty set of logical values.

Connectives $\nabla \in C_1$, $\circ \in C_2$ are called extensional iff their semantics is defined by respective functions:

\[
\nabla : V \rightarrow V \quad \text{and} \quad \circ : V \times V \rightarrow V
\]
DEFINITIONS: Propositional Extensional Semantics

Definition 2

Formal definition of a propositional extensional semantics for a given language L_{CON} consists of providing definitions of the following four main components:

1. Logical Connectives
2. Truth Assignment
3. Satisfaction, Model, Counter-Model
4. Tautology
CLASSICAL PROPOSITIONAL SEMANTICS
DEFINITIONS: Truth Assignment Extension v^*

Definition 3
The Language: \(\mathcal{L} = \mathcal{L}_{\neg, \Rightarrow, \cup, \cap} \)

Given the truth assignment \(v : \text{VAR} \rightarrow \{ T, F \} \) in classical semantics for the language \(\mathcal{L} = \mathcal{L}_{\neg, \Rightarrow, \cup, \cap} \)

We define its extension \(v^* \) to the set \(\mathcal{F} \) of all formulas of \(\mathcal{L} \)

as \(v^* : \mathcal{F} \rightarrow \{ T, F \} \) such that

(i) for any \(a \in \text{VAR} \)

\[v^*(a) = v(a) \]

(ii) and for any \(A, B \in \mathcal{F} \) we put

\[v^*(\neg A) = \neg v^*(A); \]

\[v^*((A \cap B)) = \cap(v^*(A), v^*(B)); \]

\[v^*((A \cup B)) = \cup(v^*(A), v^*(B)); \]

\[v^*((A \Rightarrow B)) = \Rightarrow(v^*(A), v^*(B)); \]

\[v^*((A \Leftrightarrow B)) = \Leftrightarrow(v^*(A), v^*(B)) \]
DEFINITIONS: Truth Assignment Extension v^* Revisited

Notation
For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in a case arithmetic operations.

The condition (ii) of the definition of the extension v^* can be hence written as follows:

(ii) and for any $A, B \in \mathcal{F}$ we put

$$v^*(\neg A) = \neg v^*(A);$$
$$v^*((A \cap B)) = v^*(A) \cap v^*(B);$$
$$v^*((A \cup B)) = v^*(A) \cup v^*(B);$$
$$v^*((A \Rightarrow B)) = v^*(A) \Rightarrow v^*(B);$$
$$v^*((A \Leftrightarrow B)) = v^*(A) \Leftrightarrow v^*(B).$$
DEFINITIONS: Satisfaction Relation

Definition 4 Let $v : VAR \rightarrow \{T, F\}$
We say that v satisfies a formula $A \in \mathcal{F}$ iff $v^*(A) = T$

Notation: $v \models A$

We say that v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$

Notation: $v \not\models A$
DEFINITIONS: Model, Counter-Model, Classical Tautology

Definition 5
Given a formula \(A \in \mathcal{F} \) and \(v : \text{VAR} \rightarrow \{T, F\} \)
We say that
\(v \) is a \textbf{model} for \(A \) iff \(v \models A \)
\(v \) is a \textbf{counter-model} for \(A \) iff \(v \not\models A \)

Definition 6
\(A \) is a \textbf{tautology} iff for any \(v : \text{VAR} \rightarrow \{T, F\} \) we have that \(v \models A \)

Notation
We write symbolically \(\models A \) to denote that \(A \) is a \textbf{classical tautology}
DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 7 Given a formula $A \in \mathcal{F}$, any function

$$v_A : \text{VAR}_A \rightarrow \{T, F\}$$

is called a truth assignment restricted to A
DEFINITIONS: Restricted Model, Counter Model

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 8 Given a formula $A \in \mathcal{F}$
Any function

$$w : \text{VAR}_A \rightarrow \{T, F\}$$
such that $w^*(A) = T$

is called a restricted MODEL for A

Any function

$$w : \text{VAR}_A \rightarrow \{T, F\}$$
such that $w^*(A) \neq T$

is called a restricted Counter- MODEL for A
DEFINITIONS: Models for Sets of Formulas

Consider $\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}$ and let $S \neq \emptyset$ be any non-empty set of formulas of \mathcal{L}, i.e.

$$S \subseteq \mathcal{F}$$

Definition 9

A truth assignment $v : \text{VAR} \rightarrow \{T, F\}$ is a model for the set S of formulas if and only if

$$v \models A \text{ for all formulas } A \in S$$

We write

$$v \models S$$

to denote that v is a model for the set S of formulas.
Definition 10

A non-empty set \(G \subseteq \mathcal{F} \) of formulas is called **consistent** if and only if \(G \) has a model, i.e. we have that

\[
G \subseteq \mathcal{F} \text{ is consistent if and only if there is } v \text{ such that } v \models G
\]

Otherwise \(G \) is called **inconsistent**.
DEFINITIONS: Independent Statements

Definition 11
A formula A is called independent from a non-empty set $G \subseteq \mathcal{F}$ if and only if there are truth assignments v_1, v_2 such that

$$v_1 \models G \cup \{A\} \quad \text{and} \quad v_2 \models G \cup \{\neg A\}$$

i.e. we say that a formula A is independent if and only if $G \cup \{A\}$ and $G \cup \{\neg A\}$ are consistent.
Many Valued Extensional Semantics
DEFINITIONS: Semantics \(M \)

Definition 11
The extensional semantics \(M \) is defined for a non-empty set of \(V \) of logical values of any cardinality.

We only assume that the set \(V \) of logical values of \(M \) always has a special, distinguished logical value which serves to define a notion of tautology.

We denote this distinguished value as \(T \).

Formal definition of many valued extensional semantics \(M \) for the language \(L_{\text{CON}} \) consists of giving definitions of the following main components:

1. Logical Connectives under semantics \(M \)
2. Truth Assignment for \(M \)
3. Satisfaction Relation, Model, Counter-Model under semantics \(M \)
4. Tautology under semantics \(M \)
Definition of M - Extensional Connectives

Given a propositional language L_{CON} for the set $CON = C_1 \cup C_2$, where C_1 is the set of all unary connectives, and C_2 is the set of all binary connectives.

Let V be a non-empty set of logical values adopted by the semantics M.

Definition 12

Connectives $\nabla \in C_1$, $\circ \in C_2$ are called M-extensional iff their semantics M is defined by respective functions

$$\nabla : V \rightarrow V \quad \text{and} \quad \circ : V \times V \rightarrow V$$
DEFINITION: Definability of Connectives under a semantics M

Given a propositional language \mathcal{L}_{CON} and its extensional semantics M

We adopt the following definition

Definition 13

A connective $\circ \in CON$ is definable in terms of some connectives $\circ_1, \circ_2, ... \circ_n \in CON$ for $n \geq 1$ under the semantics M if and only if the connective \circ is a certain function composition of functions $\circ_1, \circ_2, ... \circ_n$ as they are defined by the semantics M
DEFINITION: M Truth Assignment Extension \(v^* \) to \(\mathcal{F} \)

Definition 14

Given the \(\textbf{M} \) truth assignment \(v : \text{VAR} \rightarrow \text{V} \)

We define its \(\textbf{M} \) extension \(v^* \) to the set \(\mathcal{F} \) of all formulas of \(\mathcal{L} \) as any function \(v^* : \mathcal{F} \rightarrow \text{V} \), such that the following conditions are satisfied

(i) for any \(a \in \text{VAR} \)

\[v^*(a) = v(a); \]

(ii) For any connectives \(\nabla \in \mathcal{C}_1 \), \(\circ \in \mathcal{C}_2 \) and for any formulas \(A, B \in \mathcal{F} \) we put

\[v^*(\nabla A) = \nabla v^*(A) \]

\[v^*((A \circ B)) = \circ(v^*(A), v^*(B)) \]
DEFINITION: **M** Satisfaction, Model, Counter Model, Tautology

Definition 15 Let $v : \text{VAR} \rightarrow V$

Let $T \in V$ be the distinguished logical value

We say that v **M** satisfies a formula $A \in \mathcal{F}$ ($v \models_M A$) iff $v^*(A) = T$

Definition 16

Given a formula $A \in \mathcal{F}$ and $v : \text{VAR} \rightarrow V$

Any v such that $v \models_M A$ is called a **M** model for A

Any v such that $v \not\models_M A$ is called a **M** counter model for A

A is a **M** tautology ($\models_M A$) iff $v \models_M A$, for all $v : \text{VAR} \rightarrow V$
CHAPTER 3: Some Questions
Chapter 3: Question 1

Question 1
Find a restricted model for formula A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can’t use short-hand notation
Show each step of solution

Solution
For any formula A, we denote by VAR_A a set of all variables that appear in A
In our case we have $\text{VAR}_A = \{a, b, c\}$
Any function $\nu_A : \text{VAR}_A \rightarrow \{T, F\}$ is called a truth assignment restricted to A
Let \(v : \text{VAR} \rightarrow \{ T, F \} \) be any truth assignment such that
\[
v(a) = v_A(a) = T, \quad v(b) = v_A(b) = T, \quad v(c) = v_A(c) = F
\]

We evaluate the value of the extension \(v^* \) of \(v \) on the formula \(A \) as follows
\[
\begin{align*}
v^*(A) &= v^*((\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))) \\
&= v^*(\neg a) \Rightarrow v^*((\neg b \cup (b \Rightarrow \neg c))) \\
&= \neg v^*(a) \Rightarrow (v^*(\neg b) \cup v^*((b \Rightarrow \neg c))) \\
&= \neg v(a) \Rightarrow (\neg v(b) \cup (v(b) \Rightarrow \neg v(c))) \\
&= \neg v_A(a) \Rightarrow (\neg v_A(b) \cup (v_A(b) \Rightarrow \neg v_A(c))) \\
\end{align*}
\]
\[
(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T, \text{ i.e.}
\]
\[
v_A \models A \quad \text{and} \quad v \models A
\]
Chapter 3: Question 2

Question 2
Find a restricted model and a restricted counter-model for A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can use short-hand notation. Show work.

Solution

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A.

In our case we have $\text{VAR}_A = \{a, b, c\}$.

Any function $\nu_A : \text{VAR}_A \rightarrow \{T, F\}$ is called a truth assignment restricted to A.

We define now $\nu_A(a) = T, \nu_A(b) = T, \nu_A(c) = F$, in shorthand: $a = T, b = T, c = F$ and evaluate

$$(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T$$

i.e.

$$\nu_A \models A$$
Chapter 3: Question 2

Observe that

\[(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) = T\] when \(a = T\) and \(b, c\) any truth values as by definition of implication we have that \(F \Rightarrow \text{anything} = T\)

Hence \(a = T\) gives us 4 models as we have \(2^2\) possible values on \(b\) and \(c\)
Chapter 3: Question 2

We take as a restricted counter-model: \(a = F, \ b = T \) and \(c = T \)

Evaluation: observe that

\[
(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) = F \quad \text{if and only if}
\]

\[
\neg a = T \quad \text{and} \quad (\neg b \cup (b \Rightarrow \neg c)) = F \quad \text{if and only if}
\]

\[
a = F, \ \neg b = F \quad \text{and} \quad (b \Rightarrow \neg c) = F \quad \text{if and only if}
\]

\[
a = F, \ b = T \quad \text{and} \quad (T \Rightarrow \neg c) = F \quad \text{if and only if}
\]

\[
a = F, \ b = T \quad \text{and} \quad \neg c = F \quad \text{if and only if}
\]

\[
a = F, \ b = T \quad \text{and} \quad c = T
\]

The above proves also that \(a = F, \ b = T \) and \(c = T \) is the only restricted counter-model for \(A \)
Chapter 3: Question 3

Question 3 Justify whether the following statements true or false

S1 There are more then 3 possible restricted counter-models for A

S2 There are more then 2 possible restricted models of A

Solution

S1 Statement: There are more then 3 possible restricted counter-models for A is **false**

We have just proved that there is only one possible restricted counter-model for A

S2 Statement: There are more then 2 possible restricted models of A is **true**

There are 7 possible restricted models for A

Justification: $2^3 - 1 = 7$
Chapter 3: Question 4

Question 4
1. List 3 models for A from Question 2, i.e. for formula

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

that are extensions to the set VAR of all variables of one of the restricted models that you have found in Questions 1,

2. List 2 counter models for A that are extensions of one of the restricted counter models that you have found in the Questions 1, 2
Chapter 3: Question 4

Solution

1. One of the **restricted models** is, for example a function

 \[v_A : \{a, b, c\} \rightarrow \{T, F\} \] such that

 \[v_A(a) = T, \ v_A(b) = T, \ v_A(c) = F \]

 We **extend** \(v_A \) to the set of all propositional variables \(VAR \) to obtain a (non restricted) **models** as follows
Chapter 3: Question 4

Model w_1 is a function

\[w_1 : \text{VAR} \rightarrow \{ T, F \} \] such that

\[w_1(a) = v_A(a) = T, \quad w_1(b) = v_A(b) = T, \]
\[w_1(c) = v_A(c) = F, \quad \text{and} \quad w_1(x) = T, \quad \text{for all} \]
\[x \in \text{VAR} - \{ a, b, c \} \]

Model w_2 is defined by a formula

\[w_2(a) = v_A(a) = T, \quad w_2(b) = v_A(b) = T, \]
\[w_2(c) = v_A(c) = F, \quad \text{and} \quad w_2(x) = F, \quad \text{for all} \]
\[x \in \text{VAR} - \{ a, b, c \} \]
Chapter 3: Question 4

Model w_3 is defined by a formula

$w_3(a) = v_A(a) = T$, $w_3(b) = v_A(b) = T$, $w_3(c) = v(c) = F$, $w_3(d) = F$ and $w_3(x) = T$ for all $x \in VAR - \{a, b, c, d\}$

There is as many of such models, as extensions of v_A to the set VAR, i.e. as many as real numbers
Chapter 3: Question 4

2. A counter-model for a formula
 \[A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) \] is, by definition any function
 \[v : \text{VAR} \rightarrow \{ T, F \} \]
 such that \[v^*(A) = F \]

A restricted counter-model for the formula \(A \), the only one, as already proved in is a function

\[v_A : \{ a, b \} \rightarrow \{ T, F \} \]

such that

\[v_A(a) = F, \quad v_A(b) = T, \quad v_A(c) = T \]
Chapter 3: Question 4

We extend v_A to the set of all propositional variables VAR to obtain (non restricted) some counter-models.

Here are two of such extensions

Counter-model w_1:
\[w_1(a) = v_A(a) = F, \quad w_1(b) = v_A(b) = T, \]
\[w_1(c) = v(c) = T, \quad \text{and} \quad w_1(x) = F, \quad \text{for all} \quad x \in VAR - \{a, b, c\} \]

Counter-model w_2:
\[w_2(a) = v_A(a) = T, \quad w_2(b) = v_A(b) = T, \]
\[w_2(c) = v(c) = T, \quad \text{and} \quad w_2(x) = T \quad \text{for all} \quad x \in VAR - \{a, b, c\} \]

There is as many of such counter-models, as extensions of v_A to the set VAR, i.e. as many as real numbers
Chapter 3: Models for Sets of Formulas

Definition
A truth assignment v is a model for a set $G \subseteq F$ if and only if
$v \models B$ for all $B \in G$

We denote it by $v \models G$

Observe that the set $G \subseteq F$ can be finite or infinite
Definition
A set $G \subseteq \mathcal{F}$ of formulas is called \textbf{consistent} if and only if G has a model, i.e. we have that

$G \subseteq \mathcal{F}$ is \textbf{consistent} if and only if

\text{there is} v such that $v \models G$

Otherwise G is called \textbf{inconsistent}
Chapter 3: Independent Statements

Definition

A formula A is called **independent** from a set $G \subseteq \mathcal{F}$ if and only if there are truth assignments v_1, v_2 such that

$$v_1 \models G \cup \{A\} \text{ and } v_2 \models G \cup \{\neg A\}$$

i.e. we say that a formula A is **independent** if and only if

$$G \cup \{A\} \text{ and } G \cup \{\neg A\} \text{ are consistent}$$
Chapter 3: Question 5

Question 5
Given a set

\[G = \{ ((a \cap b) \Rightarrow b), (a \cup b), \neg a \} \]

Show that \(G \) is consistent

Solution
We have to find \(v : VAR \rightarrow \{ T, F \} \) such that

\[v \models G \]

It means that we need to find \(v \) such that

\[v^*((a \cap b) \Rightarrow b) = T, \quad v^*(a \cup b) = T, \quad v^*(\neg a) = T \]
Chapter 3: Question 5

Observe that \(\models ((a \cap b) \Rightarrow b) \), hence we have that

1. \(v^*((a \cap b) \Rightarrow b) = T \) for any \(v \)

\(v^*(-a) = \neg v^*(a) = \neg v(a) = T \)

only when \(v(a) = F \) hence

2. \(v(a) = F \)

\(v^*(a \cup b) = v^*(a) \cup v^*(b) = v(a) \cup v(b) = F \cup v(b) = T \)

only when \(v(b) = T \) so we get

3. \(v(b) = T \)

This means that for any \(v : VAR \rightarrow \{T, F\} \) such that

\(v(a) = F, \ v(b) = T, \ v \models \mathcal{G} \)

and we proved that \(\mathcal{G} \) is consistent
Chapter 3: Question 6

Question 6
Show that a formula $A = (\neg a \cap b)$ is not independent of

$G = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\}$

Solution
We have to show that it is impossible to construct v_1, v_2 such that

$v_1 \models G \cup \{A\}$ and $v_2 \models G \cup \{\neg A\}$

Observe that we have just proved that any v such that $v(a) = F$, and $v(b) = T$ is the only model restricted to the set of variables $\{a, b\}$ for G so we have to check now if it is possible that $v \models A$ and $v \models \neg A$
We have to evaluate $v^*(A)$ and $v^*(\neg A)$ for

$v(a) = F$, and $v(b) = T$

$v^*(A) = v^*((\neg a \cap b) = \neg v(a) \cap v(b) = \neg F \cap T = T \cap T = T$

and so $v \models A$

$v^*(\neg A) = \neg v^*(A) = \neg T = F$

and so $v \not\models \neg A$

This ends the proof that A is not independent of G
Chapter 3: Question 7

Question 7
Find an infinite number of formulas that are independent of
\[G = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\} \]

This my solution - there are many others, but this one seemed to me to be the simplest

Solution
We just proved that any \(v \) such that \(v(a) = F, \ v(b) = T \) is the only model restricted to the set of variables \(\{a, b\} \) and so all other possible models for \(G \) must be extensions of \(v \).
We define a countably infinite set of formulas (and their negations) and corresponding extensions of v (restricted to to the set of variables $\{a, b\}$) such that $v \models G$ as follows.

Observe that all extensions of v restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

$$VAR - \{a, b\} = \{a_1, a_2, \ldots, a_n, \ldots\}$$

We take as a set of formulas (to be proved to be independent) the set of atomic formulas

$$\mathcal{F}_0 = VAR - \{a, b\} = \{a_1, a_2, \ldots, a_n, \ldots\}$$
Chapter 3: Question 7

proof of independence of any formula of \mathcal{F}_0

Let $c \in \mathcal{F}_0$

We define truth assignments $v_1, v_2 : \text{VAR} \rightarrow \{T, F\}$ such that

$$v_1 \models \mathcal{G} \cup \{c\} \quad \text{and} \quad v_2 \models \mathcal{G} \cup \{-c\}$$

as follows

$v_1(a) = v(a) = F, \quad v_1(b) = v(b) = T \quad \text{and} \quad v_1(c) = T$

for all $c \in \mathcal{F}_0$

$v_2(a) = v(a) = F, \quad v_2(b) = v(b) = T \quad \text{and} \quad v_2(c) = F$

for all $c \in \mathcal{F}_0$
CHAPTER 3
Some Extensional Many Valued Semantics
Chapter 3: Question 8

Question 8
We define a 4 valued H_4 logic semantics as follows

The language is $\mathcal{L} = \mathcal{L}_{\neg, \Rightarrow, \cup, \cap}$

The logical connectives \neg, \Rightarrow, \cup, \cap of H_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$ and are defined as follows

Conjunction \cap is a function

$\cap : \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$x \cap y = \text{min}\{x, y\}$$
Chapter 3: Question 8

Disjunction \cup is a function
$\cup: \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$x \cup y = \max\{x, y\}$$

Implication \Rightarrow is a function
$\Rightarrow: \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \longrightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $x, y \in \{F, \bot_1, \bot_2, T\}$,

$$x \Rightarrow y = \begin{cases} T & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$$

Negation: for any $x, y \in \{F, \bot_1, \bot_2, T\}$

$$\neg x = x \Rightarrow F$$
Chapter 3: Question 8

Part 1 Write Truth Tables for IMPLICATION and NEGATION in H_4

Solution

H_4 Implication

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>F</th>
<th>\perp_1</th>
<th>\perp_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\perp_1</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\perp_2</td>
<td>F</td>
<td>\perp_1</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\perp_1</td>
<td>\perp_2</td>
<td>T</td>
</tr>
</tbody>
</table>

H_4 Negation

<table>
<thead>
<tr>
<th>\neg</th>
<th>F</th>
<th>\perp_1</th>
<th>\perp_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Chapter 3: Question 7

Part 2 Verify whether

\[\models_{H_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) \]

Solution

Take any \(v \) such that
\(v(a) = \bot_1 \quad v(b) = \bot_2 \)

Evaluate
\[v \star ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) = (\bot_1 \Rightarrow \bot_2) \Rightarrow (\neg \bot_1 \cup \bot_2) = T \Rightarrow (F \cup \bot_2)) = T \Rightarrow \bot_2 = \bot_2 \]

This proves that our \(v \) is a counter-model and hence

\[\not\models_{H_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) \]
Chapter 3: Question 9

Question 9
Show that (can’t use TTables!)

\[\models ((\neg a \cup b) \Rightarrow (((c \cap d) \Rightarrow \neg d) \Rightarrow (\neg a \cup b))) \]

Solution
Denote \(A = (\neg a \cup b) \), and \(B = ((c \cap d) \Rightarrow \neg d) \)

Our formula becomes a substitution of a basic tautology

\[(A \Rightarrow (B \Rightarrow A)) \]

and hence is a tautology
Chapter 3: Challenge Exercise

1. Define your own propositional language L_{CON} that contains also different connectives that the standard connectives \neg, \cup, \cap, \Rightarrow

Your language L_{CON} does not need to include all (if any!) of the standard connectives \neg, \cup, \cap, \Rightarrow

2. Describe intuitive meaning of the new connectives of your language

3. Give some motivation for your own semantic

4. Define formally your own extensional semantics M for your language L_{CON} - it means write carefully all Steps 1- 4 of the definition of your M
Chapter 3: Question 10

Question 10
Definition

Let S_3 be a 3-valued semantics for $L\{\neg, \cup, \Rightarrow\}$ defined as follows:

$V = \{F, U, T\}$ is the set of logical values with the distinguished value T

$x \Rightarrow y = \neg x \cup y$ for any $x, y \in \{F, U, T\}$

$\neg F = T$, $\neg U = F$, $\neg T = U$

and

\[
\begin{array}{c|ccc}
\cup & F & U & T \\
\hline
F & F & U & T \\
U & U & U & U \\
T & T & U & T \\
\end{array}
\]
Question 10

Part 1
Consider the following classical tautologies:

\[A_1 = (a \cup \neg a), \quad A_2 = (a \Rightarrow (b \Rightarrow a)) \]

Find \(S_3 \) counter-models for \(A_1, A_2 \), if exist

You can’t use shorthand notation

Solution

Any \(v \) such that \(v(a) = v(b) = U \) is a counter-model for both \(A_1 \) and \(A_2 \), as

\[v^*(a \cup \neg a) = v^*(a) \cup \neg v^*(b) = U \cup \neg U = U \cup F = U \neq T \]

\[v^*(a \Rightarrow (b \Rightarrow a)) = v^*(a) \Rightarrow (v^*(b) \Rightarrow v^*(a)) = U \Rightarrow (U \Rightarrow U) = U \Rightarrow U = \neg U \cup U = F \cup U = U \neq T \]
Consider the following classical tautologies:

\[A_1 = (a \cup \neg a), \quad A_2 = (a \Rightarrow (b \Rightarrow a)) \]

Define your own 2-valued semantics \(S_2 \) for \(\mathcal{L} \), such that none of \(A_1, A_2 \) is a \(S_2 \) tautology.

Verify your results. You can use shorthand notation.

Solution

This is not the only solution, but it is the simplest and most obvious I could think of! Here it is.

We define \(S_2 \) connectives as follows:

\[\neg x = F, \quad x \Rightarrow y = F, \quad x \cup y = F \quad \text{for all} \quad x, y \in \{F, T\} \]

Obviously, for any \(v \),

\[v^*(a \cup \neg a) = F \quad \text{and} \quad v^*(a \Rightarrow (b \Rightarrow a)) = F \]
Chapter 3: Question 11

Question 11
Prove using proper classical logical equivalences (list them at each step) that for any formulas \(A, B \) of language \(\mathcal{L}_{\{\neg, \cup, \Rightarrow\}} \)

\[
\neg(A \iff B) \equiv ((A \cap \neg B) \cup (\neg A \cap B))
\]

Solution
\[
\neg(A \iff B) \equiv^{\text{def}} \neg((A \Rightarrow B) \cap (B \Rightarrow A))
\equiv^{\text{deMorgan}} (\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A))
\equiv^{\text{negimpl}} ((A \cap \neg B) \cup (B \cap \neg A)) \equiv^{\text{commut}} ((A \cap \neg B) \cup (\neg A \cap B))
\]
Question 12

Question 12
Prove using proper classical logical equivalences (list them at each step) that for any formulas \(A, B \) of language \(L_{\{\neg, \cup, \Rightarrow\}} \)

\[
((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv ((B \Rightarrow C) \cup (A \Rightarrow B))
\]

Solution

\[
((B \cap \neg C) \Rightarrow (\neg A \cup B))
\equiv^{impl} (\neg(B \cap \neg C) \cup (\neg A \cup B))
\equiv^{deMorgan} ((\neg B \cup \neg \neg C) \cup (\neg A \cup B))
\equiv^{dneg} ((\neg B \cup C) \cup (\neg A \cup B)) \equiv^{impl} ((B \Rightarrow C) \cup (A \Rightarrow B))
\]
We define Ł connectives for $L\{\neg, \cup, \Rightarrow\}$ as follows:

Ł Negation \neg is a function:

$$\neg : \{T, \bot, F\} \rightarrow \{T, \bot, F\}$$

such that $\neg \bot = \bot, \neg T = F, \neg F = T$

Ł Conjunction \cap is a function:

$$\cap : \{T, \bot, F\} \times \{T, \bot, F\} \rightarrow \{T, \bot, F\}$$

such that $x \cap y = \min\{x, y\}$ for all $x, y \in \{T, \bot, F\}$

Remember that we assumed: $F < \bot < T$
Question 13

Ł Implication \(\Rightarrow \) is a function:

\[
\Rightarrow : \{ T, \bot, F \} \times \{ T, \bot, F \} \rightarrow \{ T, \bot, F \}
\]
such that

\[
x \Rightarrow y = \begin{cases}
\neg x \cup y & \text{if } x > y \\
T & \text{otherwise}
\end{cases}
\]

Given a formula \(((a \cap b) \Rightarrow \neg b) \in \mathcal{F} \) of \(\mathcal{L}_{\{\neg, \cup, \Rightarrow\}} \)

Use the fact that \(v : \text{VAR} \rightarrow \{F, \bot, T\} \) is such that

\[v^*(((a \cap b) \Rightarrow \neg b)) = \bot \] under Ł semantics to evaluate \(v^*(((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b)) \cup (a \Rightarrow b)) \)

You can use shorthand notation
Solution

The formula \(((a \cap b) \Rightarrow \neg b) = \bot\) in Ł connectives semantics in two cases written is the shorthand notation as

\[\textbf{C1} \quad (a \cap b) = \bot \quad \text{and} \quad \neg b = F \]

\[\textbf{C2} \quad (a \cap b) = T \quad \text{and} \quad \neg b = \bot. \]

Consider case \textbf{C1}

\(\neg b = F\), so \(v(b) = T\), and hence \((a \cap T) = v(a) \cap T = \bot\) if and only if \(v(a) = \bot\)

It means that \(v^*((((a \cap b) \Rightarrow \neg b)) = \bot\) for any \(v\), is such that \(v(a) = \bot\) and \(v(b) = T\)
We now evaluate (in shorthand notation)
\[v^*(((b \Rightarrow \neg a) \Rightarrow (a \Rightarrow \neg b)) \cup (a \Rightarrow b)) \]
\[= (((T \Rightarrow \neg \bot) \Rightarrow (\bot \Rightarrow \neg T)) \cup (\bot \Rightarrow T)) = ((\bot \Rightarrow \bot) \cup T) = T \]

Consider now Case C2
\[\neg b = \bot, \ \text{i.e.} \ b = \bot, \ \text{and hence} \ (a \cap \bot) = T \ \text{what is impossible, hence} \ v \ \text{from the Case C1 is the only one} \]
Use the **Definability of Conjunction** in terms of disjunction and negation **Equivalence**

\[(A \land B) \equiv \neg(\neg A \lor \neg B)\]

to transform a formula

\[A = \neg(\neg(\neg a \land \neg b) \land a)\]

of the language \(\mathcal{L}_{\land,\neg}\) into a logically equivalent formula \(B\)
of the language \(\mathcal{L}_{\lor,\neg}\)
Question 14

Solution

\[\neg (\neg (\neg a \land \neg b) \land a) \equiv \neg (\neg (\neg a \land \neg b) \lor \neg a) \]

\[\equiv ((\neg a \land \neg b) \lor \neg a) \equiv (\neg (\neg a \lor \neg b) \lor \neg a) \]

\[\equiv \neg (a \lor b) \lor \neg a \]

The formula B of $\mathcal{L}_{\{\lor, \neg\}}$ equivalent to A is

$B = (\neg (a \lor b) \lor \neg a)$
Equivalence of Languages Definition

Definition
Given two languages: \(L_1 = L_{CON_1} \) and \(L_2 = L_{CON_2} \), for \(CON_1 \neq CON_2 \)
We say that they are logically equivalent, i.e.

\[L_1 \equiv L_2 \]

if and only if the following conditions \(C1, C2 \) hold.

\textbf{C1:} for any formula \(A \) of \(L_1 \), there is a formula \(B \) of \(L_2 \), such that \(A \equiv B \)

\textbf{C2:} for any formula \(C \) of \(L_2 \), there is a formula \(D \) of \(L_1 \), such that \(C \equiv D \)
Question 14

Prove the logical equivalence of the languages

\[L\{\neg, \cup\} \equiv L\{\neg, \Rightarrow\} \]

Solution

We need two definability equivalences:

- implication in terms of disjunction and negation

\[(A \Rightarrow B) \equiv (\neg A \cup B) \]

and disjunction in terms of implication and negation,

\[(A \cup B) \equiv (\neg A \Rightarrow B) \]

and the Substitution Theorem
Question 15

Prove the logical equivalence of the languages

\[\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \cup\}} \]

Solution

We need only the **definability of implication** in terms of disjunction and negation equivalence

\[(A \Rightarrow B) \equiv (\neg A \cup B)\]

as the **Substitution Theorem** for any formula \(A\) of \(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}\) there is a formula \(B\) of \(\mathcal{L}_{\{\neg, \cap, \cup\}}\) such that \(A \equiv B\) and the condition \(C_1\) holds

Observe that any formula \(A\) of language \(\mathcal{L}_{\{\neg, \cap, \cup\}}\) is also a formula of the language \(\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}\) and of course \(A \equiv A\) so the condition \(C_2\) also holds.
Question 16

Prove that

\[\mathcal{L}_{\neg, \cap} \equiv \mathcal{L}_{\neg, \Rightarrow} \]

Solution

The equivalence of languages holds due to the following two definability of connectives equivalences, respectively

\[(A \cap B) \equiv \neg (A \Rightarrow \neg B), \quad (A \Rightarrow B) \equiv \neg (A \cap \neg B) \]

and Substitution Theorem
Question 17

Prove that in classical semantics

$$\mathcal{L}\{\neg, \Rightarrow\} \equiv \mathcal{L}\{\neg, \Rightarrow, \cup\}$$

Solution

OBSERVE that the condition \textbf{C1} holds because any formula of \(\mathcal{L}\{\neg, \Rightarrow\}\) is also a formula of \(\mathcal{L}\{\neg, \Rightarrow, \cup\}\).

Condition \textbf{C2} holds due to the following definability of connectives equivalence

\[(A \cup B) \equiv (\neg A \Rightarrow B)\]

and \textbf{Substitution Theorem}
Question 18

Prove that the equivalence defining \cup in terms of negation and implication in classical logic does not hold under \mathcal{L} semantics, i.e. that

$$(A \cup B) \not\equiv_{\mathcal{L}} (\neg A \Rightarrow B)$$

but nevertheless

$$\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv_{\mathcal{L}} \mathcal{L}_{\{\neg, \Rightarrow, \cup\}}$$
Solution

We prove

\[\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv_{\mathcal{L}} \mathcal{L}_{\{\neg, \Rightarrow, \cup\}} \]

as follows

Condition \textbf{C2} holds because the definability of connectives equivalence

\[(A \cup B) \equiv_{\mathcal{L}} ((A \Rightarrow B) \Rightarrow B)\]

Check it by verification as an exercise

\textbf{C1} holds because any formula of \(\mathcal{L}_{\{\neg, \Rightarrow\}}\) is a formula of \(\mathcal{L}_{\{\neg, \Rightarrow, \cup\}}\)

\textbf{Observe} that the equivalence \((A \cup B) \equiv (A \Rightarrow B) \Rightarrow B)\) provides also an alternative proof of \textbf{C2} in classical case