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Chapter 9
Hilbert Proof Systems

Completeness of Classical Predicate Logic

PART 1: Reduction Predicate Logic to

Propositional Logic



Proofs of Completeness Theorem

There are several quite distinct approaches to the proof of
the completeness theorem

They correspond to the ways of thinking about proofs

Within each of these approaches there are endless variations
in exact formulation, corresponding to the choice of methods
we want to use to prove the completeness theorem

Different basic approaches are important, though, for they
lead to different applications



Proofs of Completeness Theorem

We have already presented two of the approaches for the
propositional logic, namely

Hilbert style formalizations (proof systems) in chapter 5 and

Gentzen style automated proof systems in chapter 6

We have also presented, for each of these approaches
several methods of proving the completeness theorem:

two very different proofs for Hilbert style proof systems in
chapter 5 and

constructive proofs for several automated Gentzen style
proof systems in chapter 6



Proofs of Completeness Theorem

There are many proofs of the completeness theorem for
predicate (first order) logic

We present here in a great detail, a version of Henkin’s proof
as included in a classic

Handbook of Mathematical Logic, North Holland Publishing
Company- Amsterdam - Newy York -Oxford (1977)

It contains a method for reducing certain problems of first
order logic back to problems about propositional logic



Proofs of Completeness Theorem

We follow Henkin method and give independent proof of
compactness theorem for propositional logic

As the next steps we prove the most important, classical for
logic theorems:

Reduction to Propositional Logic Theorem, Compactness
Theorem for first-order logic, Löwenheim-Skolem Theorem
and Gödel Completeness Theorem

They fall out of the Henkin method



Proofs of Completeness Theorem

We choose this particular proof of completeness not only for
it being one of the oldest and most classical, but also for its
connection with the propositional logic

Moreover, the proof of the compactness theorem is based on
semantical version of syntactical notions and techniques
crucial to the second proof of completeness theorem for
propositional logic covered in chapter 5 and hence is familiar
to the reader



Reduction Predicate Logic to Propositional Logic



Reduction Predicate Logic to Propositional Logic

Let L = L(P,F,C) be a first order language with equality

We assume that the sets P, F, C are infinitely enumerable

We also assume that it has a full set of propositional
connectives, i.e.

L = L{¬,∩,∪,⇒}(P,F,C)

Our goal now is to define a propositional logic within

L = L(P,F,C)

We do it in a sequence of steps



Reduction Predicate Logic to Propositional Logic

First we define a special subset PF of formulas of L
called a set of all propositional formulas of L

Intuitively, these are formulas of L which are direct
propositional combination of simpler formulas, that are
atomic formulas or formulas beginning with quantifiers

These simpler formulas are called prime formulas and are
formally defined as follows.



Prime Formulas

Definition

Prime formula of L is any formula from the set

P = AF ∪ {∀xB : B ∈ F } ∪ {∃xB : B ∈ F }

where the set AF is the set of all atomic formulas of L

The set

P ⊆ F

is called a set of all prime formulas of L



Prime Formulas

Example

The following are prime formulas

R(t1, t2), ∀x(A(x)⇒ ¬A(x)), (c = c), ∃x(Q(x, y) ∩ ∀yA(y))

The following are not prime formulas.

(R(t1, t2)⇒ (c = c)), (R(t1, t2) ∪ ∀x(A(x)⇒ ¬A(x))

Given a set P of prime formulas we define in a standard
way the set PF of propositional formulas of L as follows



Propositional Formulas of L

Definition (Propositional Formulas)

Let F , P be sets of all formulas and prime formulas of L,
respectively

The smallest set PF ⊆ F , such that

(i) P ⊆ PF

(ii) If A , B ∈ PF , then (A ⇒ B), (A ∪ B), (A ∩ B) and
¬A ∈ PF

is called a set of all propositional formulas of the predicate
language L

The set P is called the set of all atomic propositional
formulas of L



Propositional Semantics for L

Propositional Semantics for L

We define propositional semantics for propositional formulas
in PF as follows

Definition (Truth assignment)

Let P be a set of atomic propositional formulas of L and
{T ,F} be the set of logical values ”true” and ”false”

Any function
v : P −→ {T , F}

is called a truth assignment in L



Propositional Semantics for L

We extend v to the set PF of all propositional formulas

by defining the mapping

v∗ : PF −→ {T ,F}

as follows

v∗(A) = v(A) for A ∈ P

and for any A ,B ∈ PF

v∗(A ⇒ B) = v∗(A)⇒ v∗(B)

v∗(A ∪ B) = v∗(A) ∪ v∗(B)

v∗(A ∩ B) = v∗(A) ∩ v∗(B)

v∗(¬A) = ¬v∗(A)



Propositional Model, Tautology

Definition

A truth assignment v : P −→ {T ,F} is called a propositional
model for a formula A ∈ PF if and only if v∗(A) = T

Definition

For any formula A ∈ PF

A ∈ PF is a propositional tautology of L if and only if
v∗(A) = T for all v : P −→ {T ,F}

For the sake of simplicity we will often say model, tautology
instead propositional model, propositional tautology when
there is no confusion



Consistent Inconsistent Sets

Definition

Given a set S of propositional formulas

We say that v is a model for the set S if and only if

v is a model for all formulas A ∈ S

Definition (Consistent Set)

A set S ⊆ PF of propositional formulas of L is consistent if it
has a (propositional) model

Definition (Inconsistent Set)

A set S ⊆ PF of propositional formulas of L is inconsistent if
it does not have a (propositional) model



Compactness Theorem

Compactness Theorem for Propositional Logic of L

A set S ⊆ PF of propositional formulas of L is consistent
if and only if every finite subset of S is consistent

Proof

Assume that S is a consistent set. By definition, it has a
model. Its model is also a model for all its subsets, including
all finite subsets

Hence all its finite subsets are consistent



Compactness Theorem

To prove the converse implication, i.e. the nontrivial half of
the Compactness Theorem we write it in a slightly modified
form. To do so, we introduce the following definition

Definition

Any set S such that all its finite subsets are consistent is
called finitely consistent

We re-write the Compactness Theorem as follows.

A set S of propositional formulas of L is consistent

if and only if S is finitely consistent



Compactness Theorem

The nontrivial half of the Compactness Theorem still to be
proved is now stated now as follows

Every finitely consistent set of propositional formulas of L
is consistent

The proof consists of the following four steps

S1 We introduce the notion of a maximal finitely consistent
set

S2 We show that every maximal finitely consistent set is
consistent by constructing its model



Compactness Theorem

S3 We show that every finitely consistent set S can be
extended to a maximal finitely consistent set S∗, we show that

for every finitely consistent set S there is a set S∗, such that

S ⊆ S∗ and S∗ is maximal finitely consistent

S4 We use steps S2 and S3 to justify the following
reasoning

Given a finitely consistent set S. We bf extend it, via
construction to be defined in the step S3 to a maximal finitely
consistent set S∗

By the S2, the set S∗ is consistent and so is the set S

This ends the proof of the Compactness Theorem



Proof of Step S1

Here are the details and proofs needed for completion of
steps S1 - S4

Step S1 We introduce the following definition

Definition of Maximal Finitely Consistent Set (MFC)

Any set
S ⊆ PF

is maximal finitely consistent if it is finitely consistent and for
every formula A ,

either A ∈ S or ¬A ∈ S

We use notation MFC for maximal finitely consistent set, and
FC for the finitely consistent set



Proof of Step S2

Step S2 consists of proving the following Lemma

MFC Lemma

Any MFC set is consistent

Proof

Given a MFC set denoted by S∗

We prove consistency of S∗ by constructing model for it

It means we are going to construct a truth assignment

v : P −→ {T ,F}

such that for all A ∈ S∗

v∗(A) = T



Proof of Step S2

Observe that directly from the definition we have the following
property of the the MFC sets.

Property

For any MFC set S∗ and for every A ∈ PF ,

exactly one of the formulas A , ¬A belongs to S∗

In particular, for any atomic formula P ∈ P, we have that
exactly one of formulas P, ¬P belongs to S∗

This justifies the correctness of the following definition



Proof of Step S2

Definition

For any MFC set S∗, a mapping

v : P −→ {T ,F}

such that

v(P) =

{
T if P ∈ S∗

F if P < S∗

is called a truth assignment defined by S∗



Proof of Step S2

We extend v to
v∗ : PF −→ {T ,F}

in a usual, standard way and we prove that the truth
assignment v is a model for S∗

It means we show for any A ∈ PF ,

v∗(A) =

{
T if A ∈ S∗

F if A < S∗

We prove it by induction on the degree of the formula A as
follows.



Proof of Step S2

The base case of atomic formula P ∈ P follows immediately
from the definition of v

Inductive Case: A = ¬C

1. Assume that A ∈ S∗

This means ¬C ∈ S∗ and by the MFC Property we have that
C < S∗. So by the inductive assumption v∗(C) = F and we
get

v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T

2. Assume now that A < S∗.

By MFC Property we have that C ∈ S∗

By the inductive assumption v∗(C) = T and

v∗(A) = v∗(¬C) = ¬v∗(T) = ¬T = F



Proof of Step S2

We proved that for any formula A ∈ PF ,

v∗(¬A) =

{
T if ¬A ∈ S∗

F if ¬A < S∗

Inductive Case: A = (B ∪ C)

1. Assume that A ∈ S∗. i.e. (B ∪ C) ∈ S∗

It is enough to prove that in this case B ∈ S∗ or C ∈ S∗,
because then from the inductive assumption v∗(B) = T and

v∗(B ∪ C) = v∗(B) ∪ v∗(C) = T ∪ v∗(C) = T for any C

The case C ∈ S∗ is similar



Proof of Step S2

Assume that (B ∪ C) ∈ S∗, B < S∗ and C < S∗

Then by MFC Property we have that ¬B ∈ S∗, ¬C ∈ S∗ and
consequently the set

{(B ∪ C),¬B ,¬C}

is a finite inconsistent subset of S∗, what contradicts the fact
that S∗ is finitely consistent

2. Assume now that (B ∪ C) < S∗

By MFC Property, ¬(B ∪C) ∈ S∗ and by already proven case
of A = ¬C we have that v∗(¬(B ∪ C)) = T

But v∗(¬(B ∪ C)) = ¬v∗((B ∪ C)) = T

This means that v∗((B ∪ C)) = F , what ends the proof of this
case



Step S3

The remaining cases of A = (B ∩C) and A = (B ⇒ C) are
similar to the above and are left to the as an exercise

This ends the proof of MFC Lemma and completes the step
S2

S3: Maximal finitely consistent ( MFC ) extension S∗

Given a finitely consistent set S

We construct the MFC extension S∗ of the set S as follows



Proof of Step S3

The set of all formulas of L is infinitely countable and so is the
set PF . We assume that the set PF of all propositional
formulas form a one-to-one sequence

(∗) A1, A2, . . . , An, . . . ,

We define a chain

(∗∗) S0 ⊆ S1 ⊆ S2, . . . , ⊆ Sn ⊆, . . .

of extensions of the set S as follows

S0 = S

Sn+1 =

{
Sn ∪ {An} if Sn ∪ {An} is finitely consistent
Sn ∪ {¬An} otherwise.



Proof of Step S3

We take
S∗ =

⋃
n∈N

Sn

Obviously S ⊆ S∗ also is MFC as clearly and for every A ,

either A ∈ S∗ or ¬A ∈ S∗

To complete the proof that S∗ is MFC set we have to show
that it is finitely consistent

First, let observe that if all sets Sn are finitely consistent,

so is the set S∗ =
⋃

n∈N Sn. Namely, let

SF = {B1, ...,Bk }

be a finite subset of S∗



Proof of Step S3

This means that there are sets Si1 , ...Sik in the chain (∗∗)
such that

Bm ∈ Sim for m = 1, . . . k

Let M = max(i1, ...ik ). Obviously

SF ⊆ SM

and the set SM is finitely consistent as an element of the
chain (∗∗). This proves that if all sets Sn are finitely
consistent, so is S∗

Now we have to prove only that all sets Sn are FC (finitely
consistent) We carry the proof by induction over the length of
the chain



Proof of Step S3

Base Case

S0 = S, so it is FC (finitely consistent) by assumption of the
Compactness Theorem

Inductive Step

Assume now that Sn is FC (finitely consistent)

We prove that Sn+1 is FC

We have two cases to consider

Case 1 Sn+1 = Sn ∪ {An}

Then Sn+1 is FC by the definition of the chain

Case 2 Sn+1 = Sn ∪ {¬An}

Observe that this can happen only if Sn ∪ {An} is not FC, i.e.
there is a finite subset S

′

n ⊆ Sn, such that S
′

n ∪ {An} is not
consistent



Proof of Step S3

Suppose now that Sn+1 is not FC

This means that there is a finite subset S
′′

n ⊆ Sn, such that
S
′′

n ∪ {¬An} is not consistent

Take S
′

n ∪ S
′′

n . It is a finite subset of Sn so it is consistent by
the inductive assumption

Let v be a model of S
′

n ∪ S
′′

n

Then one of v∗(A), v∗(¬A) must be T

This contradicts the inconsistency of both

S
′

n ∪ {An} and S
′

n ∪ {¬An}

Thus, in ether case, Sn+1 is FC

We hence proved that all sets Sn are FC (finitely consistent)



Compactness Theorem

This completes the proof of the step S3

We complete the proof of the Compactness Theorem for
propositional logic of L via the following argument as
presented in the step S4

Given a finitely consistent set S

We extend it, via construction defined in the step S3 to a
maximal finitely consistent set S∗

By the S2, the set S∗ is consistent and so is the set S

This ends the proof of the Compactness Theorem


