cse541 LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 9

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Chapter 9 Hilbert Proof Systems Completeness of Classical Predicate Logic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

PART 1: Reduction Predicate Logic to Propositional Logic

There are several quite distinct **approaches** to the proof of the **completeness** theorem

They correspond to the ways of thinking about proofs

Within each of these **approaches** there are endless variations in exact formulation, corresponding to the choice of **methods** we want to use to prove the **completeness** theorem

Different basic approaches are important, though, for they lead to different **applications**

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We have already presented two of the **approaches** for the propositional logic, namely Hilbert style formalizations (proof systems) in chapter 5 and Gentzen style **automated** proof systems in chapter 6

We have also presented, for each of these approaches several **methods** of proving the **completeness** theorem: two very different proofs for Hilbert style proof systems in chapter 5 and

constructive proofs for several automated Gentzen style proof systems in chapter 6

(日)

There are many proofs of the **completeness** theorem for predicate (first order) logic

We present here in a great detail, a version of **Henkin's** proof as included in a classic

Handbook of Mathematical Logic, North Holland Publishing Company- Amsterdam - Newy York -Oxford (1977)

It contains a **method** for **reducing** certain problems of **first order** logic back to problems about **propositional** logic

We follow **Henkin method** and give independent proof of **compactness** theorem for propositional logic

As the next steps we prove the most important, classical for logic theorems:

Reduction to Propositional Logic Theorem, Compactness Theorem for first-order logic, Löwenheim-Skolem Theorem and Gödel Completeness Theorem

They fall out of the Henkin method

We choose this particular proof of **completeness** not only for it being one of the oldest and most classical, but also for its **connection** with the propositional logic

Moreover, the proof of the **compactness** theorem is based on **semantical** version of **syntactical** notions and techniques crucial to the second proof of **completeness** theorem for propositional logic covered in chapter 5 and hence is familiar to the reader

Reduction Predicate Logic to Propositional Logic

Reduction Predicate Logic to Propositional Logic

Let $\mathcal{L} = \mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ be a first order language with equality We assume that the sets **P**, **F**, **C** are infinitely enumerable We also assume that it has a full set of propositional connectives, i.e.

$$\mathcal{L} = \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}(\mathbf{P}, \mathbf{F}, \mathbf{C})$$

Our goal now is to define a propositional logic within

$$\mathcal{L} = \mathcal{L}(\mathsf{P},\mathsf{F},\mathsf{C})$$

We do it in a sequence of steps

Reduction Predicate Logic to Propositional Logic

First we define a special subset $P\mathcal{F}$ of formulas of \mathcal{L} called a set of all **propositional formulas** of \mathcal{L}

Intuitively, these are formulas of \mathcal{L} which are **direct** propositional combination of **simpler formulas**, that are atomic formulas or formulas beginning with quantifiers

These simpler formulas are called **prime formulas** and are formally defined as follows.

Prime Formulas

Definition

Prime formula of \mathcal{L} is any formula from the set

$\mathcal{P} = A\mathcal{F} \cup \{\forall xB : B \in \mathcal{F}\} \cup \{\exists xB : B \in \mathcal{F}\}$

where the set $A\mathcal{F}$ is the set of all **atomic** formulas of \mathcal{L} The set

$\mathcal{P} \subseteq \mathcal{F}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

is called a set of all prime formulas of \mathcal{L}

Prime Formulas

Example

The following are prime formulas

 $R(t_1, t_2), \ \forall x(A(x) \Rightarrow \neg A(x)), \ (c = c), \ \exists x(Q(x, y) \cap \forall yA(y))$

The following **are not** prime formulas.

 $(R(t_1, t_2) \Rightarrow (c = c)), \ (R(t_1, t_2) \cup \forall x(A(x) \Rightarrow \neg A(x)))$

Given a set \mathcal{P} of **prime** formulas we define in a standard way the set \mathcal{PF} of **propositional** formulas of \mathcal{L} as follows

Propositional Formulas of ${\cal L}$

Definition (Propositional Formulas)

Let \mathcal{F} , \mathcal{P} be sets of all formulas and prime formulas of \mathcal{L} , respectively

The **smallest** set $P\mathcal{F} \subseteq \mathcal{F}$, such that

(i) $\mathcal{P} \subseteq \mathcal{PF}$

(ii) If $A, B \in P\mathcal{F}$, then $(A \Rightarrow B), (A \cup B), (A \cap B)$ and $\neg A \in P\mathcal{F}$

is called a set of all **propositional formulas** of the predicate language \mathcal{L}

The set \mathcal{P} is called the set of all **atomic propositional** formulas of \mathcal{L}

Propositional Semantics for $\mathcal L$

Propositional Semantics for £

We define propositional semantics for propositional formulas in $P\mathcal{F}$ as follows

Definition (Truth assignment)

Let \mathcal{P} be a set of **atomic propositional** formulas of \mathcal{L} and $\{T, F\}$ be the set of logical values "true" and "false" Any function

 $v: \mathcal{P} \longrightarrow \{T, F\}$

is called a truth assignment in $\mathcal L$

Propositional Semantics for $\mathcal L$

We extend v to the set $P\mathcal{F}$ of all propositional formulas by defining the mapping

$$v^*: \ \mathcal{PF} \longrightarrow \{T, F\}$$

as follows $v^*(A) = v(A)$ for $A \in \mathcal{P}$ and for any $A, B \in P\mathcal{F}$ $v^*(A \Rightarrow B) = v^*(A) \Rightarrow v^*(B)$ $v^*(A \cup B) = v^*(A) \cup v^*(B)$ $v^*(A \cap B) = v^*(A) \cap v^*(B)$ $v^*(\neg A) = \neg v^*(A)$ Propositional Model, Tautology

Definition

A truth assignment $v : \mathcal{P} \longrightarrow \{T, F\}$ is called a **propositional model** for a formula $A \in \mathcal{PF}$ if and only if $v^*(A) = T$

Definition

For any formula $A \in P\mathcal{F}$

 $A \in P\mathcal{F}$ is a **propositional tautology** of \mathcal{L} if and only if $v^*(A) = T$ for all $v : \mathcal{P} \longrightarrow \{T, F\}$

For the sake of simplicity we will often say model, tautology instead propositional model, propositional tautology when there is no confusion

Consistent Inconsistent Sets

Definition

Given a set *S* of propositional formulas We say that *v* is a **model** for the set *S* if and only if *v* is a model for all formulas $A \in S$

Definition (Consistent Set)

A set $S \subseteq P\mathcal{F}$ of propositional formulas of \mathcal{L} is consistent if it has a (propositional) model

Definition (Inconsistent Set)

A set $S \subseteq P\mathcal{F}$ of propositional formulas of \mathcal{L} is inconsistent if it **does not** have a (propositional) model

Compactness Theorem for Propositional Logic of $\mathcal L$

A set $S \subseteq P\mathcal{F}$ of propositional formulas of \mathcal{L} is **consistent** if and only if every finite subset of *S* is **consistent**

Proof

Assume that *S* is a **consistent** set. By definition, it has a **model**. Its **model** is also a model for **all** its **subsets**, including all finite subsets

Hence all its finite subsets are consistent

To prove the **converse** implication, i.e. the **nontrivial** half of the **Compactness Theorem** we write it in a slightly modified form. To do so, we introduce the following definition

Definition

Any set S such that **all** its finite subsets are consistent is called **finitely consistent**

We re-write the Compactness Theorem as follows.

A set S of propositional formulas of \mathcal{L} is consistent if and only if S is finitely consistent

The nontrivial half of the **Compactness Theorem** still to be proved is now stated now as follows

Every finitely consistent set of propositional formulas of $\boldsymbol{\mathcal{L}}$ is consistent

The proof consists of the following four steps

S1 We introduce the notion of a maximal finitely consistent set

S2 We show that every maximal finitely consistent set is consistent by constructing its model

S3 We show that every **finitely consistent** set *S* can be extended to a **maximal** finitely consistent set S^* , we show that for every finitely consistent set *S* there is a set S^* , such that $S \subseteq S^*$ and S^* is **maximal** finitely consistent **S4** We use steps **S2** and **S3** to justify the following **reasoning**

Given a finitely consistent set S. We bf extend it, via construction to be defined in the step **S3** to a **maximal** finitely consistent set S^*

By the S2, the set S* is consistent and so is the set S

This ends the proof of the Compactness Theorem

Here are the details and proofs needed for completion of steps **S1** - **S4**

Step **S1** We introduce the following definition

Definition of Maximal Finitely Consistent Set (MFC) Any set

$S\subseteq P\mathcal{F}$

is maximal finitely consistent if it is finitely consistent and for every formula *A*,

either $A \in S$ or $\neg A \in S$

We use notation MFC for maximal finitely consistent set, and FC for the finitely consistent set

Step **S2** consists of proving the following Lemma **MFC Lemma**

Any MFC set is consistent

Proof

Given a MFC set denoted by S*

We prove consistency of S^* by constructing **model** for it It means we are going to **construct** a truth assignment

$$\mathsf{v}: \mathcal{P} \longrightarrow \{\mathsf{T},\mathsf{F}\}$$

such that for **all** $A \in S^*$

 $v^*(A) = T$

Observe that directly from the definition we have the following property of the the MFC sets.

Property

For any MFC set S^* and for every $A \in P\mathcal{F}$,

exactly one of the formulas A, $\neg A$ belongs to S^*

In particular, for any **atomic** formula $P \in \mathcal{P}$, we have that exactly **one** of formulas $P, \neg P$ belongs to S^*

This justifies the correctness of the following definition

Definition

For any MFC set S*, a mapping

 $\mathsf{v}: \mathcal{P} \longrightarrow \{\mathsf{T},\mathsf{F}\}$

such that

$$v(P) = \begin{cases} T & \text{if } P \in S^* \\ F & \text{if } P \notin S^* \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ = ● のへで

is called a truth assignment defined by S*

We extend v to

$$\mathbf{v}^*: P\mathcal{F} \longrightarrow \{T, F\}$$

in a usual, standard way and we prove that the truth assignment v is a **model** for S^*

It means we show for any $A \in P\mathcal{F}$,

$$\mathbf{v}^*(A) = \begin{cases} T & \text{if } A \in S^* \\ F & \text{if } A \notin S^* \end{cases}$$

We **prove** it by induction on the degree of the formula *A* as follows.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The **base case** of **atomic** formula $P \in \mathcal{P}$ follows immediately from the definition of v

Inductive Case: $A = \neg C$

1. Assume that $A \in S^*$

This means $\neg C \in S^*$ and by the MFC Property we have that $C \notin S^*$. So by the inductive assumption $v^*(C) = F$ and we get

$$\mathbf{v}^*(\mathbf{A}) = \mathbf{v}^*(\neg \mathbf{C}) = \neg \mathbf{v}^*(\mathbf{C}) = \neg \mathbf{F} = \mathbf{T}$$

2. Assume now that $A \notin S^*$.

By MFC Property we have that $C \in S^*$

By the inductive assumption $v^*(C) = T$ and

$$\mathbf{v}^*(\mathbf{A}) = \mathbf{v}^*(\neg \mathbf{C}) = \neg \mathbf{v}^*(\mathbf{T}) = \neg \mathbf{T} = \mathbf{F}$$

We proved that for any formula $A \in P\mathcal{F}$,

$$v^*(\neg A) = \begin{cases} T & \text{if } \neg A \in S^* \\ F & \text{if } \neg A \notin S^* \end{cases}$$

Inductive Case: $A = (B \cup C)$

1. Assume that $A \in S^*$. i.e. $(B \cup C) \in S^*$

It is enough to prove that in this case $B \in S^*$ or $C \in S^*$, because then from the inductive assumption $v^*(B) = T$ and

 $v^*(B \cup C) = v^*(B) \cup v^*(C) = T \cup v^*(C) = T$ for any C

The case $C \in S^*$ is similar

Assume that $(B \cup C) \in S^*$, $B \notin S^*$ and $C \notin S^*$ Then by MFC Property we have that $\neg B \in S^*$, $\neg C \in S^*$ and consequently the set

 $\{(B \cup C), \neg B, \neg C\}$

is a finite inconsistent subset of S^* , what **contradicts** the fact that S^* is finitely consistent

2. Assume now that $(B \cup C) \notin S^*$ By MFC Property, $\neg (B \cup C) \in S^*$ and by already proven **case** of $A = \neg C$ we have that $v^*(\neg (B \cup C)) = T$ But $v^*(\neg (B \cup C)) = \neg v^*((B \cup C)) = T$ This means that $v^*((B \cup C)) = F$, what **ends** the proof of this case

Step S3

The remaining cases of $A = (B \cap C)$ and $A = (B \Rightarrow C)$ are similar to the above and are left to the as an exercise This **ends** the proof of MFC **Lemma** and completes the step **S2**

S3: Maximal finitely consistent (MFC) extension S*

Given a finitely consistent set S We construct the MFC extension S^* of the set S as follows

The set of all formulas of \mathcal{L} is infinitely countable and so is the set \mathcal{PF} . We assume that the set \mathcal{PF} of all **propositional** formulas form a one-to-one sequence

(*)
$$A_1, A_2, \ldots, A_n, \ldots,$$

We **define** a chain

 $(**) \quad S_0 \subseteq S_1 \subseteq S_2, \ \ldots, \ \subseteq S_n \subseteq, \ \ldots$

of extensions of the set S as follows

$$S_0 = S$$

 $S_{n+1} = \begin{cases} S_n \cup \{A_n\} & \text{if } S_n \cup \{A_n\} \text{ is finitely consistent} \\ S_n \cup \{\neg A_n\} & \text{otherwise.} \end{cases}$

- コン・1日・1日・1日・1日・1日・

We take

$$S^* = \bigcup_{n \in N} S_n$$

Obviously $S \subseteq S^*$ also is MFC as clearly and for every A, either $A \in S^*$ or $\neg A \in S^*$

To complete the **proof** that S^* is MFC set we have to show that it is **finitely** consistent

First, let observe that if all sets S_n are finitely consistent, so is the set $S^* = \bigcup_{n \in N} S_n$. Namely, let

 $S_F = \{B_1, ..., B_k\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

be a finite subset of S*

This means that there are sets $S_{i_1}, ..., S_{i_k}$ in the chain (**) such that

 $B_m \in S_{i_m}$ for $m = 1, \ldots k$

Let $M = max(i_1, ..., i_k)$. Obviously

 $S_F \subseteq S_M$

and the set S_M is **finitely** consistent as an element of the chain (**). This **proves** that **if** all sets S_n are finitely consistent, so is S^*

Now we have to **prove only** that **all** sets S_n **are** FC (finitely consistent) We carry the proof by induction over the length of the chain

Base Case

 $S_0 = S$, so it is FC (finitely consistent) by assumption of the Compactness Theorem

Inductive Step

Assume now that S_n is FC (finitely consistent)

We prove that S_{n+1} is FC

We have two cases to consider

Case 1 $S_{n+1} = S_n \cup \{A_n\}$

Then S_{n+1} is FC by the definition of the chain

Case 2 $S_{n+1} = S_n \cup \{\neg A_n\}$

Observe that this can happen only if $S_n \cup \{A_n\}$ is **not** FC, i.e. there is a finite subset $S'_n \subseteq S_n$, such that $S'_n \cup \{A_n\}$ is **not** consistent

Suppose now that S_{n+1} is **not** FC

This means that there is a finite subset $S''_n \subseteq S_n$, such that $S''_n \cup \{\neg A_n\}$ is **not** consistent Take $S'_n \cup S''_n$. It is a finite subset of S_n so it is **consistent** by the inductive assumption Let v be a **model** of $S'_n \cup S''_n$ Then **one of** $v^*(A), v^*(\neg A)$ **must** be T

This contradicts the inconsistency of both

$$S'_n \cup \{A_n\}$$
 and $S'_n \cup \{\neg A_n\}$

Thus, in ether case, S_{n+1} is FC

We hence proved that **all** sets S_n are FC (finitely consistent)

This completes the proof of the step S3

We complete the proof of the **Compactness Theorem** for propositional logic of \mathcal{L} via the following argument as presented in the step **S4**

Given a finitely consistent set S

We extend it, via construction defined in the step S3 to a maximal finitely consistent set S^*

By the S2, the set S^* is consistent and so is the set S

This ends the proof of the Compactness Theorem