Chapter 10
Predicate Automated Proof Systems
Completeness of Classical Predicate Logic

Slides Set 2

PART 3: Skolemization and Clauses
A resolution based proof system for predicate logic operates on sets of clauses as a basic expressions and uses a resolution rule as the only rule of inference.

The first goal of this part is to define an effective process of transformation of any formula A of a predicate language $L = L_{\{\neg,\cup,\cap,\Rightarrow\}}(P, F, C)$ into its logically equivalent set of clauses C_A.
Skolemization and Clauses:
Introduction

This process of transformation is done in two stages

S1. We convert any formula A of the predicate language \mathcal{L} into an open formula A^* of a language \mathcal{L}^* by a process of elimination of quantifiers from the original language \mathcal{L}

The elimination method is due to T. Skolem (1920) and is called Skolemization

Skolem Theorem
The resulting formula A^* is equisatisfiable with A:
it is satisfiable if and only if the original one is satisfiable
Skolemization and Clauses;
Introduction

The stage \textbf{S1.} is performed as the first step in a resolution based automated theorem prover

\textbf{S2.} We define a proof system \textbf{QRS} based on the Skolemized language

\[
\mathcal{L}^*
\]

and use it transform automatically any formula \(A^* \) of \(\mathcal{L}^* \) into an logically equivalent set of clauses

\[
C_{A^*}
\]
Skolemization and Clauses;
Introduction

The final result of stages S1. and S2., i.e. the set C_A^*

of clauses of the Skolemized language L^* called a clausal form of the original formula A of the language L

The transformation process for any propositional formula A into its logically equivalent set C_A of clauses follows directly from the use of the propositional system RS
Clauses: Definition

Definition
Given a formal language \mathcal{L}, propositional or predicate

1. A literal as an atomic, or a negation of an atomic formula of \mathcal{L}. We denote by \mathcal{LT} the set of all literals of \mathcal{L}

2. A clause C is a finite set of literals
Empty clause is denoted by $\{\}$

3. We denote by \mathcal{C} any finite set of all clauses. For any $n \geq 0$,
\[\mathcal{C} = \{C_1, C_2, \ldots C_n\} \]
Clauses: Definition

Definition
Given a propositional or predicate language \(L \), and a sequence
\[\Gamma \in LT^* \]
determined by \(\Gamma \) is a set form out of all elements of the sequence \(\Gamma \).
We denote it by
\[C_\Gamma \]
Example

Example

In particular,

1. if $\Gamma_1 = a, a, \neg b, c, \neg b, c$ and $\Gamma_2 = \neg b, c, a$, then

 $$C_{\Gamma_1} = C_{\Gamma_2} = \{a, c, \neg b\}$$

2. If $\Gamma_1 = \neg P(x_1), \neg R(x_1, y), P(x_2), \neg P(x_1), \neg R(x_1, y), P(x_2)$ and $\Gamma_2 = \neg P(x_1), \neg R(x_1, y), P(x_2)$, then

 $$C_{\Gamma_1} = C_{\Gamma_2} = \{\neg P(x_1), \neg R(x_1, y), P(x_2)\}$$
Clauses Semantics

Given a propositional or predicate language L
We use the following notations
For any clause C, write δ_C

for a disjunction of all literals in C

Let M denote a structure $[M, I]$ for a predicate language L, or a truth assignment v in case when L is a propositional language
Clauses Semantics

Definition

M is called a **model** for a clause C

$\models M \models C$, if and only if $\models M \models \delta_C$

M is called a **model** for a set C of clauses,

$\models M \models C$ if and only if $\models M \models C$ for all clauses $C \in C$
Clauses Semantics

Definition
A formula A is equivalent with a set C of clauses

$$(A \equiv C) \quad \text{if and only if} \quad A \equiv \sigma_C$$

where σ_C is a conjunction of all formulas δ_C for all clauses $C \in C$
Propositional Formula-Clauses Equivalency

Theorem (Formula-Clauses Equivalency)
For any formula A of a propositional language L, there is an **effective procedure** of generating a corresponding set C_A of clauses such that

$$A \equiv C_A$$

Proof
Given a formula A, we first use the RS system (chapter 6) to build a **decomposition tree** T_A of A.
We form **clauses** out of the **leaves** of the tree T_A, i.e. for every leaf L we create a clause C_L determined by L.
Propositional Formula-Clauses Equivalency

We put

\[C_A = \{C_L : \text{L is a leaf of } T_A \} \]

Directly from the **strong soundness** of rules of inference of \(RS \) we get

\[A \equiv C_A \]

This ends the **proof** for the propositional case
Example

Consider a decomposition tree T_A

$$(((a \Rightarrow b) \cap \neg c) \cup (a \Rightarrow c))$$

\cup

$$((a \Rightarrow b) \cap \neg c), (a \Rightarrow c)$$

\cap

$$(a \Rightarrow b), (a \Rightarrow c)$$ $\neg c, (a \Rightarrow c)$

$$(\neg a, b, (a \Rightarrow c))$$ $\neg c, \neg a, c$
Example

For the formula

\[A = (((a \Rightarrow b) \cap \neg c) \cup (a \Rightarrow c)) \]

the leaves of its tree \(T_A \) are

\[L_1 = \neg a, b, \neg a, c \quad \text{and} \quad L_2 = \neg c, \neg a, c \]

The set of clauses determined by them is

\[C_A = \{\neg a, b, c\}, \quad \{\neg c, \neg a, c\} \]

By the Formula-Clauses Equivalency Theorem

\[A \equiv C_A \]

Semantically it means that

\[A \equiv (((\neg a \cup b) \cup c) \cap ((\neg c \cup \neg a) \cup c)) \]
Predicate Clausal Form

Theorem
For any formula A of a predicate language L, there is an effective procedure of generating an open formula A^* of a quantifiers free language L^* and a set C_{A^*} of clauses such that

\[(*) \quad A^* \equiv C_{A^*}\]

The set C_{A^*} of clauses of the language L^* with the property (*) is called a clausal form of the formula A of L.
Proof of Theorem

Proof Given a formula A of a language \mathcal{L}

The open formula A^* of the quantifiers free language \mathcal{L}^*
is obtained by the Skolemization process

The effectiveness and correctness of the process follows from PNF Theorem and Skolem Theorem described in the next section

As the next step, we define there a proof system QRS^*
based on the quantifiers free language \mathcal{L}^*
Proof of Predicate Clausal Form Theorem

The system QRS^* is a version of the predicate system QRS with inference rules restricted to Propositional Rules.

At this point we use the system QRS^* to define in it a decomposition tree T_{A^*} for any open formula A^*. We form clauses out of its leaves and we put

$$C_{A^*} = \{C_L : L \text{ is a leaf of } T_{A^*}\}$$

This is the clausal form of the formula A of L.

To complete the proof we develop in the next section all needed notions and results.
Prenex Normal Forms and Skolemization
Some Basic Notions

Let $A(x), A(x_1, x_2, ..., x_n) \in \mathcal{F}$ and $t, t_1, t_2, ..., t_n \in \mathcal{T}$

$$A(t), \ A(t_1, t_2, ..., t_n)$$

denote the result of replacing respectively all occurrences of the free variables $x, x_1, x_2, ..., x_n$, by the terms $t, t_1, t_2, ..., t_n$

We assume that $t, t_1, t_2, ..., t_n$ are free for $x, x_1, x_2, ..., x_n$, respectively, in A

The assumption that $t \in \mathcal{T}$ is free for x in $A(x)$ while substituting t for x, is important because otherwise we would distort the meaning of $A(t)$
Examples

Example 1
Let \(t = y \) and \(A(x) \) be

\[
\exists y (x \neq y)
\]

Obviously \(t \) is not free for \(y \) in \(A \)
The substitution of \(t \) for \(x \) produces a formula \(A(t) \) of the form

\[
\exists y (y \neq y)
\]

which has a different meaning than

\[
\exists y (x \neq y)
\]
Examples

Example 2
Let $A(x)$ be a formula

$$(\forall y P(x, y) \cap Q(x, z))$$

and let $t = f(x, z)$

We substitute t on a place of x in $A(x)$ and we obtain a formula $A(t)$ of the form

$$(\forall y P(f(x, z), y) \cap Q(f(x, z), z))$$

None of the occurrences of the variables x, z of t is bound in $A(t)$, hence we say that $t = f(x, z)$ is free for x in

$$(\forall y P(x, y) \cap Q(x, z))$$
Examples

Example 3
Let $A(x)$ be a formula

$$(\forall y P(x, y) \cap Q(x, z))$$

The term $t = f(y, z)$ is not free for x in $A(x)$ because substituting $t = f(y, z)$ on a place of x in $A(x)$ we obtain now a formula $A(t)$ of the form

$$(\forall y P(fy, z), y) \cap Q(f(y, z), z))$$

which contain a bound occurrence of the variable y of t in sub-formula $(\forall y P(fy, z), y))$

The other occurrence of y in sub-formula $(Q(f(y, z), z))$ is free, but it is not sufficient, as for term to be free for x, all occurrences of its variables has to be free in $A(t)$
Informally, we say that formulas $A(x)$ and $A(y)$ are similar if and only if $A(x)$ and $A(y)$ are the same except that $A(x)$ has free occurrences of x in exactly those places where $A(y)$ has free occurrence of of y

We define it formally as follows

Definition

Let x and y be two different variables. We say that the formulas $A(x)$ and $A(y) = A(x/y)$ are similar and denote it by

$$A(x) \sim A(y)$$

if and only if y is free for x in $A(x)$ and $A(x)$ has no free occurrences of y
Similar Formulas Examples

Example 1
The formulas

\[A(x) : \exists z (P(x, z) \Rightarrow Q(x, y)) \]

and

\[A(y) : \exists z (P(y, z) \Rightarrow Q(y, y)) \]

are not similar; \(y \) is free for \(x \) in \(A(x) \) as no occurrence of \(y \) becomes a bound occurrence in the formula \(A(y) \) but the formula \(A(x) \) has a free occurrence of \(y \).
Similar Formulas Examples

Example 2
The formulas

$$A(x) : \exists z (P(x, z) \Rightarrow Q(x, y))$$

and

$$A(w) : \exists z (P(w, z) \Rightarrow Q(w, y))$$

are similar; w is free for x in $A(x)$ as no occurrence of w becomes a bound occurrence in the formula $A(w)$ and the formula $A(x)$ has no free occurrence of w
Renaming the Variables

Directly from the definition we get the following

Fact (Renaming the Variables)
For any formula $A(x) \in \mathcal{F}$, if $A(x)$ and $A(y) = A(x/y)$ are similar, i.e.

$$A(x) \sim A(y)$$

then the following logical equivalences hold

$$\forall x A(x) \equiv \forall y A(y)$$

and

$$\exists x A(x) \equiv \exists y A(y)$$
Example

Example 3
We proved in Example 2 that

$$\exists z (P(x, z) \implies Q(x, y)) \sim \exists z (P(w, z) \implies Q(w, y))$$

Hence by the Fact we get that

$$\forall x \exists z (P(x, z) \implies Q(x, y)) \equiv \forall w \exists z (P(w, z) \implies Q(w, y))$$

and

$$\exists x \exists z (P(x, z) \implies Q(x, y)) \equiv \exists w \exists z (P(w, z) \implies Q(w, y))$$
Replacement Theorem

We prove, by the induction on the number of connectives and quantifiers in a formula A, the following

Replacement Theorem

For any formulas $A, B \in \mathcal{F}$,

if B is a sub-formula of A, and A^* is the result of replacing zero or more occurrences of B in A by a formula C, and $B \equiv C$, then $A \equiv A^*$
Change of Bound Variables Theorem

Theorem (Change of Bound Variables)
For any formula $A(x), A(y), B \in \mathcal{F}$, if the formulas $A(x)$ and $A(x/y)$ are similar, i.e.

$$A(x) \sim A(y)$$

and the formula

$$\forall x A(x) \text{ or } \exists x A(x)$$

is a sub-formula of B, and the formula B^* is the result of replacing zero or more occurrences of $A(x)$ in B by a formula $\forall y A(y)$ or by a formula $\exists y A(y)$, then

$$B \equiv B^*$$
Naming Variables Apart

Definition
We say that a formula B has its variables named apart if no two quantifiers in B bind the same variable and no bound variable is also free.

We now use the Change of Bound Variables Theorem to prove its more general version.
Naming Variables Apart

Theorem (Naming Variables Apart)
Every formula $A \in \mathcal{F}$ is logically **equivalent** to one in which all variables are named apart

We use the above theorems plus the **equational laws** for quantifiers to prove, as a next step a so called a **Prenex Form Theorem**

In order to do so we first we define an important notion of **prenex normal form** of a formula
Closure of a Formula

Here is an important notion we need for future definition

Definition (Closure of a Formula)

By a **closure** of a formula A we mean a **closed** formula A' obtained from A prefixing in universal quantifiers all those variables that are free in A; i.e. if $A(x_1, \ldots, x_n)$ then $A' \equiv A$ is

$$\forall x_1 \forall x_2 \ldots \forall x_n A(x_1, x_2, \ldots, x_n)$$

Example

Let A be a formula $(P(x, y) \Rightarrow \neg \exists z R(x, y, z))$. Its **closure** $A' \equiv A$ is

$$\forall x \forall y (P(x, y) \Rightarrow \neg \exists z R(x, y, z))$$
Prenex Normal Form

PNF Definition

Any formula of the form

\[Q_1 x_1 Q_2 x_2 Q_n x_n B \]

where each \(Q_i \) is a **universal** or **existential quantifier**, i.e. the following holds

for all \(1 \leq i \leq n \),

\[Q_i \in \{\exists, \forall\} \quad \text{and} \quad x_i \neq x_j \quad \text{for} \quad i \neq j \]

and the formula \(B \) contains **no quantifiers**, is said to be in **Prenex Normal Form (PNF)**

We include the case \(n = 0 \) when there are no quantifiers at all
Prenex Normal Form Theorem

We assume that the formula A in PNF is always closed. If it is not closed we form its closure instead.

PNF Theorem

There is an effective procedure for transforming any formula $A \in \mathcal{F}$ into a formula B in the prenex normal form PNF such that

$$A \equiv B$$

Proof

The procedure uses the Replacement and Naming Variables Apart Theorems and the following Equational Laws of Quantifiers proved in chapter 2.
Equational Laws of Quantifiers

For any \(A(x), B \in \mathcal{F} \), where \(B \) does not contain any free occurrence of \(x \) the following holds

\[
\forall x (A(x) \cup B) \equiv (\forall x A(x) \cup B)
\]

\[
\forall x (A(x) \cap B) \equiv (\forall x A(x) \cap B)
\]

\[
\exists x (A(x) \cup B) \equiv (\exists x A(x) \cup B)
\]

\[
\exists x (A(x) \cap B) \equiv (\exists x A(x) \cap B)
\]

\[
\forall x (A(x) \Rightarrow B) \equiv (\exists x A(x) \Rightarrow B)
\]

\[
\exists x (A(x) \Rightarrow B) \equiv (\forall x A(x) \Rightarrow B)
\]

\[
\forall x (B \Rightarrow A(x)) \equiv (B \Rightarrow \forall x A(x))
\]

\[
\exists x (B \Rightarrow A(x)) \equiv (B \Rightarrow \exists x A(x))
\]
PNF Procedure

The general **PNF procedure** is defined by induction on the number k of occurrences of connectives and quantifiers in A. We show here how it works in some particular cases.

Exercise Find a prenex normal form **PNF** of a formula

$$A : (\forall x(P(x) \Rightarrow \exists x Q(x)))$$

Solution We find **PNF** as follows:

Step 1: Naming Variables Apart

We make all **bound variables** in A different, i.e. we transform A into an equivalent formula A'

$$\forall x(P(x) \Rightarrow \exists y Q(y))$$
PNF Procedure

Step 2: Pull Out Quantifiers

We apply the equational law

\[(C \Rightarrow \exists y Q(y)) \equiv \exists y (C \Rightarrow Q(y))\]

to the sub-formula

\[B : (P(x) \Rightarrow \exists y Q(y))\]

of \(A'\) for \(C = P(x)\), as \(P(x)\) does not contain the variable \(y\)

We get its equivalent formula

\[B^* : \exists y (P(x) \Rightarrow Q(y))\]

We substitute \(B^*\) on place of \(B\) in \(A'\) and get the formula

\[A'' : \forall x \exists y (P(x) \Rightarrow Q(y))\]

By the Replacement Theorem \(A'' \equiv A' \equiv A\)

The formula \(A''\) is a required prenex normal form \(PNF\) for \(A\)
Example
Let’s now find PNF for the formula A:

$$(\exists x \forall y \ R(x, y) \Rightarrow \forall y \exists x \ R(x, y))$$

Step 1: Rename Variables Apart
Take a sub-formula $B(x, y) : \forall y \exists x \ R(x, y)$ of A
Rename variables in $B(x, y)$, i.e. get
$B(x/z, y/w) : \forall w \exists z \ R(z, w)$
Replace $B(x, y)$ by $B(x/z, y/w)$ in A and get

$$(\exists x \forall y \ R(x, y) \Rightarrow \forall w \exists z \ R(z, w))$$
PNF Procedure

Step 2: Pull out quantifiers
We use corresponding equational laws for quantifiers to pull out first (one by one) quantifiers \(\exists x \forall y \) and then pulling out one by one the quantifiers \(\forall w \exists z \). We get the following PNF for \(A \)

\[
\forall x \exists y \forall w \exists z \left(R(x, y) \Rightarrow R(z, w) \right)
\]

Observe we can also perform Step 2 by pulling out first (one by one) the quantifiers \(\forall w \exists z \) and then pulling out one by one the quantifiers \(\exists x \forall y \). We hence can obtain another PNF for \(A \)

\[
\forall w \exists z \forall x \exists y \left(R(x, y) \Rightarrow R(z, w) \right)
\]
Skolem Procedure of Elimination of Quantifiers
Skolemization

We will show now how any formula A already in its prenex normal form PNF can be transformed into a certain open formula A^*, such that

$$A \equiv A^*$$

The open formula A^* belongs to a richer language then the initial language \mathcal{L} to which the formula A belongs.
Skolemization

This **transformation** process **adds** new **constants** to the original language \(L \).

They are called **Skolem constants**.

The process also **adds** to \(L \) new **functions** symbols called **Skolem functions**.

The whole **transformation** process is called **Skolemization** of the initial language \(L \).

Such build **extension** of the initial language \(L \) is called the **Skolem extension** of and \(L \) and denoted \(\mathcal{L}^* \).
Skolem Elimination of Quantifiers

Skolem Procedure of Elimination of Quantifiers

Given a formula A of the language

$$\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(P, F, C)$$

We assume that A is already in its prenex normal form PNF

$$Q_1 x_1 Q_2 x_2 \ldots Q_n x_n B(x_1, x_2, \ldots x_n)$$

where each Q_i is a universal or existential quantifier, i.e. for all $1 \leq i \leq n$, $Q_i \in \{\exists, \forall\}$, $x_i \neq x_j$ for $i \neq j$, and the formula $B(x_1, x_2, \ldots x_n)$ contains no quantifiers
Skolem Elimination of Quantifiers

We describe now a procedure of elimination of all quantifiers from a PNF formula A

The procedure transforms PNF formula A into a logically equivalent open formula A^*

We also assume that the PNF formula A is closed. If it is not closed we form its closure instead.
Closure of a Formula

For any formula A, its closure is a formula A' obtained from A by prefixing in universal quantifiers all those variables that are free in A.

Example
Let A be a formula

$$(P(x, y) \Rightarrow \neg \exists z R(x, y, z))$$

its closure i.e. a formula $A' \equiv A$ is

$$\forall x \forall y (P(x, y) \Rightarrow \neg \exists z R(x, y, z))$$
Elimination of Quantifiers

Given a formula A in its closed PNF form

$$Q_1 x_1 Q_2 x_2 \ldots Q_n x_n B(x_1, x_2, \ldots, x_n)$$

We consider 3 cases

Case 1

All quantifiers Q_i for $1 \leq i \leq n$ are *universal*, i.e. the formula A is

$$A : \forall x_1 \forall x_2 \ldots \forall x_n B(x_1, x_2, \ldots, x_n)$$

We *replace* the formula A by the *open* formula A^*

$$A^* : B(x_1, x_2, \ldots, x_n)$$
Elimination of Quantifiers

Case 2
All quantifiers Q_i for $1 \leq i \leq n$ are existential, i.e. formula A is

$$A : \exists x_1 \exists x_2 \ldots \exists x_n B(x_1, x_2, \ldots x_n)$$

We replace the formula A by the open formula A^*

$$A^* : B(c_1, c_2, \ldots, c_n)$$

where c_1, c_2, \ldots, c_n and new individual constants added to our original language \mathcal{L}

We call such individual constants added to the original language Skolem constants.
Elimination of Quantifiers

Case 3
The quantifiers in A are mixed
We eliminate the mixed quantifiers one by one and step by step depending on first, and then the consecutive quantifiers in the closed PNF formula A

$$A : Q_1 x_1 Q_2 x_2 \ldots Q_n x_n B(x_1, x_2, \ldots x_n)$$

We have two possibilities for the first quantifier $Q_1 x_1$

P1 $Q_1 x_1$ is universal

P2 $Q_1 x_1$ is existential
Step 1 Elimination of Q_1

We consider the two cases for the first quantifier.

Case P1

First quantifier Q_1 is universal

This means that A is

$$A : \forall x_1 Q_2 x_2 \ldots Q_n x_n B(x_1, x_2, \ldots, x_n)$$

We replace A by the following formula A_1

$$A_1 : Q_2 x_2 Q_3 x_3 \ldots Q_n x_n B(x_1, x_2, x_3, \ldots, x_n)$$

We have eliminated the quantifier Q_1 in this case.
Elimination of Quantifiers; Step 1

Case P2

First quantifier Q_1 is existential. This means that A is

$$A : \exists x_1 Q_2 x_2 \ldots Q_n x_n B(x_1, x_2, \ldots x_n)$$

We replace A by a following formula A_1

$$A_1 : Q_2 x_2 \ldots Q_n x_n B(b_1, x_2, \ldots x_n)$$

where b_1 is a new constant symbol added to our original language \mathcal{L}

We call such constant symbol added to the language a Skolem constant

We have eliminated the quantifier Q_1 in both cases and this ends the Step 1
Elimination of Quantifiers; Step 2

Step 2 Elimination of Q_2

Consider now the PNF formula A_1 from Step 1 - case P1

$$A_1 \quad Q_2x_2 \ldots Q_nx_nB(x_1, x_2, \ldots x_n)$$

Remark that the formula A_1 might not be closed

We have again two cases for elimination of the quantifier Q_2

P1 Q_2 is universal

P2 Q_2 is existential
Elimination of Quantifiers; Step 2

Case **P1**
First quantifier in \(A_1 \) is **universal**
The formula \(A_1 \) is

\[
A_1 \quad \forall x_2 Q_3 x_3 \ldots Q_n x_n B(x_1, x_2, x_3, \ldots x_n)
\]

We replace \(A_1 \) by the following \(A_2 \)

\[
A_2 \quad Q_3 x_3 \ldots Q_n x_n B(x_1, x_2, x_3, \ldots x_n)
\]

We have **eliminated** the quantifier \(Q_2 \) in this case
Elimination of Quantifiers; Step 2

Case P2

First quantifier in A_1 is existential

The formula A_1 is

$$A_1 \quad \exists x_2 Q_3 x_3 \ldots Q_n x_n B(x_1, x_2, x_3, \ldots x_n)$$

Observe that now the variable x_1 is a free variable in

$$B(x_1, x_2, x_3, \ldots x_n)$$

and hence x_1 is a free variable in the formula A_1
Elimination of Quantifiers; Step 2

The variable x_1 is **free** in A_1

$$A_1 \quad \exists x_2 Q_3 x_3 \ldots Q_n x_n B(x_1, x_2, x_3, \ldots x_n)$$

We replace A_1 by the following A_2

$$A_2 \quad Q_3 x_3 \ldots Q_n x_n B(x_1, f(x_1), x_3, \ldots x_n)$$

where f is a new **one** argument functional symbol **added** to our original language L

We call such functional symbols **added** to the original language **Skolem functional** symbols

We have **eliminated** the quantifier Q_2 in this case
Elimination of Quantifiers; Step 2

Consider now the PNF formula A_1 from Step 1 - case P2

$$A_1 \ Q_2 x_2 Q_3 x_3 \ldots Q_n x_n B(b_1, x_2, \ldots x_n)$$

Again we have two cases for the quantifier Q_2

Case P1

First quantifier Q_2 in A_1 is universal

The formula A_1 is

$$A_1 \ \forall x_2 Q_3 x_3 \ldots Q_n x_n B(b_1, x_2, x_3, \ldots x_n)$$

We replace A_1 by the following A_2

$$A_2 \ Q_3 x_3 \ldots Q_n x_n B(b_1, x_2, x_3, \ldots x_n)$$

We have eliminated the quantifier Q_2 in this case
Elimination of Quantifiers; Step 2

Case P2
First quantifier in A_1 is existential
The formula A_1 is

$$A_1 \exists x_2 Q_3 x_3 \ldots Q_n x_n B(b_1, x_2, x_3, \ldots x_n)$$

We replace A_1 by the following A_2

$$A_2 \ Q_3 x_3 \ldots Q_n x_n B(b_1, b_2, x_3, \ldots x_n)$$

where $b_2 \neq b_1$ is a new Skolem constant added to the original language L

We have eliminated the quantifier Q_2 in this case
We have covered all cases and this ends the Step 2
Elimination of Quantifiers; Step 3

Step 3 Elimination of Q_3

Let’s now consider, as an example a formula A_2 from **Step 2** - case **P1** i.e. the formula

$$Q_3x_3 \ldots Q_nx_n B(x_1, x_2, x_3, \ldots x_n)$$

We have two cases but we describe only the following

P2 First quantifier in A_2 is **existential**

The formula A_2 is

$$A_2 \ \exists x_2 Q_4x_4 \ldots Q_nx_n B(x_1, x_2, x_3, x_4, \ldots x_n)$$

Observe that now the variables x_1, x_2 are **free** variables in

$$B(x_1, x_2, x_3, \ldots x_n)$$

and hence in A_2
Elimination of Quantifiers; Step 2

The the variables x_1, x_2 are free in A_2

$$A_2 \quad \exists x_2 Q_4 x_4 \ldots Q_n x_n B(x_1, x_2, x_3, x_4, \ldots x_n)$$

We replace A_2 by the following A_3

$$A_3 \quad Q_4 x_3 \ldots Q_n x_n B(x_1, x_2, g(x_1, x_2), x_4 \ldots x_n)$$

where g is a new two argument functional symbol added to the original language \mathcal{L}

We have eliminated the quantifier Q_3 in this case.
Elimination of Quantifiers

At each Step i for $1 \leq i \leq n$ we build a binary tree of cases:

- **P1** Q_i is universal
- **P2** Q_i is existential

The result in each case is a formula A_i with one less quantifier.

The elimination of the proper quantifier adds new Skolem constant or Skolem function symbol to the original language L.

Elimination of Quantifiers

The **elimination of quantifiers** process builds a sequence of formulas

$$A, A_1, A_2, \ldots, A_n = A^*$$

where the formula A belongs to our original language

$$\mathcal{L} = \mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}}(P, F, C),$$

and the **open** formula A^* belongs to its **Skolem extension** defined as follows
Skolem Extension

Definition
The **Skolem extension** L^* of a language

$$L = L_{\neg, \cup, \cap, \Rightarrow}(P, F, C)$$

is the language

$$L^* = L_{\neg, \cup, \cap, \Rightarrow}(P, F \cup SF, C \cup SC)$$

where the sets SF and SC are respectively the sets of Skolem functions and Skolem constants.

They are obtained by the **quantifiers elimination procedure**
Elimination of Quantifiers Result

Given a formula A in its closed PNF form

$$Q_1 x_1 Q_2 x_2 \ldots Q_n x_n B(x_1, x_2, \ldots x_n)$$

Observe that the elimination of an universal quantifier Q_i introduces a free variable x_i in the formula

$$Q_1 x_1 Q_2 x_2 \ldots Q_n x_n B(x_1, x_2, \ldots x_n)$$
Elimination of Quantifiers Result

The elimination of an existential quantifier Q_i that follows universal quantifiers introduces a new functional symbol with number of arguments equal the number of universal quantifiers preceding it.

The elimination of an existential quantifier Q_i that does not follow any universal quantifiers introduces a new constant symbol.

The resulting open formula A^* is logically equivalent to the PNF formula A.

Skolemization

Definition
Given a formula A of \mathcal{L}
A formula A^* of the Skolem extension language \mathcal{L}^* obtained from A by the elimination of quantifiers process is called a Skolem form of the formula A

The elimination of quantifiers process obtaining it is called Skolemization
Example

Example 1
Let A be a closed PNF formula

$$A : \forall y_1 \exists y_2 \forall y_3 \exists y_4 \ B(y_1, y_2, y_3, y_4, y_4)$$

We eliminate $\forall y_1$ and get a formula A_1

$$A_1 : \exists y_2 \forall y_3 \exists y_4 \ B(y_1, y_2, y_3, y_4)$$

We eliminate $\exists y_2$ by replacing the variable y_2 by $h(y_1)$

The symbol h is a new one argument functional symbol added to the language \mathcal{L}

We get a formula A_2

$$A_2 : \forall y_3 \exists y_4 \ B(y_1, h(y_1), y_3, y_4)$$
Example 1

Given the formula A_2

$$A_2 : \ \forall y_3 \exists y_4 \ B(y_1, h(y_1), y_3, y_4)$$

We **eliminate** $\forall y_3$ and get a formula A_3

$$A_3 : \ \exists y_4 \ B(y_1, h(y_1), y_3, y_4)$$

We **eliminate** $\exists y_4$ by replacing y_4 by $f(y_1, y_3)$, where f is a **new** two argument functional symbol **added** to L

We get a formula A_4 that is our resulting **open** formula A^*

$$A^* : \ B(y_1, h(y_1), y_3, f(y_1, y_3))$$
Example 2

Let A be a closed PNF formula

$$A : \exists y_1 \forall y_2 \forall y_3 \exists y_4 \exists y_5 \forall y_6 \ B(y_1, y_2, y_3, y_4, y_4, y_5, y_6)$$

We eliminate $\exists y_1$ and get a formula A_1

$$A_1 : \forall y_2 \forall y_3 \exists y_4 \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$$

where b_1 is a new constant added to the language L

We eliminate $\forall y_2, \forall y_3$ and get formulas A_2, A_3

$$A_2 : \forall y_3 \exists y_4 \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$$

$$A_3 : \exists y_4 \exists y_5 \forall y_6 \ B(b_1, y_2, y_3, y_4, y_4, y_5, y_6)$$
Example 2

We eliminate $\exists y_4$ and get a formula A_4

$$A_4 : \exists y_5 \forall y_6 B(b_1, y_2, y_3, g(y_2, y_3), y_5, y_6)$$

where g is a new two argument functional symbol added to the original language \mathcal{L}

We eliminate $\exists y_5$ and get a formula A_5

$$A_5 : \forall y_6 B(b_1, y_2, y_3, g(y_2, y_3), h(y_2, y_3), y_6)$$

where h is a new two argument functional symbol added to the language \mathcal{L}

We eliminate $\forall y_6$ and get a formula A_6 that is the resulting open formula A^*

$$A^* : B(b_1, y_2, y_3, g(y_2, y_3), h(y_2, y_3), y_6)$$
The correctness of the Skolemization process is established by the **Skolem Theorem**

It states informally that the formula A^* obtained from a formula A via the Skolemization process is **satisfiable** if and only if the original formula A is **satisfiable**

We define this notion **formally** as follows
Skolem Theorem

Definition Equisatisfiable formulas

Given any formulas A of \mathcal{L} and B of the Skolem extension \mathcal{L}^* of \mathcal{L}

We say that A and B are **equisatisfiable** if and only if the following conditions are satisfied

1. Any structure M of \mathcal{L} can be extended to a structure M^* of \mathcal{L}^* and following implication holds

 $$\text{If } M \models A, \text{ then } M^* \models B$$

2. Any structure M^* of \mathcal{L}^* can be restricted to a structure M of \mathcal{L} and following implication holds

 $$\text{If } M^* \models B, \text{ then } M \models A$$
Skolem Theorem

Let \(L^* \) be the **Skolem extension** of a language \(L \). Any formula \(A \) of \(L \) and its **Skolem form** \(A^* \) of \(L^* \) are **equisatisfiable**.
Clausal Form of Formulas
Poof System QRS*

Let L^* be the Skolem extension of L
By definition, the language L^* does not contain quantifiers and all its formulas and open
We define a proof system QRS* as an open formulas version of the proof system QRS based on the language L
We denote the set of formulas of L^* by OF to stress the fact that all its formulas are open
Let

$$AF \subseteq OF$$

be the set of all atomic formulas of L^* and the set

$$LT = \{A : A \in AF\} \cup \{\neg A : A \in AF\}$$

the set of all literals of L^*
Poof System QRS*

We denote by

$$\Gamma', \; \Delta', \; \Sigma' \ldots$$

finite sequences (empty included) formed out of literals, i.e of the elements of LT^*

We will denote by

$$\Gamma, \; \Delta, \; \Sigma \ldots$$

finite sequences (empty included) formed out of formulas, i.e of the elements of OF^*
Proof System \(\text{QRS}^* \)

We define the proof system \(\text{QRS}^* \) formally as follows:

\[
\text{QRS}^* = (\mathcal{L}^*, \mathcal{E}, \mathcal{LA}, \mathcal{R})
\]

where \(\mathcal{E} = \{ \Gamma : \Gamma \in \mathcal{OF}^* \} \)

The set \(\mathcal{LA} \) of logical axioms contains any sequence \(\Gamma' \in \mathcal{LT}^* \)

which contains an atomic formula and its negation.

\(\mathcal{R} \) is the set inference rules defined as follows:

\[
(\cup), (\neg \cup), (\cap), (\neg \cap), (\Rightarrow), (\neg \Rightarrow), (\neg \neg)
\]

defined as follows
Poof System QRS*

Disjunction rules

\[
\begin{align*}
(\cup) & \quad \frac{\Gamma', A, B, \Delta}{\Gamma', (A \cup B), \Delta} \\
(\neg \cup) & \quad \frac{\Gamma', \neg A, \Delta; \Gamma', \neg B, \Delta}{\Gamma', \neg (A \cup B), \Delta}
\end{align*}
\]

Conjunction rules

\[
\begin{align*}
(\cap) & \quad \frac{\Gamma', A, \Delta; \Gamma', B, \Delta}{\Gamma', (A \cap B), \Delta} \\
(\neg \cap) & \quad \frac{\Gamma', \neg A, \neg B, \Delta}{\Gamma', \neg (A \cap B), \Delta}
\end{align*}
\]

where \(\Gamma' \in LT^*, \ \Delta \in OF^*, \ A, B \in OF \)
Poof System QRS*

Implication rules

\[
(\Rightarrow) \quad \frac{\Gamma', \neg A, B, \Delta}{\Gamma', (A \Rightarrow B), \Delta}
\]

\[
(\neg \Rightarrow) \quad \frac{\Gamma', A, \Delta}{\Gamma', \neg (A \Rightarrow B), \Delta}
\]

Negation rule

\[
(\neg \neg) \quad \frac{\Gamma', A, \Delta}{\Gamma', \neg \neg A, \Delta}
\]

where \(\Gamma' \in LT^*, \Delta \in OF^*, A, B \in OF \)
QRS* Semantics

Definition
For any sequence Γ of formulas of \mathcal{L}^*, any structure $M = [M, I]$ for \mathcal{L}^*,

$$M \models \Gamma \text{ if and only if } M \models \delta_\Gamma$$

where δ_Γ denotes a disjunction of all formulas in Γ

The semantics for clauses is basically the same as for the sequences. We define it as follows
Clauses Semantics

Definition
For any finite set of clauses \(C \) of \(L^* \), any structure \(M = [M, I] \) for \(L^* \), and any clause \(C \in C \),
1. \(M \models C \) if and only if \(M \models \delta_C \)
2. \(M \models C \) if and only if \(M \models \delta_C \) for all \(C \in C \)
3. \((A \equiv C) \) if and only if \(A \equiv \sigma_C \)
where \(\delta_C \) denotes a disjunction of all literals in \(C \) and \(\sigma_C \) is a conjunction of all formulas \(\delta_C \) for all clauses \(C \in C \)

Obviously, the rules of inference of \(QRS^* \) are strongly sound and the following holds

Strong Soundness Theorem
The proof system \(QRS^* \) is strongly sound
We use the QRS* system to define an effective procedure that transforms any formula A of L^* into set of clauses and prove correctness of this transformation.

We treat the rules of inference of QRS* as decomposition rules and use them to generate needed set C_A of clauses corresponding to a given formula A.
Decomposable, Indecomposable

Definition
A formula that is not a literal, i.e. any formula \(A \in \text{OF} - \text{L} \) is called a **decomposable**
Otherwise \(A \) is called **indecomposable**

Definition
A sequence \(\Gamma \) that contains a decomposable formula is called a **decomposable** sequence

Definition
A sequence \(\Gamma' \) built only out of literals, i.e. \(\Gamma' \in \text{L}^* \) is called an **indecomposable** sequence
Definition
Given a formula $A \in OF$
We build the decomposition tree T_A of A as follows

Step 1.
The formula A is the root of T_A
For any node Δ of the tree T_A we follow the steps below

Step 2.
If Δ is indecomposable, then Δ becomes a leaf of the tree
Decomposition Tree T_A

Step 3.
If Δ is decomposable, then we traverse Δ from left to right to identify the first decomposable formula B.

In case of a one premiss rule we put its premise as a leaf. In case of a two premisses rule we put its left and right premisses as the left and right leaves, respectively.

Step 4.
We repeat steps 2. and 3. until we obtain only leaves.
Formula-Clauses Equivalency

Formula-Clauses Equivalency Theorem
For any formula \(A \) of \(\mathcal{L}^* \), there is an effective procedure of generating a set of clauses \(C_A \) of \(\mathcal{L}^* \) such that

\[A \equiv C_A \]

Proof
Given \(A \in \mathcal{OF} \). Here is the two steps procedure

S1. We construct (finite and unique) decomposition tree \(T_A \)

S2. We form clauses out of the leaves of the tree \(T_A \), i.e. for every leaf \(L \) we create a clause \(C_L \) determined by \(L \) and we put

\[C_A = \{C_L : L \text{ is a leaf of } T_A\} \]

Directly from the QRS* Strong Soundness Theorem and the semantics for clauses definition we get that

\[A \equiv C_A \]
Exercise

Find the set \(C_A \) of clauses for the following formula \(A \)

\[(((P(b, f(x)) \Rightarrow Q(x)) \cup \neg R(z)) \cup (P(b, f(x)) \cap R(z))) \]

Solution

Step S1. We construct the decomposition tree \(T_A \) for \(A \)

Step S2. We form **clauses** out of the leaves of the tree \(T_A \)

We put

\[C_A = \{C_L : \ L \text{ is a leaf of } T_A \} \]
Step S1. The decomposition tree is

\[T_A \]

\[
((((P(b, f(x)) \Rightarrow Q(x)) \cup \neg R(z)) \cup (P(b, f(x)) \cap R(z)))
\]

| (\cup)

\[
(((P(b, f(x)) \Rightarrow Q(x)) \cup \neg R(z)), (P(b, f(x)) \cap R(z))
\]

| (\cup)

\[
(P(b, f(x)) \Rightarrow Q(x)), \neg R(z), (P(b, f(x)) \cap R(z))
\]

| (\Rightarrow)

\[
\neg P(b, f(x)), Q(x), \neg R(z), (P(b, f(x)) \cap R(z))
\]

\[\land (\cap) \]

\[
\neg P(b, f(x)), Q(x), \neg R(z), P(b, f(x))
\]

\[L_1 \]

\[
\neg P(b, f(x)), Q(x), \neg R(z), R(z)
\]

\[L_2 \]
Exercise

Step S2. The leaves of T_A are

$$L_1 = \neg P(b, f(x)), \ Q(x), \ \neg R(z), \ P(b, f(x))$$

$$L_2 = \neg P(b, f(x)), \ Q(x), \ \neg R(z), \ R(z)$$

The corresponding clauses are

$$C_1 = \{\neg P(b, f(x)), Q(x), \neg R(z), P(b, f(x))\}$$

$$C_2 = \{\neg P(b, f(x)), Q(x), \neg R(z), R(z)\}$$

The set of clauses is

$$C_A = \{C_1, \ C_2\}$$
Clausal Form of Formulas of \mathcal{L}

Definition

Given a formula A of the original language \mathcal{L}, let A^* of \mathcal{L}^* be the **Skolem form** A obtained by the Skolemization process. A set C_{A^*} of clauses of \mathcal{L}^* such that

$$A^* \equiv C_{A^*}$$

is called a **clausal form** of the formula A of the language \mathcal{L}.
Exercise

Exercise Find the clausal form of a formula \(A \)

\[
A : (\exists x \forall y (R(x, y) \cup \neg P(x)) \Rightarrow \forall y \exists x \neg R(x, y))
\]

Solution We first find the Skolem form \(A^* \) of \(A \)

Step 1: We rename variables apart in \(A \) and get a formula \(A' \)

\[
A' : (\exists x \forall y (R(x, y) \cup \neg P(x)) \Rightarrow \forall z \exists w \neg R(z, w))
\]

Step 2: We use Equational Laws of Quantifiers to pull out quantifiers \(\exists x \) and \(\forall y \) and get a formula \(A'' \)

\[
A'' : \forall x \forall y ((R(x, y) \cup \neg P(x)) \Rightarrow \forall z \exists w \neg R(z, w))
\]
Exercise

Step 3: We use Equational Laws of Quantifiers to pull out the quantifiers $\exists z$ and $\forall w$ from the sub formula

$$(((R(x, y) \cup \neg P(x)) \Rightarrow \forall z \exists w \neg R(z, w))$$

and get a formula A'''

$$A''' : \forall x \exists y \forall z \exists w ((R(x, y) \cup \neg P(x)) \Rightarrow \neg R(z, w))$$

This is the Prenex Normal Form PNF of A
Exercise

Step 4: We perform the Skolemization Procedure

Observe that the formula

$$\forall x \exists y \forall z \exists w \left((R(x, y) \cup \neg P(x)) \Rightarrow \neg R(z, w)\right)$$

is of the form of the formulas of the Examples 1, 2

We follow them and eliminate $$\forall x$$ and get a formula $$A_1$$

$$A_1 :\ \exists y \forall z \exists w \left((R(x, y) \cup \neg P(x)) \Rightarrow \neg R(z, w)\right)$$

We eliminate $$\exists y$$ by replacing $$y$$ by $$h(x)$$ where $$h$$ is a new one argument functional symbol added to the language $$\mathcal{L}$$

We get a formula $$A_2$$

$$A_2 : \forall z \exists w \left((R(x, h(x)) \cup \neg P(x)) \Rightarrow \neg R(z, w)\right)$$
Exercise

We eliminate $\forall z$ and get a formula A_3

$$A_3 : \exists w \ ((R(x, h(x)) \cup \neg P(x)) \Rightarrow \neg R(z, w))$$

We eliminate $\exists w$ by replacing w by $f(x, z)$, where f is a new two argument functional symbol added to the original language L

We get a formula A_4 that is the resulting open formula A^* of L^*

$$A^* : ((R(x, h(x)) \cup \neg P(x)) \Rightarrow \neg R(z, (x, z)))$$
Exercise

Step 5: We build the decomposition tree of A^* as follows

T_{A^*}

$$(((R(x, h(x)) \cup \neg P(x)) \Rightarrow \neg R(z, f(x, z)))$$

$$\mid (\Rightarrow)$$

$$\neg (R(x, h(x)) \cup \neg P(x)), \neg R(z, f(x, z))$$

$$\bigwedge (\neg \cup)$$

$$\neg R(x, h(x)), \neg R(z, f(x, z))$$

$$\neg \neg P(x), \neg R(z, f(x, z))$$

$$\mid (\neg \neg)$$

$$P(x), \neg R(z, f(x, z))$$
Exercise

Step 6: The leaves of T_{A^*} are
$L_1 = \neg R(x, h(x)), \neg R(z, f(x, z))$
$L_2 = P(x), \neg R(z, f(x, z))$

The corresponding clauses are
$C_1 = \{\neg R(x, h(x)), \neg R(z, f(x, z))\}$
$C_2 = \{P(x), \neg R(z, f(x, z))\}$

Step 7: The clausal form of the formula A

$$A : (\exists x \forall y (R(x, y) \cup \neg P(x)) \Rightarrow \forall y \exists x \neg R(x, y))$$

is the set of clauses

$$C_{A^*} = \{\{\neg R(x, h(x)), \neg R(z, f(x, z))\}, \{P(x), \neg R(z, f(x, z))\}\}$$