
cse541
LOGIC for Computer Science

Professor Anita Wasilewska

LECTURE 10a

Chapter 10
Predicate Automated Proof Systems

Completeness of Classical Predicate Logic

Slides Set 2

PART 3: Skolemization and Clauses

Skolemization and Clauses : Introduction

A resolution based proof system for predicate logic operates
on sets of clauses as a basic expressions and uses a
resolution rule as the only rule of inference

The first goal of this part is to define an effective process of
transformation of any formula A of a predicate language

L = L{¬,∪,∩,⇒}(P,F,C)

into its logically equivalent set of clauses

CA

Skolemization and Clauses:
Introduction

This process of transformation is done in two stages

S1. We convert any formula A of the predicate language L
into an open formula A∗ of a language L∗ by a process of
elimination of quantifiers from the original language L

The elimination method is due to T. Skolem (1920) and is
called Skolemization

Skolem Theorem

The resulting formula A∗ is equisatisfiable with A :

it is satisfiable if and only if the original one is satisfiable

Skolemization and Clauses;
Introduction

The stage S1. is performed as the first step in a resolution
based automated theorem prover

S2. We define a proof system QRS∗ based on the
Skolemized language

L∗

and use it transform automatically any formula A∗ of L∗

into an logically equivalent set of clauses

CA∗

Skolemization and Clauses;
Introduction

The final result of stages S1. and S2., i.e. the set

CA∗

of clauses of the Skolemized language L∗ called a clausal
form of the original formula A of the language L

The transformation process for any propositional formula A
into its logically equivalent set CA of clauses follows
directly from the use of the propositional system RS

Clauses: Definition

Definition

Given a formal language L, propositional or predicate

1. A literal as an atomic , or a negation of an atomic formula
of L. We denote by LT the set of all literals of L

2. A clause C is a finite set of literals

Empty clause is denoted by {}

3. We denote by C any finite set of all clauses. For any
n ≥ 0,

C = {C1, C2, . . . Cn}

Clauses: Definition

Definition

Given a propositional or predicate language L, and a
sequence

Γ ∈ LT∗

d
¯
etermined by Γ is a set form out of all elements of the

sequence Γ

We we denote it by

CΓ

Example

Example

In particular,

1. if Γ1 = a, a,¬b , c,¬b , c and Γ2 = ¬b , c, a, then

CΓ1 = CΓ2 = {a, c,¬b}

2. If Γ1 = ¬P(x1),¬R(x1, y),P(x2),¬P(x1),¬R(x1, y),P(x2)

and Γ2 = ¬P(x1),¬R(x1, y),P(x2), then

CΓ1 = CΓ2 = {¬P(x1),¬R(x1, y),P(x2)}

Clauses Semantics

Given a propositional or predicate language L

We use the following notations

For any clause C, write
δC

for a disjunction of all literals in C

Let M denote a structure [M, I] for a predicate language L,

or a truth assignment v in case when L is a propositional

language

Clauses Semantics

Definition

M is called a model for a clause C

M |= C, if and only if M |= δC

M is called a model for a set C of clauses,

M |= C if and only if M |= C for all clauses C ∈ C

Clauses Semantics

Definition

A formula A is equivalent with a set C of clauses

(A ≡ C) if and only if A ≡ σC

where σC is a conjunction of all formulas δC for all clauses
C ∈ C

Propositional Formula-Clauses Equivalency

Theorem (Formula-Clauses Equivalency)

For any formula A of a propositional language L, there is
an effective procedure of generating a corresponding set
CA of clauses such that

A ≡ CA

Proof

Given a formula A , we first use the RS system (chapter 6) to
build a decomposition tree TA of A

We form clauses out of the leaves of the tree TA , i.e. for
every leaf L we create a clause CL determined by L

Propositional Formula-Clauses Equivalency

We put

CA = {CL : L is a leaf of TA }

Directly from the strong soundness of rules of inference of
RS we get

A ≡ CA

This ends the proof for the propositional case

Example

Example Consider a decomposition tree
TA

(((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

| (∪)

((a ⇒ b) ∩ ¬c), (a ⇒ c)∧
(∩)

(a ⇒ b), (a ⇒ c)

| (⇒)

¬a, b , (a ⇒ c)

| (⇒)

¬a, b ,¬a, c

¬c, (a ⇒ c)

| (⇒)

¬c,¬a, c

Example

For the formula

A = (((a ⇒ b) ∩ ¬c) ∪ (a ⇒ c))

the leaves of its tree TA are

L1 = ¬a, b ,¬a, c and L2 = ¬c,¬a, c

The set of clauses determined by them is

CA = {{¬a, b , c}, {¬c,¬a, c}}

By the Formula-Clauses Equivalency Theorem

A ≡ CA

Semantically it means that

A ≡ (((¬a ∪ b) ∪ c) ∩ ((¬c ∪ ¬a) ∪ c))

Predicate Clausal Form

Theorem

For any formula A of a predicate language L, there is an
effective procedure of generating an open formula A∗ of a
quantifiers free language L∗ and a set CA∗ of clauses
such that

(∗) A∗ ≡ CA∗

The set CA∗ of clauses of the language L∗ with the property
(∗) is called a clausal form of the formula A of L

Proof of Theorem

Proof Given a formula A of a language L

The open formula A∗ of the quantifiers free language L∗

is obtained by the Skolemization process

The effectiveness and correctness of the process follows
from PNF Theorem and Skolem Theorem described in the
next section

As the next step, we define there a proof system QRS∗

based on the quantifiers free language L∗

Proof of Predicate Clausal Form Theorem

The system QRS∗ is a version of the predicate system QRS
with inference rules restricted to Propositional Rules

At this point we use the system QRS∗ to define in it a
decomposition tree TA∗ for any open formula A∗

We form clauses out of its leaves and we put

CA∗ = {CL : L is a leaf of TA∗}

This is the clausal form of the formula A of L

To complete the proof we develop in the next section all

needed notions and results

Prenex Normal Forms and Skolemization

Some Basic Notions

Let A(x),A(x1, x2, ..., xn) ∈ F and t , t1, t2, ..., tn ∈ T

A(t), A(t1, t2, ..., tn)

denote the result of replacing respectively all occurrences of
the free variables x, x1, x2, ..., xn, by the terms t , t1, t2, ..., tn
We assume that t , t1, t2, ..., tn are free for x, x1, x2, ..., xn,
respectively, in A

The assumption that t ∈ T is free for x in A(x) while
substituting t for x, is important because otherwise we would
distort the meaning of A(t)

Examples

Example 1

Let t = y and A(x) be

∃y(x , y)

Obviously t is not free for y in A

The substitution of t for x produces a formula A(t) of the
form

∃y(y , y)

which has a different meaning than

∃y(x , y)

Examples

Example 2

Let A(x) be a formula

(∀yP(x, y) ∩ Q(x, z))

and let t = f(x, z)

We substitute t on a place of x in A(x) and we obtain a
formula A(t) of the form

(∀yP(f(x, z), y) ∩ Q(f(x, z), z))

None of the occurrences of the variables x, z of t is bound in
A(t), hence we say that t = f(x, z) is free for x in

(∀yP(x, y) ∩ Q(x, z))

Examples

Example 3

Let A(x) be a formula

(∀yP(x, y) ∩ Q(x, z))

The term t = f(y, z) is not free for x in A(x) because
substituting t = f(y, z) on a place of x in A(x) we obtain
now a formula A(t) of the form

(∀yP(fy, z), y) ∩ Q(f(y, z), z))

which contain a bound occurrence of the variable y of t in
sub-formula (∀yP(f(y, z), y))

The other occurrence of y in sub-formula (Q(f(y, z), z)) is
free, but it is not sufficient, as for term to be free for x, all
occurrences of its variables has to be free in A(t)

Similar Formulas

Informally, we say that formulas A(x) and A(y) are similar
if and only if A(x) and A(y) are the same except that
A(x) has free occurrences of x in exactly those places
where A(y) has free occurrence of of y

We define it formally as follows

Definition

Let x and y be two different variables. We say that the
formulas A(x) and A(y) = A(x/y) are similar and denote it
by

A(x) ∼ A(y)

if and only if y is free for x in A(x) and A(x) has no free
occurrences of y

Similar Formulas Examples

Example 1

The formulas

A(x) : ∃z(P(x, z)⇒ Q(x, y))

and

A(y) : ∃z(P(y, z)⇒ Q(y, y))

are not similar; y is free for x in A(x) as no occurrence of
y becomes a bound occurrence in the formula A(y) but the
formula A(x) has a free occurrence of y

Similar Formulas Examples

Example 2

The formulas

A(x) : ∃z(P(x, z)⇒ Q(x, y))

and

A(w) : ∃z(P(w, z)⇒ Q(w, y))

are similar; w is free for x in A(x) as no occurrence of w
becomes a bound occurrence in the formula A(w) and the
formula A(x) has no free occurrence of w

Renaming the Variables

Directly from the definition we get the following

Fact (Renaming the Variables)

For any formula A(x) ∈ F ,

if A(x) and A(y) = A(x/y) are similar, i.e.

A(x) ∼ A(y)

then the following logical equivalences hold

∀xA(x) ≡ ∀yA(y)

and

∃xA(x) ≡ ∃yA(y)

Example

Example 3

We proved in Example 2 that

∃z(P(x, z)⇒ Q(x, y)) ∼ ∃z(P(w, z)⇒ Q(w, y))

Hence by the Fact we get that

∀x∃z(P(x, z)⇒ Q(x, y)) ≡ ∀w∃z(P(w, z)⇒ Q(w, y))

and

∃x∃z(P(x, z)⇒ Q(x, y)) ≡ ∃w∃z(P(w, z)⇒ Q(w, y))

Replacement Theorem

We prove, by the induction on the number of connectives and
quantifiers in a formula A the following

Replacement Theorem

For any formulas A ,B ∈ F ,

if B is a sub-formula of A , and A∗ is the result of replacing
zero or more occurrences of B in A by a formula C, and
B ≡ C, then A ≡ A∗

Change of Bound VariablesTheorem

Theorem (Change of Bound Variables)

For any formula A(x),A(y),B ∈ F ,

if the formulas A(x) and A(x/y) are similar, i.e.

A(x) ∼ A(y

and the formula
∀xA(x) or ∃xA(x)

is a sub-formula of B, and the formula B∗ is the result of
replacing zero or more occurrences of A(x) in B by a
formula ∀yA(y) or by a formula ∃yA(y), then

B ≡ B∗

Naming Variables Apart

Definition

We say that a formula B has its variables named apart

if no two quantifiers in B bind the same variable and no
bound variable is also free

We now use the Change of Bound Variables Theorem to
prove its more general version

Naming Variables Apart

Theorem (Naming Variables Apart)

Every formula A ∈ F is logically equivalent to one in which all
variables are named apart

We use the above theorems plus the equational laws for
quantifiers to prove, as a next step a so called a Prenex Form
Theorem

In order to do so we first we define an important notion of
prenex normal form of a formula

Closure of a Formula

Here is an important notion we need for future definition

Definition(Closure of a Formula)

By a closure of a formula A we mean a closed formula A ′

obtained from A prefixing in universal quantifiers all those
variables that a free in A ; i.e.

if A(x1, , xn) then A ′ ≡ A is

∀x1∀x2....∀xnA(x1, x2,, xn)

Example

Let A be a formula (P(x, y)⇒ ¬∃z R(x, y, z)). its closure
A ′ ≡ A is ∀x∀y(P(x, y)⇒ ¬∃z R(x, y, z))

Prenex Normal Form

PNF Definition

Any formula of the form

Q1x1Q2x2....Qnxn B

where each Qi is a universal or existential quantifier,
i.e. the following holds

for all 1 ≤ i ≤ n,

Qi ∈ {∃,∀} and xi , xj for i , j

and the formula B contains no quantifiers, is said to be in
Prenex Normal Form (PNF)

We include the case n = 0 when there are no quantifiers at all

Prenex Normal Form Theorem

We assume that the formula A in PNF is always closed

If it is not closed we form its closure instead

PNF Theorem

There is an effective procedure for transforming any formula
A ∈ F into a formula B in the prenex normal form PNF such
that

A ≡ B

Proof

The procedure uses the Replacement and Naming Variables
Apart Theorems and and the following Equational Laws of
Quantifiers proved in chapter 2

Equational Laws of Quantifiers

For any A(x),B ∈ F , where B does not contain any free
occurrence of x the following holds

∀x(A(x) ∪ B) ≡ (∀xA(x) ∪ B)

∀x(A(x) ∩ B) ≡ (∀xA(x) ∩ B)

∃x(A(x) ∪ B) ≡ (∃xA(x) ∪ B)

∃x(A(x) ∩ B) ≡ (∃xA(x) ∩ B)

∀x(A(x)⇒ B) ≡ (∃xA(x)⇒ B)

∃x(A(x)⇒ B) ≡ (∀xA(x)⇒ B)

∀x(B ⇒ A(x)) ≡ (B ⇒ ∀xA(x))

∃x(B ⇒ A(x)) ≡ (B ⇒ ∃xA(x))

PNF Procedure

The general PNF procedure is defined by induction on the
number k of occurrences of connectives and quantifiers in A

We show here how it works in some particular cases

Exercise Find a prenex normal form PNF of a formula

A : (∀x(P(x)⇒ ∃xQ(x))

Solution We find PNF as follows

Step 1: Naming Variables Apart

We make all bound variables in A different, i.e. we transform
A into an equivalent formula A ′

∀x(P(x)⇒ ∃yQ(y))

PNF Procedure

Step 2: Pull Out Quantifiers
We apply the equational law
(C ⇒ ∃yQ(y)) ≡ ∃y (C ⇒ Q(y)) to the sub-formula

B : (P(x)⇒ ∃yQ(y))

of A ′ for C = P(x), as P(x) does not contain the variable y

We get its equivalent formula

B∗ : ∃y(P(x)⇒ Q(y))

We substitute B∗ on place of B in A ′ and get the formula

A” ∀x∃y(P(x)⇒ Q(y))

By the Replacement Theorem A ′′ ≡ A ′ ≡ A

The formula A ′′ is a required prenex normal form PNF for A

PNF Procedure

Example

Let’s now find PNF for the formula A :

(∃x∀y R(x, y)⇒ ∀y∃x R(x, y))

Step 1: Rename Variables Apart

Take a sub- formula B(x, y) : ∀y∃x R(x, y) of A

Rename variables in B(x, y), i.e. get
B(x/z, y/w) : ∀w∃z R(z,w)

Replace B(x, y) by B(x/z, y/w) in A and get

(∃x∀y R(x, y)⇒ ∀w∃z R(z,w))

PNF Procedure

Step 2: Pull out quantifiers

We use corresponding equational laws for quantifiers to pull
out first (one by one) quantifiers ∃x∀y and then pulling out

one by one the quantifiers ∀w∃z

We get the following PNF for A

∀x∃y∀w∃z (R(x, y)⇒ R(z,w))

Observe we can also perform Step 2 by pulling out first (one
by one) the quantifiers ∀w∃z and then pulling out one by
one the quantifiers ∃x∀y.

We hence can obtain another PNF for A

∀w∃z∀x∃y (R(x, y)⇒ R(z,w))

Skolem Procedure of Elimination of Quantifiers

Skolemization

We will show now how any formula A already in its

prenex normal form PNF can be transformed into a certain

open formula A∗, such that

A ≡ A∗

The open formula A∗ belongs to a richer language then

the initial language L to which the formula A belongs

Skolemization

This transformation process adds new constants to the
original language L

They are called Skolem constants

The process also adds to L new functions symbols called
Skolem functions

The whole transformation process is called Skolemization of
the initial language L

Such build extension of the initial language L is called the
Skolem extension of and L and denoted

L∗

Skolem Elimination of Quantifiers

Skolem Procedure of Elimination of Quantifiers

Given a formula A of the language

L = L{¬,∪,∩,⇒}(P,F,C)

We assume that A is already in its prenex normal form PNF

Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

where each Qi is a universal or existential quantifier, i.e. for
all 1 ≤ i ≤ n, Qi ∈ {∃,∀}, xi , xj for i , j, and the formula
B(x1, x2, . . . xn) contains no quantifiers

Skolem Elimination of Quantifiers

We describe now a procedure of elimination of all quantifiers
from a PNF formula A

The procedure transforms PNF formula A into a logically
equivalent open formula A∗

We also assume that the PNF formula A is closed

If it is not closed we form its closure instead

Closure of a Formula

For any formula A , its closure is a formula A ′ obtained from

A by prefixing in universal quantifiers all those variables

that are free in A

Example

Let A be a formula

(P(x, y)⇒ ¬∃z R(x, y, z))

its closure i.e. a formula A ′ ≡ A is

∀x∀y(P(x, y)⇒ ¬∃z R(x, y, z))

Elimination of Quantifiers

Given a formula A in its closed PNF form

Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

We considerer 3 cases

Case 1

All quantifiers Qi for 1 ≤ i ≤ n are universal, i.e. the
formula A is

A : ∀x1∀x2 . . .∀xnB(x1, x2, . . . , xn)

We replace the formula A by the open formula A∗

A∗ : B(x1, x2, , xn)

Elimination of Quantifiers

Case 2

All quantifiers Qi for 1 ≤ i ≤ n are existential, i.e. formula A is

A : ∃x1∃x2....∃xnB(x1, x2, . . . xn)

We replace the formula A by the open formula A∗

A∗ : B(c1, c2, , cn)

where c1, c2, , cn and new individual constants added
to our original language L

We call such individual constants added to the original
language Skolem constants

Elimination of Quantifiers

Case 3

The quantifiers in A are mixed

We eliminate the mixed quantifiers one by one and step by
step depending on first, and then the consecutive quantifiers
in the closed PNF formula A

A : Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

We have two possibilities for the first quantifier Q1x1

P1 Q1x1 is universal

P2 Q1x1 is existential

Elimination of Quantifiers; Step 1

Step 1 Elimination of Q1

We consider the two cases for the first quantifier

Case P1

First quantifier Q1 is universal

This means that A is

A : ∀x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

We replace A by the following formula A1

A1 : Q2x2Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We have eliminated the quantifier Q1 in this case

Elimination of Quantifiers; Step 1

Case P2

First quantifier Q1 is existential. This means that A is

A : ∃x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

We replace A by a following formula A1

A1 Q2x2 . . .QnxnB(b1, x2, . . . xn)

where b1 is a new constant symbol added to our original
language L

We call such constant symbol added to the language a
Skolem constant

We have eliminated the quantifier Q1 in both cases and this

ends the Step 1

Elimination of Quantifiers; Step 2

Step 2 Elimination of Q2

Consider now the PNF formula A1 from Step1 - case P1

A1 Q2x2 . . .QnxnB(x1, x2, . . . xn)

Remark that the formula A1 might not be closed

We have again two cases for elimination of the quantifier Q2

P1 Q2 is universal

P2 Q2 is existential

Elimination of Quantifiers; Step 2

Case P1

First quantifier in A1 is universal

The formula A1 is

A1 ∀x2Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We replace A1 by the following A2

A2 Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We have eliminated the quantifier Q2 in this case

Elimination of Quantifiers; Step 2

Case P2

First quantifier in A1 is existential

The formula A1 is

A1 ∃x2Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

Observe that now the variable x1 is a free variable in

B(x1, x2, x3, . . . xn)

and hence x1 is a free variable in in the formula A1

Elimination of Quantifiers; Step 2

The variable x1 is free in A1

A1 ∃x2Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We replace A1 by the following A2

A2 Q3x3 . . .QnxnB(x1, f(x1), x3, . . . xn)

where f is a new one argument functional symbol added to
our original language L

We call such functional symbols added to the original
language Skolem functional symbols

We have eliminated the quantifier Q2 in this case

Elimination of Quantifiers; Step 2

Consider now the PNF formula A1 from Step1 - case P2

A1 Q2x2Q3x3 . . .QnxnB(b1, x2, . . . xn)

Again we have two cases for the quantifier Q2

Case P1

First quantifier Q2 in A1 is universal

The formula A1 is

A1 ∀x2Q3x3 . . .QnxnB(b1, x2, x3, . . . xn)

We replace A1 by the following A2

A2 Q3x3 . . .QnxnB(b1, x2, x3, . . . xn)

We have eliminated the quantifier Q2 in this case

Elimination of Quantifiers; Step 2

Case P2

First quantifier in A1 is existential

The formula A1 is

A1 ∃x2Q3x3 . . .QnxnB(b1, x2, x3, . . . xn)

We replace A1 by the following A2

A2 Q3x3 . . .QnxnB(b1, b2, x3, . . . xn)

where b2 , b1 is a new Skolem constant added to the
original language L

We have eliminated the quantifier Q2 in this case

We have covered all cases and this ends the Step 2

Elimination of Quantifiers; Step 3

Step 3 Elimination of Q3

Let’s now consider, as an example a formula A2 from Step 2
- case P1 i.e. the formula

Q3x3 . . .QnxnB(x1, x2, x3, . . . xn)

We have two cases but we describe only the following

P2 First quantifier in A2 is existential
The formula A2 is

A2 ∃x2Q4x4 . . .QnxnB(x1, x2, x3, x4, . . . xn)

Observe that now the variables x1, x2 are free variables in

B(x1, x2, x3, . . . xn)

and hence in A2

Elimination of Quantifiers; Step 2

The the variables x1, x2 are free in A2

A2 ∃x2Q4x4 . . .QnxnB(x1, x2, x3, x4, . . . xn)

We replace A2 by the following A3

A3 Q4x3 . . .QnxnB(x1, x2, g(x1, x2), x4 . . . xn)

where g is a new two argument functional symbol added
to the original language L

We have eliminated the quantifier Q3 in this case

Elimination of Quantifiers

At each Step i for 1 ≤ i ≤ n we build a binary tree of cases

P1 Qi is universal or P2 Qi is existential

The result in each case is a formula Ai with one less
quantifier

The elimination of the proper quantifier adds new

Skolem constant or Skolem function symbol to the original
language L

Elimination of Quantifiers

The elimination of quantifiers process builds a sequence of
formulas

A , A1, A2, . . . , An = A∗

where the formula A belongs to our original language

L = L{¬,∪,∩,⇒}(P,F,C),

and the open formula A∗ belongs to its Skolem extension

defined as follows

Skolem Extension

Definition

The Skolem extension L∗ of a language

L = L{¬,∪,∩,⇒}(P,F,C)

is the language

L∗ = L{¬,∪,∩,⇒}(P,F ∪ SF, C ∪ SC)

where the sets SF and SC are respectively the sets of

Skolem functions and Skolem constants

They are obtained by the quantifiers elimination procedure

Elimination of Quantifiers Result

Given a formula A in its closed PNF form

Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

Observe that the elimination of an universal quantifier Qi

introduces a free variable xi in the formula

Q1x1Q2x2 . . .QnxnB(x1, x2, . . . xn)

Elimination of Quantifiers Result

The elimination of an existential quantifier Qi that follows
universal quantifiers introduces a new functional symbol with
number of arguments equal the number of universal
quantifiers preceding it

The elimination of an existential quantifier Qi that does
not follows any universal quantifiers introduces a new
constant symbol

The resulting open formula A∗ is logically equivalent to the
PNF formula A

Skolemization

Definition

Given a formula A of L

A formula
A∗

of the Skolem extension language L∗ obtained from A

by the elimination of quantifiers process is called a

Skolem form of the formula A

The elimination of quantifiers process obtaining it is called
Skolemization

Example

Example 1

Let A be a closed PNF formula

A : ∀y1∃y2∀y3∃y4 B(y1, y2, y3, y4, y4)

We eliminate ∀y1 and get a formula A1

A1 : ∃y2∀y3∃y4 B(y1, y2, y3, y4)

We eliminate ∃y2 by replacing the variable y2 by h(y1)

The symbol h is a new one argument functional symbol
added to the language L

We get a formula A2

A2 : ∀y3∃y4 B(y1, h(y1), y3, y4)

Example 1

Given the formula A2

A2 : ∀y3∃y4 B(y1, h(y1), y3, y4)

We eliminate ∀y3 and get a formula A3

A3 : ∃y4 B(y1, h(y1), y3, y4)

We eliminate ∃y4 by replacing y4 by f(y1, y3), where f is

a new two argument functional symbol added to L

We get a formula A4 that is our resulting open formula A∗

A∗ : B(y1, h(y1), y3, f(y1, y3))

Example 2

Example 2

Let A be a closed PNF formula

A : ∃y1∀y2∀y3∃y4∃y5∀y6 B(y1, y2, y3, y4, y4, y5, y6)

We eliminate ∃y1 and get a formula A1

A1 : ∀y2∀y3∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

where b1 is a new constant added to the language L

We eliminate ∀y2,∀y3 and get formulas A2,A3

A2 : ∀y3∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

A3 : ∃y4∃y5∀y6 B(b1, y2, y3, y4, y4, y5, y6)

Example 2

We eliminate ∃y4 and get a formula A4

A4 : ∃y5∀y6 B(b1, y2, y3, g(y2, y3), y5, y6)

where g is a new two argument functional symbol added
to the original language L

We eliminate ∃y5 and get a formula A5

A5 : ∀y6 B(b1, y2, y3, g(y2, y3), h(y2, y3), y6)

where h is a new two argument functional symbol added
to the language L

We eliminate ∀y6 and get a formula A6 that is the resulting
open formula A∗

A∗ : B(b1, y2, y3, g(y2, y3), h(y2, y3), y6)

Skolem Theorem

The correctness of the Skolemization process is established
by the Skolem Theorem

It states informally that the formula A∗ obtained from a
formula A via the Skolemization process is satisfiable if
and only if the original formula A is satisfiable

We define this notion formally as follows

Skolem Theorem

Definition Equisatisfiable formulas

Given any formulas A of L and B of the Skolem
extension L∗ of L

We say that A and B are equisatisfiable if and only if
the following conditions are satisfied

1. Any structure M of L can be extended to a structure
M∗ of L∗ and following implication holds

If M |= A , then M∗ |= B

2. Any structure M∗ of L∗ can be restricted to a
structure M of L and following implication holds

If M∗ |= B , then M |= A

Skolem Theorem

Skolem Theorem

Let L∗ be the Skolem extension of a language L

Any formula A of L and its Skolem form A∗ of L∗

are equisatisfiable

Clausal Form of Formulas

Poof System QRS∗

Let L∗ be the Skolem extension of L

By definition, the language L∗ does not contain quantifiers

and all its formulas and open

We define a proof system QRS∗ as an open formulas

version of the proof system QRS based on the language L

We denote the set of formulas of L∗ by OF to stress the
fact that all its formulas are open

Let
AF ⊆ OF

be the set of all atomic formulas of L∗ and the set

LT = {A : A ∈ AF } ∪ {¬A : A ∈ AF }

the set of all literals of L∗

Poof System QRS∗

We denote by
Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals,

i.e of the elements of LT∗

We will denote by
Γ, ∆, Σ . . .

finite sequences (empty included) formed out of formulas,

i.e of the elements of OF ∗

Poof System QRS∗

We define the proof system QRS∗ formally as follows

QRS∗ = (L∗, E, LA , R)

where E = {Γ : Γ ∈ OF ∗}

The set LA of logical axioms contains any sequence Γ
′

∈ LT∗

which contains an atomic formula and its negation

R is the set inference rules

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

defined as follows

Poof System QRS∗

Disjunction rules

(∪)
Γ
′

, A ,B , ∆

Γ′ , (A ∪ B), ∆
(¬∪)

Γ
′

, ¬A , ∆ ; Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

Conjunction rules

(∩)
Γ
′

, A , ∆ ; Γ
′

, B , ∆

Γ′ , (A ∩ B), ∆
(¬∩)

Γ
′

, ¬A , ¬B , ∆

Γ′ , ¬(A ∩ B), ∆

where Γ
′

∈ LT∗, ∆ ∈ OF ∗, A ,B ∈ OF

Poof System QRS∗

Implication rules

(⇒)
Γ
′

, ¬A ,B , ∆

Γ′ , (A ⇒ B), ∆
(¬ ⇒)

Γ
′

, A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ⇒ B), ∆

Negation rule

(¬¬)
Γ
′

, A , ∆

Γ′ , ¬¬A , ∆

where Γ
′

∈ LT∗, ∆ ∈ OF ∗, A ,B ∈ OF

QRS∗ Semantics

Definition

For any sequence Γ of formulas of L∗, any structure

M = [M, I] for L∗,

M |= Γ if and only if M |= δΓ

where δΓ denotes a disjunction of all formulas in Γ

The semantics for clauses is basically the same as for the
sequences. We define it as follows

Clauses Semantics

Definition
For any finite set of clauses C of L∗, any structure

M = [M, I] for L∗, and any clause C ∈ C,

1. M |= C if and only if M |= δC

2. M |= C if and only if M |= δC for all C ∈ C
3. (A ≡ C) if and only if A ≡ σC

where δC denotes a disjunction of all literals in C and

σC is a conjunction of all formulas δC for all clauses C ∈ C

Obviously, the rules of inference of QRS∗ are strongly sound
and the following holds

Strong Soundness Theorem
The proof system QRS∗ is strongly sound

Formula to Clauses Transformation

We use the QRS∗ system to define an effective procedure

that transforms any formula A of L∗ into set of clauses

and prove correctness of this transformation

We treat the rules of inference of QRS∗ as decomposition
rules and use them to generate needed set CA of clauses

corresponding to a given formula A

Decomposable, Indecomposable

Definition

A formula that is not a literal, i.e. any formula A ∈ OF − L

is called a decomposable

Otherwise A is called indecomposable

Definition

A sequence Γ that contains a decomposable formula is
called a decomposable sequence

Definition

A sequence Γ
′

built only out of literals, i.e. Γ
′

∈ L∗

is called an indecomposable sequence

Decomposition Tree TA

Definition

Given a formula A ∈ OF

We build the decomposition tree TA of A as follows

Step 1.

The formula A is the root of TA

For any node ∆ of the tree TA we follow the steps bellow

Step 2.

If ∆ is indecomposable, then ∆ becomes a leaf of the
tree

Decomposition Tree TA

Step 3.

If ∆ is decomposable, then we traverse ∆ from left

to right to identify the first decomposable formula B

In case of a one premiss rule we put is premise as a leaf

In case of a two premisses rule we put its left and right

premisses as the left and right leaves, respectively

Step 4.

We repeat steps 2. and 3. until we obtain only leaves

Formula-Clauses Equivalency

Formula-Clauses Equivalency Theorem
For any formula A of L∗, there is an effective procedure of
generating a set of clauses CA of L∗ such that

A ≡ CA

Proof
Given A ∈ OF . Here is the two steps procedure
S1. We construct (finite and unique) decomposition tree TA

S2. We form clauses out of the leaves of the tree TA , i.e.
for every leaf L we create a clause CL determined by L
and we put

CA = {CL : L is a leaf of TA }

Directly from the QRS∗ Strong Soundness Theorem and
the semantics for clauses definition we get that

A ≡ CA

Exercise

Exercise

Find the set CA of clauses for the following formula A

(((P(b , f(x))⇒ Q(x)) ∪ ¬R(z)) ∪ (P(b , f(x)) ∩ R(z))))

Solution

Step S1. We construct the decomposition tree TA for A

Step S2. We form clauses out of the leaves of the tree TA

We put
CA = {CL : L is a leaf of TA }

Exercise

Step S1. The decomposition tree is

TA

(((P(b , f(x))⇒ Q(x)) ∪ ¬R(z)) ∪ (P(b , f(x)) ∩ R(z)))

| (∪)

(((P(b , f(x))⇒ Q(x)) ∪ ¬R(z)), (P(b , f(x)) ∩ R(z))

| (∪)

(P(b , f(x))⇒ Q(x)),¬R(z), (P(b , f(x)) ∩ R(z))

| (⇒)

¬P(b , f(x)),Q(x),¬R(z), (P(b , f(x)) ∩ R(z))∧
(∩)

¬P(b , f(x)),Q(x),¬R(z),P(b , f(x))

L1

¬P(b , f(x)),Q(x),¬R(z),R(z)

L2

Exercise

Step S2. The leaves of TA are

L1 = ¬P(b , f(x)), Q(x), ¬R(z), P(b , f(x))

L2 = ¬P(b , f(x)), Q(x), ¬R(z), R(z)

The corresponding clauses are

C1 = {¬P(b , f(x)),Q(x),¬R(z),P(b , f(x))}

C2 = {¬P(b , f(x)),Q(x),¬R(z),R(z)}

The set of clauses is

CA = { C1, C2 }

Clausal Form of Formulas of L

Definition

Given a formula A of the original language L

Let A∗ of L∗ be the Skolem form A obtained by the

Skolemization process

A a set CA∗ of clauses of L∗ such that

A∗ ≡ CA∗

is called a clausal form of the formula A of the language L

Exercise

Exercise Find the clausal form of a formula A

A : (∃x∀y (R(x, y) ∪ ¬P(x))⇒ ∀y∃x ¬R(x, y))

Solution We first find the Skolem form A∗ of A

Step 1: We rename variables apart in A and

get a formula A ′

A ′ : (∃x∀y (R(x, y) ∪ ¬P(x))⇒ ∀z∃w ¬R(z,w))

Step 2: We use Equational Laws of Quantifiers to pull out

quantifiers ∃x and ∀y and get a formula A ′′

A ′′ : ∀x∃y ((R(x, y) ∪ ¬P(x))⇒ ∀z∃w ¬R(z,w))

Exercise

Step 3 : We use Equational Laws of Quantifiers to pull out

the quantifiers ∃z and ∀w from the sub formula

((R(x, y) ∪ ¬P(x))⇒ ∀z∃w ¬R(z,w))

and get a formula A ′′′

A ′′′ : ∀x∃y∀z∃w ((R(x, y) ∪ ¬P(x))⇒ ¬R(z,w))

This is the Prenex Normal Form PNF of A

Exercise

Step 4: We perform the Skolemization Procedure

Observe that the formula

∀x∃y∀z∃w ((R(x, y) ∪ ¬P(x))⇒ ¬R(z,w))

is of the form of the formulas of the Examples 1, 2
We follow them and eliminate ∀x and get a formula A1

A1 : ∃y∀z∃w ((R(x, y) ∪ ¬P(x))⇒ ¬R(z,w))

We eliminate ∃y by replacing y by h(x) where h is a new
one argument functional symbol added to the language L

We get a formula A2

A2 : ∀z∃w ((R(x, h(x)) ∪ ¬P(x))⇒ ¬R(z,w))

Exercise

We eliminate ∀z and get a formula A3

A3 : ∃w ((R(x, h(x)) ∪ ¬P(x))⇒ ¬R(z,w))

We eliminate ∃w by replacing w by f(x, z), where f is

a new two argument functional symbol added to the original

language L

We get a formula A4 that is the resulting open formula

A∗ of L∗

A∗ : ((R(x, h(x)) ∪ ¬P(x))⇒ ¬R(z, (x, z)))

Exercise

Step 5: We build the decomposition tree of A∗ as follows
TA∗

((R(x, h(x)) ∪ ¬P(x))⇒ ¬R(z, f(x, z)))

| (⇒)

¬(R(x, h(x)) ∪ ¬P(x)), ¬R(z, f(x, z))∧
(¬∪)

¬R(x, h(x)),¬R(z, f(x, z)
¬¬P(x), ¬R(z, f(x, z))

| (¬¬)

P(x), ¬R(z, f(x, z))

Exercise

Step 6: The leaves of TA∗ are

L1 = ¬R(x, h(x)),¬R(z, f(x, z)

L2 = P(x), ¬R(z, f(x, z))

The corresponding clauses are

C1 = {¬R(x, h(x)),¬R(z, f(x, z)}

C2 = {P(x), ¬R(z, f(x, z))}

Step 7: The clausal form of the formula A

A : (∃x∀y (R(x, y) ∪ ¬P(x))⇒ ∀y∃x ¬R(x, y))

is the set of clauses

CA∗ = { {¬R(x, h(x)),¬R(z, f(x, z)}, {P(x), ¬R(z, f(x, z))} }

