QUESTION 1 (5pts)

Write the following natural language statement:

It is possible that one likes when it rains and from the fact that it is necessary to buy a raincoat, we conclude the following: one does not like when it rains or one likes when it is not necessary to buy a raincoat in the following two ways.

1. (3pts) Formula \(A_1 \in F_1 \) of a language \(L_{\neg \cup \cap \Rightarrow} \) where \(L_A \) represents statement "one likes A", and \(\Box, \Diamond \) are modal connectives of necessity, possibility, respectively.

Solution We translate our statement into a formula \(A_1 \in F_1 \) of a language \(L_{\neg \cup \cap \Rightarrow} \) as follows.

Propositional Variables: \(a, b \)

\(a \) denotes statement: _when it rains_,

\(b \) denotes a statement: _buy a raincoat_

Translation 1

\[
A_1 = (\Diamond L_a \cap (\Box b \Rightarrow (\neg L_a \cup L_{\neg \Box b})))
\]

2. Formula \(A_2 \in F_2 \) of a language \(L_{\neg \cup \Rightarrow} \).

Solution We translate our statement into a formula \(A_2 \in F_2 \) of a language \(L_{\neg \cup \Rightarrow} \) as follows.

Propositional Variables: \(a, b, c, d \)

\(a \) denotes statement: _It is possible that one likes when it rains_,

\(b \) denotes a statement: _it is necessary to buy a raincoat_,

\(c \) denotes a statement: _one likes when it rains_

\(d \) denotes a statement: _one likes when it is not necessary to buy a raincoat_

Translation 2:

\[
A_2 = (a \cup (b \Rightarrow (c \cup d)))
\]

QUESTION 2 (5pts)

Here is a mathematical statement \(S \):

For all real numbers \(x \in R \) the following holds: If \(x < 0 \), then there is a rational number \(q \in Q \), such that \(x + q < 0 \).

1. (2pts) Re-write \(S \) as a symbolic mathematical statement \(SM \) that only uses mathematical and logical symbols.

Solution \(S \) becomes a symbolic mathematical statement

\[
SM : \quad \forall x \in \mathbb{R} (x < 0 \Rightarrow \exists q \in \mathbb{Q} \quad x + q < 0)
\]

2. (2pts) Translate the symbolic statement \(SM \) into a corresponding formula with restricted quantifiers. Explain your choice of symbols.
Solution We write R(x) for \(x \in R \), Q(y) for \(y \in Q \), a constant c for the number 0. We use \(L \in P \) to denote the relation <, we use f \(\in F \) to denote the function +.

The statement \(x < 0 \) becomes an atomic formula \(L(x, c) \). The statement \(x + q < 0 \) becomes an atomic formula \(L(f(x,y), c) \).

The symbolic mathematical statement \(SM \) becomes a restricted quantifiers formula

\[\forall_{R(x)}(L(x, c) \Rightarrow \exists_{Q(y)}L(f(x,y), c)) \]

3. (1pts) Translate your restricted domain quantifiers formula into a correct formula \(A \) of the predicate language \(L \)

Solution We apply now the transformation rules and get a corresponding formula \(A \in F \):

\[\forall x(R(x) \Rightarrow (L(x, c) \Rightarrow \exists y(Q(y) \cap L(f(x,y), c))) \]

QUESTION 3 (5pts)

Given a predicate language \(L(P, F, C) \) and a structure \(M = [U, I] \) such that

\(U = Z \) and \(P_I: =, g_I: +, a_I: 0 \), where \(Z \) is the set of integers.

For the following formula A

\[\forall x \exists y(P(g(x, y), a) \Rightarrow (P(x, a) \cap P(y, a))) \]

decide whether \(M \models A \) or not.

Do so by examining the corresponding mathematical statement defined by \(M \).

Solution \(M \not\models A \) because the corresponding mathematical statement defined by \(M \) (written with logical symbols) is

\[\forall_{n \in Z} \exists_{m \in Z} (n + m = 0 \Rightarrow (n = 0 \cap m = 0)) \]

Observe that

\[\forall_{n \in Z} \exists_{m \in Z} (n + m = 0 \Rightarrow (n = 0 \cap m = 0)) \equiv \forall_{n \in Z} \exists_{m \in Z} (n + m \neq 0 \cup (n = 0 \cap m = 0)) \]

Consider

\[\forall_{n \in Z} \exists_{m \in Z} (n + m \neq 0 \cup (n = 0 \cap m = 0)) \]

For a any \(n \in Z \) there is integer \(m = n + 1 \), such that \((n + m = n + n + 1 = 2n + 1 \neq 0) \)

We rewrite our statement as

\[\forall_{n \in Z} \exists_{m}(m = n + 1) \cap (n + m \neq 0) \cup (n = 0 \cap m = 0)) \]

By distributivity of conjunction over disjunction we get

\[((m = n + 1) \cap (n + m \neq 0) \cup (n = 0 \cap m = 0)) \equiv ((m = n + 1) \cap (n + m \neq 0)) \cup (m = n + 1) \cap (n = 0 \cap m = 0)) \]

Substituting \(n + 1 \) for \(m \) we get equivalent statement

\[(2n + 1 \neq 0) \cup (n = 0 \cap n + 1 = 0) \]

that is TRUE for ALL \(n \in Z \), as \(2n + 1 \neq 0 \) is TRUE for ALL \(n \in Z \)
Hence we proved that \(M \models A \)

QUESTION 4 (10pts)

We define a 3 valued extensional semantics \(M \) for the language \(\mathcal{L}_{\{\neg, \cup, \Rightarrow\}} \) by **defining the connectives** \(\neg, \cup, \Rightarrow \) on a set \(\{F, \bot, T\} \) of logical values by the following truth tables.

I. Connective

Negation :

<table>
<thead>
<tr>
<th>(\mathcal{L})</th>
<th>F</th>
<th>(\bot)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg)</td>
<td>F</td>
<td>(\bot)</td>
<td>T</td>
</tr>
</tbody>
</table>

Implication

<table>
<thead>
<tr>
<th>(\Rightarrow)</th>
<th>F</th>
<th>(\bot)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>(\bot)</td>
<td>T</td>
<td>(\bot)</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Disjunction

<table>
<thead>
<tr>
<th>(\cup)</th>
<th>F</th>
<th>(\bot)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>(\bot)</td>
<td>T</td>
</tr>
<tr>
<td>(\bot)</td>
<td>(\bot)</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

1. (5pts) Verify whether formulas

\[A_1 = (La \cup (b \Rightarrow (\neg La \cup L\neg a))) \quad \text{and} \quad A_2 = (a \cup (b \Rightarrow (\neg a \cup c))) \]

have a model/ counter model under the semantics \(M \). You can use **shorthand notation**. You must show your evaluation.

Solution

Any \(\nu \), such that \(\nu(a) = T \) is a \(M \) model for \(A_1 \) and for \(A_2 \). Students must show evaluation.

2. (5pts) Verify whether the following set \(G \) is \(M \)-consistent. You can use **shorthand notation**

\[G = \{ La, (a \cup \neg Lb), (a \Rightarrow b), b \} \]

Solution

Any \(\nu \), such that \(\nu(a) = T, \nu(b) = T \) is a \(M \) model for \(G \) as

\[LT = T, \quad (T \cup \neg LT) = T, \quad (T \Rightarrow T) = T, \quad b = T \]