
cse541
LOGIC FOR COMPUTER SCIENCE

Professor Anita Wasilewska

Spring 2015



LECTURE 6



CHAPTER 6
Classical Tautologies and Logical Equivalences

PART 1: Classical Tautologies

PART2: Classical Logical Equivalence of Formulas

PART3: Classical Logical Equivalence of Languages

PART 4: Semantics M Logical Equivalence of Formulas

Semantics M Logical Equivalence Languages



CHAPTER 6
Classical Tautologies and Logical Equivalences

PART 1: Classical Tautologies



Classical Tautologies

We present and discuss here a set of most widely used
classical tautologies and logical equivalences

We introduce a notion of equivalence of propositional
languages under classical and under other semantics

We also discuss the relationship between definability of
connectives the equivalences of languages in classical and
non-classical semantics



Classical Tautologies

We assume that all formulas considered here belong to the
language

L = L{¬, ∪, ∩, ⇒,⇔}

Here is a list of some of the most known classical notions
and tautologies

Modus Ponens known to the Stoics (3rd century B.C)

|= ((A ∩ (A ⇒ B))⇒ B)

Detachment
|= ((A ∩ (A ⇔ B))⇒ B)

|= ((B ∩ (A ⇔ B))⇒ A)



Sufficient and Necessary

Sufficient: Given an implication (A ⇒ B),

A is called a sufficient condition for B to hold.

Necessary : Given an implication (A ⇒ B),

B is called a necessary condition for A to hold.



Implication Names

Simple (A ⇒ B) is called a simple implication.

Converse (B ⇒ A) is called a converse implication

to (A ⇒ B).

Opposite (¬B ⇒ ¬A) is called an opposite implication

to (A ⇒ B).

Contrary (¬A ⇒ ¬B) is called a contrary implication

to (A ⇒ B).



Laws of contraposition

Here they are:

|= ((A ⇒ B)⇔ (¬B ⇒ ¬A)),

|= ((B ⇒ A)⇔ (¬A ⇒ ¬B)).

The laws of contraposition make it possible to replace, in any
deductive argument, a sentence of the form

(A ⇒ B) by (¬B ⇒ ¬A),

and conversely.



Necessary and sufficient

We read (A ⇔ B) as

B is necessary and sufficient for A

because of the following tautology

|= ((A ⇔ B))⇔ ((A ⇒ B) ∩ (B ⇒ A)))



Stoics, 3rd century B.C.

Hypothetical Syllogism

|= (((A ⇒ B) ∩ (B ⇒ C))⇒ (A ⇒ C)),

|= ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C))),

|= ((B ⇒ C)⇒ ((A ⇒ B)⇒ (A ⇒ C))).

Modus Tollendo Ponens

|= (((A ∪ B) ∩ ¬A)⇒ B),

|= (((A ∪ B) ∩ ¬B)⇒ A)



12 to 19 Century

Duns Scotus 12/13 century

|= (¬A ⇒ (A ⇒ B))

Clavius 16th century

|= ((¬A ⇒ A)⇒ A)

Frege 1879

|= (((A ⇒ (B ⇒ C)) ∩ (A ⇒ B))⇒ (A ⇒ C)),

|= ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

Frege gave the the first formulation of the classical
propositional logic as a formalized axiomatic system



Apagogic Proofs

Apagogic Proofs: means proofs by reductio ad absurdum

Reductio ad absurdum: to prove A to be true,

we assume ¬A

If we get a contradiction, it means that we have proved A to
be true

Correctness of this reasoning is guarantee by the following
tautology

|= ((¬A ⇒ (B ∩ ¬B))⇒ A)



CLASSICAL TAUTOLOGIES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL
TAUTOLOGIES in CHAPTER 6

Read them, memorize and use to solve Hmk Problems listed
in the BOOK and in published tests and quizzes

We will use them freely in the future Chapters assuming that
you remember them



PART 2: Logical Equivalences



Logical Equivalence Definition

Logical equivalence: For any formulas A ,B, we say that
are logically equivalent if they always have the same logical
value

Notation: we write symbolically A ≡ B to denote that A, B
are logically equivalent

Symbolic Definition

A ≡ B iff v∗(A) = v∗(B) for all v : VAR → {T ,F}

Directly from the definition we have that

A ≡ B if and only if |= (A ⇔ B)

Remember that ≡ is not a logical connective,

it is just a metalanguage symbol for saying ” A, B are
logically equivalent”



Some of Logical Equivalence Laws

Laws of contraposition

(A ⇒ B) ≡ (¬B ⇒ ¬A),

(B ⇒ A) ≡ (¬A ⇒ ¬B),

(¬A ⇒ B) ≡ (¬B ⇒ A),

(A ⇒ ¬B) ≡ (B ⇒ ¬A)

Law of Double Negation

¬¬A ≡ A

Exercise: Prove validity of all of them



CLASSICAL LOGICAL EQUIVALENCES

YOU HAVE A VERY EXTENSIVE LIST OF CLASSICAL
LOGICAL EQUIVALENCES in CHAPTER 6

Read them, memorize and use to solve Hmk Problems listed
in the BOOK and in published tests and quizzes

We will use them freely in the future Chapters assuming that
you remember them



Use of Logical Equivalence

Logical equivalence is a very useful notion when we want to
obtain new formulas, or tautologies, if needed, on a base of
some already known in a way that guarantee preservation of
the logical value of the initial formula.
For example, we easily obtain new Laws of Contraposition
from the one we have and the Law of Double Negation as
follows

(¬A ⇒ B) ≡ (¬B ⇒ ¬¬A) ≡ (¬B ⇒ A), i.e.

(¬A ⇒ B) ≡ (¬B ⇒ A)

(A ⇒ ¬B) ≡ (¬¬B ⇒ ¬A) ≡ (B ⇒ ¬A), i.e.

(A ⇒ ¬B) ≡ (B ⇒ ¬A)



Substitution Theorem

The correctness of the above procedure of proving new
equivalences from the known ones is established by the
following theorem

Theorem Let B1 be obtained from A1 by substitution of a
formula B for one or more occurrences of a sub-formula A of
A1, what we denote as

B1 = A1(A/B)

Then the following holds.

If A ≡ B , then A1 ≡ B1

Proof in the book - but write it as an exercise- and then check
with the book



Example 1

Let A1 be a formula (C ∪ D), i.e.

A1 = (C ∪ D)

and let B = ¬¬C , A = C
We get

B1 = A1(C/B) = A1(C/¬¬C) = (¬¬C ∪ D)

By Double Negation Law

¬¬C ≡ C i.e. A ≡ B

So we get by Theorem that

(C ∪ D) ≡ (¬¬C ∪ D)



Example 2

Example 2: Transform any formula with implication into a
logically equivalent formula without implication.

We use in this type of problems one of the Definability of
Connectives equivalence that concerns the implication:

(A ⇒ B) ≡ (¬A ∪ B)

Remark that it is not the only one equivalence we can use.



Example 2

We transform (via our Theorem) a formula

(C ⇒ ¬B)⇒ (B ∪ C)

into its logically equivalent form not containing ⇒ as follows

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(C ⇒ ¬B) ∪ (B ∪ C)))

≡ ¬(¬C ∪ ¬B) ∪ (B ∪ C))

We get

((C ⇒ ¬B)⇒ (B ∪ C)) ≡ (¬(¬C ∪ ¬B) ∪ (B ∪ C))



PART 3: Definability of Connectives
Equivalence of Languages



Definability of Connectives

Chapter 6 contains a large set of equivalences, or
corresponding tautologies that deal with the definability of
connectives in classical semantics.

Remember they the equivalences corresponding to the
definability of connectives property is very strongly connected
with the classical semantics

We leave is as an excellent EXERCISE to verify which of
them (in any) holds in which of our non-classical semantics



Definability of Connectives

For example, a classical tautology

|= ((A ⇒ B)⇔ (¬A ∪ B))

The proof of this tautology follows directly from definability
of implication in terms of disjunction and negation in
classical semantics
We state it in a form of a logical equivalence and call it by the
same name as in semantic case, i.e. we have the following

Definability of Implication in terms of negation and
disjunction equivalence

(A ⇒ B) ≡ (¬A ∪ B)

We use logical equivalence notion, instead of the tautology
notion, as it makes the manipulation of formulas much easier.



Definability of Connectives

Definability of Implication equivalence allows us, by the force
of Substitution Theorem to replace any formula of the form
(A ⇒ B) placed anywhere in another formula by a formula
(¬A ∪ B).

Hence we transform a given formula containing implication
into an logically equivalent formula that does contain
implication but contains negation and disjunction only



Equivalence of Languages

The Substitution Theorem and the equivalence

(A ⇒ B) ≡ (¬A ∪ B) let us transform a language that
contains implication into a language that does not contain
the implication, but contains negation and disjunction instead

Example

The language L1 = L{¬,∩,⇒} becomes a language
L2 = L{¬,∩,∪} such that all its formulas are logically
equivalent to the formulas of the language L1

We write it as the following condition C1

C1: For any formula A of a language L1, there is a formula B
of the language L2, such that A ≡ B.



Example 2

Let now A be a formula

(¬A ∪ (¬A ∪ ¬B))

We use the definability of implication equivalence
(A ⇒ B) ≡ (¬A ∪ B) to eliminate disjunction as follows

(¬A ∪ (¬A ∪ ¬B)) ≡ (¬A ∪ (A ⇒ ¬B))

≡ (A ⇒ (A ⇒ ¬B))

Observe that we can’t always use the equivalence
(A ⇒ B) ≡ (¬A ∪ B) to eliminate disjunction
For example, we can’t use it for a formula

((A ∪ B) ∩ ¬A)

Nevertheless we can eliminate disjunction from it, but we
need a different equivalence



Connectives Elimination

In order to be able to transform any formula of a language
containing disjunction (and some other connectives)

into a language with negation and implication (and some
other connectives),

but without disjunction we need the following logical
equivalence

Definability of Disjunction in terms of negation and
implication

(A ∪ B) ≡ (¬A ⇒ B)



Example 3

Consider a formula C

(A ∪ B) ∩ ¬A)

We transform C into its logically equivalent form not
containing ∪ but containing ⇒ as follows.

((A ∪ B) ∩ ¬A) ≡ ((¬A ⇒ B) ∩ ¬A)

The formula allows us transform for example a language

L2 = L{¬, ∩, ∪} into a language L1 = L{¬,∩,⇒}

with all its formulas being logically equivalent



Equivalence of Languages

We write it as the following condition C2 similar to the
condition

C1: for any formula A of L1 , there is a formula B of L2,
such that A ≡ B.

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D

The languages L1 and L2 for which the conditions C1, C2
hold are called logically equivalent.

We denote it by
L1 ≡ L2.

A general, formal definition goes as follows.



Equivalence of Languages Definition

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are logically equivalent, i.e.

L1 ≡ L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1 , there is a formula B of L2,
such that A ≡ B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡ D



Example 4

To prove the logical equivalence of the languages

L{¬,∪} ≡ L{¬,⇒}

we need two definability equivalences:

implication in terms of disjunction and negation

(A ⇒ B) ≡ (¬A ∪ B)

and disjunction in terms of implication negation,

(A ∪ B) ≡ (¬A ⇒ B)

and the Substitution Theorem



Example 5

To prove the logical equivalence of the languages

L{¬,∩,∪,⇒} ≡ L{¬,∩,∪}

we need only the definability of implication equivalence

It proves, by Substitution Theorem that

for any formula A of L{¬,∩,∪,⇒} there is a formula B of
L{¬,∩,∪} such that A ≡ B and the condition C1 holds

Observe that any formula A of language L{¬,∩,∪} is also a
formula of the language L{¬,∩,∪,⇒} and of course A ≡ A so
the condition C2 also holds



Example 6

The logical equivalences:

Definability of Conjunction in terms of implication and
negation

(A ∩ B) ≡ ¬(A ⇒ ¬B)

and Definability of Implication in terms of conjunction and
negation

(A ⇒ B) ≡ ¬(A ∩ ¬B)

and the Substitution Theorem prove that

L{¬,∩} ≡ L{¬,⇒}.



Exercise 1

1. Prove that
L{∩,¬} ≡ L{∪,¬}

Solution

True due to the Substitution Theorem and two definability of
connectives equivalences:

(A ∩ B) ≡ ¬(¬A ∪ ¬B), (A ∪ B) ≡ ¬(¬A ∩ ¬B)



Exercise 1

2. Transform a formula A = ¬(¬(¬a ∩ ¬b) ∩ a) of L{∩,¬}
into a logically equivalent formula B of L{∪,¬}
Solution

¬(¬(¬a ∩ ¬b) ∩ a)

≡ ¬(¬¬(¬¬a ∪ ¬¬b) ∩ a)

≡ ¬((a ∪ b) ∩ a)

≡ ¬(¬(a ∪ b) ∪ ¬a)

The formula B of L{∪,¬} equivalent to A is

B = ¬(¬(a ∪ b) ∪ ¬a)



Exercise 2

Prove by transformation, using proper logical equivalences
that

¬(A ⇔ B) ≡ ((A ∩ ¬B) ∪ (¬A ∩ B))

Solution
¬(A ⇔ B)

≡def¬((A ⇒ B) ∩ (B ⇒ A))

≡de Morgan(¬(A ⇒ B) ∪ ¬(B ⇒ A))

≡neg impl((A ∩ ¬B) ∪ (B ∩ ¬A))

≡commut((A ∩ ¬B) ∪ (¬A ∩ B))



Exercise 2

Prove by transformation, using proper logical equivalences
that

((B ∩ ¬C)⇒ (¬A ∪ B))

≡ ((B ⇒ C) ∪ (A ⇒ B))

Solution
((B ∩ ¬C)⇒ (¬A ∪ B))

≡impl(¬(B ∩ ¬C) ∪ (¬A ∪ B))

≡de Morgan((¬B ∪ ¬¬C) ∪ (¬A ∪ B))

≡neg((¬B ∪ C) ∪ (¬A ∪ B))

≡impl((B ⇒ C) ∪ (A ⇒ B))



PART 4

Semantics M Logical Equivalence of Formulas

Semantics M Logical Equivalence Languages



M - Logical Equivalence of Formulas

Given an extensional semantics M defined for a propositional
language LCON and let V , ∅ be its set set of logical values

Definition

For any formulas A ,B, we say that A ,B are M -logically
equivalent if and only if they always have the same logical
value assigned by the semantics M

Notation: we write A ≡M B to denote that A, B are M-
logically equivalent

Symbolic Definition

A ≡M B iff v∗(A) = v∗(B) for all v : VAR → V

Remember that ≡M is not a logical connective

It is just a metalanguage symbol for saying ” Formulas A, B
are logically equivalent under the semantics M”



M - Logical Equivalence of Languages

Given two languages: L1 = LCON1 and L2 = LCON2 , for
CON1 , CON2

We say that they are M- logically equivalent, i.e.

L1 ≡M L2

if and only if the following conditions C1, C2 hold.

C1: for any formula A of L1, there is a formula B of L2,
such that A ≡M B

C2: for any formula C of L2, there is a formula D of L1,
such that C ≡M D


