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●  Introduction 
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●  Linear Regression 
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●  Ridge Regression 
●  Lasso Regression 
●  Research Paper 



‘In God we trust, all 
others must bring data.’ 
-W. Edwards Deming 



Introduction 
●  A competitor car company comes up with a new model of a car. 
●  You have multiple theories on which variables will impact the sales - if it will 

jump or plummet? 
●  Six weeks later, the sales jump. 
●  Regression Analysis is a way of mathematically sorting out which of the 

variables does indeed have an impact! 
●  It has a set of dependent variables (which we want to predict) and a set of 

predictor variables (which we think might affect the dependent variables). 



Motivation 
●  We want answers for correlation problems - how much does one variable 

affect the other. 
●  Managers want a method to predict sales, best time to hire people, best 

promotion strategies, etc. 
●  Helps aggregate the impact of many independent variables on the outcome of 

the dependent variable. 
●  In short - Prediction is the Motivation! 



Linear Regression 
●  In Linear Regression, data are modeled to fit a straight line. 
●  It assumes the dependence of Y (dependent variable) on X1, X2, ... Xp 

(predictor variables) is linear. 
●  Consider linear regression on advertising data: 
●  Model: 

 

 

Image Source: https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/
linear_regression.pdf 



Linear Regression   
 

●  Given some estimates   and  for the model coefficients, we predict 
future values using: 

 

●       represents prediction of Y on the basis of X = x 



Multiple Linear Regression 
●  For multiple variables, we have: 

 

●  Or in vector notation across all i: 

 

●  Weights for multiple linear regression can be calculated using: 

 

 



Predicted and Residual Values 
●  Predicted, or fitted, values are values of y predicted by the least-squares 

regression line obtained by plugging in x1, x2, ..., xn into the estimated 
regression line 

 

●  Residuals are the deviations of observed and predicted values 

 

 

 Image Source: https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/
linear_regression.pdf 



Least Sum of Squares 
●  If                    be the prediction of Y based on the ith value of X. 
●  Then          is the ith 

residual. 
●  The residual sum of squares is given by: 

 RSS = e1
2 + e2

2 + … + en
2 

●  Least Sum of Squares method chooses β’0 and β’1 to minimize the value of 
RSS. The minimizing values can be calculated as: 



Least Square Estimation via Gradient Descent 

Image source: https://jed-ai.github.io/py1_gd_animation/ 
 



Multiple Linear Regression: Predict house price 

●  To perform supervised learning, we decide to approximate y as a linear 
function 
 

●  Here, the θi ’s are the parameters(also called weights) and Xi’s are feature 

 

Image source: https://www.youtube.com/watch?v=bQI5uDxrFfA&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN 



Underfitting 
●  Fit a linear function to the data - 

not a great model 
This is underfitting - also known 
as high bias 

 
 

●  Fit a quadratic function 

 
 

Image source: https://www.youtube.com/watch?v=bQI5uDxrFfA&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN 



Overfitting 
●  Fit a 4th order polynomial. Now curve 

fits through all five examples. Seems 
to do a good job fitting the training 
set. But, despite fitting the data we've 
provided very well, this is actually not 
such a good model 

●  This is overfitting - also known as 
high variance 

●  Using too many features or a too 
complex model can often lead to 
overfitting.  

 

 

 

 

Image source: https://www.youtube.com/watch?v=bQI5uDxrFfA&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN 



Advantages and Disadvantages of Linear Models 
Advantages - Simplicity, interpretability, good predictive performance 

Disadvantages- 

Prediction Accuracy: especially when p(features/predictors) > n(no. of records), 
to control the variance.   

If we have too many features then the learned hypothesis may give a cost function 
of exactly zero. But this tries too hard to fit the training set fails to provide a 
general solution i.e. unable to generalize (apply to new examples) 

 



Alternative to Least Square Estimates 
●  Subset Selection:  Identify a subset of predictors that we believe to be 

related to the response.  We then fit a model using least squares on the 
reduced set of variables 

●  Dimension Reduction:  We project the p predictors into a M-dimensional 
subspace, where M < p.  Achieved by computing M different linear 
combinations, or projections, of the variables.   

●  Shrinkage:  We fit a model involving all predictors, but the estimated 
coefficients are shrunken towards zero, relative to the least squares 
estimates.  Also known as regularization, has the effect of reducing variance 
and can also perform variable selection. 



Shrinkage Methods 
●  The subset selection methods use least squares to fit a linear model that 

contains a subset of the predictors. 
 

●  As an alternative, we can fit a model containing all predictors using a 
technique that constrains or regularizes the coefficient estimates, or 
equivalently, that shrinks the coefficient estimates towards zero. 
 

●  It may not be immediately obvious why such a constraint should improve the 
fit, but it turns out that shrinking the coefficient estimates can significantly 
reduce their variance 

 



Ridge Regression 
●  Keep all features, but reduce magnitude of parameters θ  

 
●  Works well when we have a lot of features, each of which contributes a bit to 

predicting y 
 

●  Penalize and make some of the θ parameters really small e.g. here θ3 and θ4 

 

 

 



Ridge Regression 
●  So here we end up with θ3  and θ4  being close to zero (because the 

constants are massive). So we're basically left with a quadratic function 

 

Image source: https://www.youtube.com/watch?v=bQI5uDxrFfA&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN 



Ridge Regression 
●  Recall that the least squares fitting procedure estimates β0,β1,...,βp 

using the values that minimize 

 

 

●  In contrast, the ridge regression coefficient estimates β are the values that 
minimize 

 

Where λ ≥0 is a tuning parameter, to be determined separately. 

 

 

 

 

 

 
 



Ridge Regression 

●  As with least squares, ridge regression seeks coefficient estimates that fit the 
data well, by making the RSS small. 

●  However, the second term, λ ∑β^2 , called as shrinkage penalty, is small when 
Β1,...,βp are close to zero, and so it has the effect of shrinking the estimates of 
Βj towards zero. 

●  Closed form solution for Ridge Regression: 



Ridge Regression 
●  Advantages: 

○  Helps reduce the effect of mutually correlated predictor variables 
 

●  Disadvantage: 
○  All the predictor variables are present in the final model, thus ridge does not perform subset 

selection in case of unimportant attributes 
■  Solution - LASSO 



Lasso Regression 
●  LASSO - Least Attribute Selection and Shrinkage Operator 
●  Also known as L1 norm 
●  Goal: to obtain the subset of predictors that minimize the prediction error 
●  Shrinkage: Constraints on parameters that shrinks the coefficients towards 

zero 
●  Selection: Identifies the most important variables associated with the 

response variable 



Lasso Regression 
●  The penalty in the below equation λ∑ |𝛽j|, has the effect of reducing some 

coefficients to zero 



Lasso Regression 
●  Useful when number of observation are small but the predictor variables are 

many 
 

●  Increases interpretability of the model by reducing the coefficients of 
unimportant variables to zero 
 

●  This makes the model sparser and reduces the possibility of the model 
overfitting 



Tuning parameter λ 
●  Ridge Regression 

○  If λ  is very large we end up penalizing ALL the parameters (θ1, θ2 etc.) so all the parameters 
end up being close to zero If this happens, it's like we got rid of all the terms in the hypothesis. 
This results here is then underfitting 
 

●  LASSO 
○  The tuning parameter λ -  as it increases, more and more attribute coefficients are reduced to 

zero 
 

●  So how do we choose the appropriate λ? We use cross-validation 



Lasso and Ridge: The graphical view 
 

 

 

 

 

 

 

                             Image source: https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/model_selection.pdf 



PART 2 



Linear Regression for Face Recognition 
Imran Naseem, Roberto Togneri 

IEEE Transaction on Pattern Analysis and Machine Intelligence 
July 8th, 2010 

Total Citations - 703 



Introduction 
1.  Recognises face using features of the image like: RGB values, opacity, 

saturation, brightness etc. 
2.  Problem: High Dimensionality 
3.  Solution: Use Principal Component Analysis(PCA), Independent Component 

Analysis(ICA) and Linear Discriminant Analysis(LDA). 



Linear Regression Classification (LRC) 
1.  Creates model for each person registered using his/her images. 
2.  Therefore, each model’s weights are calculated using formula 

 

 3.    After which, y is predicted for each      ,  

 

Where j represents the different models and i represents different points 

  



Linear Regression Classification (LRC) 
 ●  The class with the highest value of y, gets predicted as the class of  
●  Example 



Linear Regression Classification (LRC) 
 
 

Source: http://vision.stanford.edu/teaching/cs231n/slides/2015/lecture3.pdf Slide 3 



Linear Regression Classification (LRC) 
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Predicted Class: Cat 

Source: http://vision.stanford.edu/teaching/cs231n/slides/2015/lecture3.pdf Slide 8 



Occluded Images 



Occluded Images 
●  Break them into sections 
●  Class is decided by majority voting 
●  Disadvantages: 

○  Gives equal weightage to 
clean and contaminated 
sections 

D J 

D D 

Majority Vote: Class D 



Thank You! 


