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Paper 

•  Name:  "Imagenet classification with deep convolutional neural networks." 
Advances in neural information processing systems. 2012 

•  Authors : Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton 

•  Conference: ILSVRC(ImageNet Large Scale Visual Recognition 
Competition)-2012 



 
OVERVIEW 

•  Introduction to Image Classification 

•  Loss functions, Optimization and Gradient descent 

•  Neural Networks and Backpropagation Algorithm 

•  Convolutional Neural Networks 

•  Paper : Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification 
with deep convolutional neural networks." Advances in neural information processing 
systems. 2012. 

 

 

 



IMAGE CLASSIFICATION 

Input: An image( matrix of pixel dimensions) 
 
Categories/Labels : A set of pre-determined values which 
define an image. 
 
 Output: A label corresponding to the input image. 
 
 
www.tenserflow.com 
 



CHALLENGES 

•  Illumination:  
 

 

 

 

 

•  Deformation: 
 

 

 

 

 
 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf 



        CHALLENGES 
•  Occlusion:  
 

 

 

 

 

 

•  Background Clutter:  
 

 

 

 

 

 

 

 

 

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf 



INITIAL ATTEMPTS 

 

 

                                                                                       Detect edges                                         
 

 

 

 

•  Compute explicit  “Rules” based on corners and boundaries and identify Labels based on 
these rules. 

     ex: Two lines meeting at a corner are a cat’s ears. 
Pitfalls 
•  Time consuming, since we  have start  all over for an other object label. 
 
 

 

John Cannmy “A computational approach to edge detection” IEEE TPAMI 1986 
 



 
 
A DATA DRIVEN APPROACH 

 

 

 

             training data                                                                             test data 

 

 

 

                                                                       output 
 

 

https://www.cs.toronto.edu/~kriz/cifar.html 

 

 

 

 

 

 

 

 

 

 

Classifier 



K-NEAREST NEIGHBORS 
•  Use a distance metric ex:L1 or L2 distance and compute the K-nearest neighbors  

i.e. K  “trained” images having least difference of the distance metric from the 
chosen image. 

•  A majority vote is taken among the K neighbors and that is selected as the label 
of the test image. 

 

  

 

 

 

 

 

 
 

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf 



K-NEAREST NEIGHBORS 

 
•  Simply Memorize all training data and labels 
 
•  Choose a K on the training data and evaluate it on the testing data 
Pitfalls 

•  Distance metric not very effective. 
 

•  Curse of dimensionality. 
 

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf 



                 LINEAR CLASSIFICATION 
  A linear classifier is of the form  

              f(x,W)  = Wx + b 

            x – Input vector {x1,x2,..xn} where xi is the value of a pixel       
       dimension 

           W – set of weights assigned to each  pixel dimension 
determined                       by the training data for each label. 
           b – bias for each label. 

            f(x,W) – vector of scores corresponding to each label 
         

  

                                                                               f(x,W) 
                                               

 

https://www.pyimagesearch.com/2016/08/22/an-intro-to-linear-classification-with-python/ 



INTERPRETING  A LINEAR CLASSIFIER 

•  Each image is a point In the high dimensional space 
 
•  The linear classifier puts in the linear decision boundaries separating one category 

from the rest of the categories. 
 

 
 
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf 



 
AN EXAMPLE 
 

+ =

W x b

Column 
Vector 

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf 

Dog 
score 
Cat 
score 
Ship 
score 



 
 

LOSS FUNCTIONS 

•  Loss functions for classification are computationally feasible loss functions representing 

the price paid for inaccuracy of predictions in classification problems (problems of 

identifying which category a particular observation belongs to). 

•  It describes how far off the result your network produced is from the expected result - it 

indicates the magnitude of error your model made on its prediction. 

Source: https://en.wikipedia.org/wiki/Loss_functions_for_classification 
    https://stackoverflow.com/questions/42877989/what-is-a-loss-function-in-simple-words 



c a t  

c a r  

frog 

3.2 1.3 2.2 
5.1 4.9 2.5 
-1.7 2.0 -3.1 

  
are: 

A loss function tells how  good 
our current classifier is 

Given a dataset of examples 

Where is image and 
is (integer) label 

Loss over the dataset is a  sum of 
loss over examples: 

  

  
  

  

Source:  https://www.pinterest.com/pin/34973272730414755;https://www.freepik.com/free-photo/car-in-
glossy-red_758995.htm#term=convert&page=1&position=4;https://study.com/academy/lesson/what-is-a-
natural-habitat-definition-habitat-destruction-quiz.html 
 



c a t  

c a r  

frog 

3.2 1.3 2.2 
5.1 4.9 2.5 
-1.7 2.0 -3.1 

  

where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 

the SVM loss has the form: 

  
  

  

    

  

  

  
are: 

Source:  https://www.pinterest.com/pin/349732727304147554 
    https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42 
    https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html 
 



c a t  

c a r  

frog 

3.2 1.3 2.2 
5.1 4.9 2.5 
-1.7 2.0 -3.1 

Multiclass SVM loss: 

    

  

  

  
are: 

Source:  https://www.pinterest.com/pin/349732727304147554 
    https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42 
    https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html 
 

Given an example 
where   is the 
image and  where  is the 
(integer) label, 
 
and using the shorthand for the  
scores vector: 
 
 
the SVM loss has the form: 

“Hinge loss” 



1.3 2.2 
4.9 2.5 
2.0 -3.1 

= max(0, 5.1 - 3.2 + 1) 
+max(0, -1.7 - 3.2 + 1) 

= max(0, 2.9) + max(0, -3.9) 
= 2.9 + 0 
= 2.9 

c a t  

c a r  

frog 

Loss: 

3.2 
5.1 
-1.7 
2.9 

  
are: 

  

where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 

the SVM loss has the form: 

  
  

  

  

Source:  https://www.pinterest.com/pin/349732727304147554 
    https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42 
    https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html 
 



 2.2 
 2.5 
 -3.1 

= max(0, 1.3 – 4.9 + 1) 
+max(0, 2.0 – 4.9 + 1) 

= max(0, -2.6) + max(0, -1.9) 
= 0 + 0 
= 0 

c a t  

c a r  

frog 

Loss: 

3.2 
5.1 
-1.7 

 

1.3 
4.9 
2.0 

0 

  

where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 

the SVM loss has the form: 

  
  

  

  

  
are: 

Source:  https://www.pinterest.com/pin/349732727304147554 
    https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42 
    https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html 
 



2.2 
2.5 

-3.1 
12.9 

= max(0, 2.2 – (-3.1) + 1) 
+max(0, 2.5 – (-3.1) + 1) 

= max(0, 6.3) + max(0, 6.6) 
= 6.3 + 6.6 
= 12.9 

c a t  

c a r  

frog 

Loss: 

3.2 
5.1 
-1.7 

 

1.3 
4.9 
2.0 

  

where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 

the SVM loss has the form: 

  
  

  

  

  
are: 

Source:  https://www.pinterest.com/pin/349732727304147554 
    https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42 
    https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html 
 



3.2 1.3 2.2 
5.1 4.9 2.5 
-1.7 2.0 -3.1 

Loss over full dataset is average: 

c a t  

c a r  

frog 

Loss: 12.9 2.9 0 L = (2.9 + 0 + 12.9)/3 
= 5.27 

  

  
are: 

  

where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 

the SVM loss has the form: 

  
  

  

  

Source:  https://www.pinterest.com/pin/349732727304147554;https://www.freepik.com/free-photo/car-in-
glossy-red_758995.htm#term=convert&page=1&position=4; https://study.com/academy/lesson/what-is-
a-natural-habitat-definition-habitat-destruction-quiz.html 
 



Data loss: Model predictions  
should match training data 

OverFitting 

Regularization: Model  should 
be “simple”, so it  works on test 
data 

    

Source: http://cs231n.stanford.edu/
2017/ 



OPTIMIZATION 

•  Optimization Algorithms are used to update weights and biases i.e. the internal 
parameters of a model to reduce the error.  

Source: https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-
bb92daff331cs 



•  Gradient descent is a  way to minimize an  objective 
function  J(w) parameterized  by a model's  parameters 
w 

 
•  It updates the  parameters in the  opposite direction of  

the gradient of the  objective function w.r.t. to the  
parameters (∇wJ(w)) 

Gradient Descent 

•  The learning rate η  determines the  size of the steps  
we take to reach  a (local)  minimum 

Source: https://deeplearning.web.unc.edu/files/2016/12/An-overview-of-gradient-descent-optimization-
algorithm.pdf 

   https://giphy.com/gifs/gradient-O9rcZVmRcEGqI 



Gradient Descent 
Vanilla Gradient Descent Algorithm: 
 
•  Start with an initial set of coefficients for the function 
     These could be 0.0 or a small random value. 

  coefficient = 0.0 
•  Calculate the derivative of the cost. The derivative is a concept from calculus and refers to the slope of the 

function at a given point. We need to know the slope so that we know the direction(sign) to move the 
coefficient values in order to get a lower cost on the next iteration. 

 delta = derivative(cost) 
•  Now that we know from the derivative which direction is downhill, we can now update the coefficient 

values. 
•  A learning rate parameter (alpha) must be specified that controls how much the coefficients can change on 

each update. 
  coefficient = coefficient – (alpha * delta) 

•  This process is repeated until the cost of the coefficients (cost) is 0.0 or close enough to zero to be good 
enough. 

 

Source: https://machinelearningmastery.com/gradient-descent-for-machine-learning/ 



NEURAL NETWORKS AND 
BACKPROPAGATION ALGORITHM 



 
INTRODUCTION 

•  Backpropagation is a method used in artificial neural networks to calculate a  
gradient that is needed in the calculation of the weights to be used in the 
network. It is commonly used to train deep neural network, a term referring to 
neural networks with more than one hidden layer. 

•  The term is an abbreviation for “backwards propagation of errors”. 

Source: https://www.slideshare.net/infobuzz/back-propagation 
            https://en.wikipedia.org/wiki/Backpropagation 



  
  
INTUITION 

•  As the algorithm's name implies, the errors (and 
therefore the learning) propagate backwards from 
the output nodes to the inner nodes. 

•  So technically speaking, backpropagation is used 
to calculate the gradient of the error of the network 
with respect to the network's modifiable weights.  

•  This gradient is almost always then used in a 
simple stochastic gradient descent algorithm to find 
weights that minimize the error. “   

Source: https://www.slideshare.net/infobuzz/back-propagation 
           https://en.wikipedia.org/wiki/Backpropagation 
            



 
BASIC NEURON MODEL - FEEDFORWARD 
NETWORK 

•  Inputs xi are fed through input 
connections 

•  Specific functions are modeled using 
real weights wi 

•  The output of the neuron is a 
nonlinear function f of its weighted 
inputs 

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 





 
INPUTS TO NEURONS 

•  Arise from other neurons or from outside the network 

 

•  Nodes whose inputs arise outside the network are called input nodes and simply 
copy values 

 

•  An input may excite or inhibit the response of the neuron to which it is applied, 
depending upon the weight of the connection 

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



Weights 

•  Normally, positive weights are considered as excitatory while negative weights are 
thought of as inhibitory 

•  Learning is the process of modifying the weights in order to produce a network that 
performs some function 

Output 
The response function is normally nonlinear 

Samples include 

•  Sigmoid  
 
 

•  Piecewise linear  

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



 
BACKPROPAGATION PREPARATION 

•  Training Set 
A collection of input-output patterns that are used to train the network 

 
•  Testing Set 

A collection of input-output patterns that are used to assess network performance 
 
•  Learning Rate-α 

A scalar parameter, analogous to step size in numerical integration, used to set 
the rate of adjustments  

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



 
NETWORK ERROR 

•  Total-Sum-Squared-Error (TSSE) 

 

 

 

•  Root-Mean-Squared-Error (RMSE) 

 

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



 
A PSEUDO-CODE ALGORITHM 
•  Randomly choose the initial weights 
•  While error is too large 

•  For each training pattern (presented in random order) 
•  Apply the inputs to the network 
•  Calculate the output for every neuron from the input layer, through the hidden 

layer(s), to the output layer 
•  Calculate the error at the outputs 
•  Use the output error to compute error signals for pre-output layers 
•  Use the error signals to compute weight adjustments 
•  Apply the weight adjustments 

•  Periodically evaluate the network performance  
 

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



APPLY INPUTS FROM A PATTERN 

•  Apply the value of each input parameter to 
each input node 

 

•  Input nodes compute only the identity 
function 

Feedforward 

In
pu

ts
 

O
ut

pu
ts

 

Source http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



CALCULATE OUTPUTS FOR EACH NEURON BASED 
ON THE PATTERN 

•  The output from neuron j for pattern p is 
Opj where 

 
 
 
 and 

 
 
•  k ranges over the input indices and Wjk is 

the weight on the connection from input k 
to neuron j 

 

Feedforward 

In
pu

ts
 

O
ut

pu
ts

 

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



CALCULATE THE ERROR SIGNAL FOR EACH 
OUTPUT NEURON 

•  The output neuron error signal δpj is given by δpj=(Tpj-Opj) Opj (1-Opj) 

 

•  Tpj is the target value of output neuron j for pattern p 

 

•  Opj is the actual output value of output neuron j for pattern p 

 

 

 

Source: 
http://people.uncw.edu/tagliarinig/Courses/415/Lectures/An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ 



CALCULATE THE ERROR SIGNAL FOR EACH 
HIDDEN NEURON 
•  The hidden neuron error signal δpj is given by 
 
 
 
 where δpk is the error signal of a post-synaptic neuron k and Wkj is the weight of 
the connection from hidden neuron j to the post-synaptic neuron k  

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 



 
CALCULATE AND APPLY WEIGHT 
ADJUSTMENTS 

•  Compute weight adjustments 
ΔWji  at time t by 
 
ΔWji(t)= α δpj Opi 

 

•  Apply weight adjustments 
according to 
 
Wji(t+1) = Wji(t) + ΔWji(t) 
 

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt 
https://giphy.com/gifs/neural-networks-4LiMmbAcvgTQs 



 
MERITS AND DEMERITS OF 
BACKPROPAGATION 

                       MERITS 

•  Relatively simple implementation.  

•  Mathematical Formula used in 
algorithm can be applied to any 
network. It does not require any 
special mention of the features of the 
function to be learnt.  

•  Batch update of weights exist, which 
provides a smoothing effect on the 
weight correction terms. 

                     DEMERITS 

•  Slow and inefficient. Can get stuck in 
local minima resulting in sub-optimal 
solutions .  

•  A large amount of input/output data is 
available, but you're not sure how to 
relate it to the output.  

•  Outputs can be “fuzzy” or non-
numeric. 

Source: https://www.slideshare.net/infobuzz/back-propagation 
https://en.wikipedia.org/wiki/Backpropagation 



CONVOLUTIONAL NEURAL NETWORK 



 
WHY CNN? 

•  ConvNets are powerful due to their ability to extract the core features of an image 
and use these features to identify images that contain features like them. 

 

•  Even in a two layer CNN we can start to see the network paying a lot of attention 
to regions like the whiskers, nose, and eyes of the cat. 

 

•  These are the types of features that would allow the CNN to differentiate a cat 
from a bird for example. 

Source: 
https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59 



 
NEURAL NETWORK 

Source:  
https://cs231n.github.io




 
CNN ARCHITECTURE 

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177 



 
CNN LAYERS 

•  Convolutional layers 

•  Activation layers 

•  Pooling layers 

•  Fully Connected Layer 



 
CONVOLUTIONAL LAYER 

•  The convolutional layer is the core building block of a CNN. 

•  The CONV layer’s parameters consist of a set of learnable filters (Kernel). 

•  Conv layer maintains the structural aspect of the image 

•  As we move over an image we effectively check for patterns in that section of the 
image. 

•  When training an image, these filter weights change, and so when it is time to 
evaluate an image, these weights return high values if it thinks it is seeing a 
pattern it has seen before. 

•  The combinations of high weights from various filters let the network predict the 
content of an image. 

 

Source:https://en.wikipedia.org/wiki/Convolutional_neural_network 
https://cs231n.github.io 
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb 



 
CONVOLUTED IMAGE 

Source: https://cs231n.github.io




 
CONVOLUTION 

Source: https://cs231n.github.io




 
CONVOLUTION EXAMPLE 

1 1 1 0 1 

0 1 1 1 0 

0 0 1 1 1 

0 0 1 1 0 

0 1 1 0 0 

1 0 1 

0 1 0 

1 0 1 

Image 

Convolved Feature 



 
CONVOLUTION EXAMPLE 

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177 



 
CONVOLUTION(IMPORTANT TERMINOLOGY) 

•  Stride: The distance the window moves each time. 

•  Kernel: The “window” that moves over the image. 

•  Depth: Depth of the output volume is a hyperparameter. It corresponds to the 
number of filters we would like to use, each learning to look for something 
different in the input. 

•  Zero-padding:  Hyperparameter. We will use it to exactly preserve the spatial size 
of the input volume so the input and output width and height are the same 



MULTIPLE FILTERS 

Source: https://cs231n.github.io




 
SIMPLE FULLY CONNECTED NN  VS  CNN 

CNN retains the structure of the image 

Source: https://cs231n.github.io




 
CNN LAYERS 

•  Convolutional layers 

•  Activation layers 

•  Pooling layers 

•  Fully Connected Layer 



 
CNN ARCHITECTURE 

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177 





 
ACTIVATION LAYER 
 
•  The purpose of the Activation Layer is to squash the value of the Convolution 

Layer into a range, usually [0,1] 

•  This layer increases the nonlinear properties of the model and the overall network 
without affecting the receptive fields of the convolution layer. 

•  Examples: tanh, sigmoid, ReLu 

Source: https://cs231n.github.io 





DIFFERENT ACTIVATION FUNCTIONS 

Source: https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59 



 
MULTIPLE LAYERS OF CNN AND RELU 

Source: https://cs231n.github.io




 
CNN LAYERS 

•  Convolutional layers 

•  Activation layers 

•  Pooling layers 

•  Fully Connected Layer 



 
CNN ARCHITECTURE 

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177 



 
POOLING LAYER 

•  Pooling Layer’s function is to progressively reduce the spatial size of the 
representation to reduce the amount of parameters and computation in the 
network, and hence to also control overfitting. 

•  Max pooling and Average pooling are the most common pooling functions. Max 
pooling takes the largest value from the window of the image currently covered by 
the kernel, while average pooling takes the average of all values in the window. 



 
POOLING LAYER(MAX POOL) 

Source: https://sefiks.com/2017/11/03/a-gentle-introduction-to-convolutional-neural-networks/ 



 
POOLING LAYER(GRAPHICAL 
REPRESENTATION) 

Source:https://ithelp.ithome.com.tw/articles/10187424 



 
SUMMARY OF CNN LAYERS 

•  Convolutional layers multiply kernel value by the image window and optimize 
the kernel weights over time using gradient descent 

•  Pooling layers describe a window of an image using a single value which is the 
max or the average of that window(Max Pool vs Average Pool) 

•  Activation layers squash the values into a range, typically [0,1] or [-1,1]. 

•  Fully Connected Layer Neurons have full connections to all activations in the 
previous layer, as seen in regular Neural Networks. Their activations can hence 
be computed with a matrix multiplication followed by a bias offset. 

Source: https://cs231n.github.io 



 
DEMO 

•  https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html 



Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." 
Advances in neural information processing systems. 2012. 

IMAGENET CLASSIFICATION WITH DEEP CONVOLUTIONAL 
NEURAL NETWORKS 

By Alex Krizhevsky, Ilya Sutskever, Geoffrey E. 
Hinton 
 
Journal: Advances in neural information processing 
systems (2012) 



Outline 

●  Goal 
●  Dataset 
●  Architecture 
●  Overfitting 
●  Reducing Overfitting 
●  Results 



ILSVRC: ImageNet Large Scale Visual Recognition Competition 

●  Annual competition of image classification at large scale 
●  1.2M images in 1K categories 
●  Classification: make 5 guesses about the image label 

Source: http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf 



Goal 

Image Source: http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf 



DATASET 

●  The dataset used was a subset of 
ImageNet dataset with roughly 1000 
images of each of the 1000 
categories. 
 

●  In all, there were roughly, 
○  1.2 million Training images 
○  50,000 validation images 
○  150,000 test images 

●  The ImageNet consisted of variable-
resolution images thus each image 
was downsampled to a fixed 
resolution of 256 x 256. 

●  Given a rectangular image, the 
image was rescaled such that the 
shorter side was of length 256, and 
then cropped out the central 
256×256 patch from the resulting 
image.  

●  So the network was trained on 
(centered) raw RGB values of the 
pixels. 

PREPROCESSING OF DATA 

Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in 
neural information processing systems. 2012. 



THE ARCHITECTURE 

Image Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." 
Advances in neural information processing systems. 2012. 



THE ARCHITECTURE 

●  The net contains eight layers with 
weights; the first five are 
convolutional and the remaining 
three are fullyconnected layers. 
 

●  The output of the last fully-
connected layer is fed to a 1000-
way softmax which produces a 
distribution over the 1000 class 
labels. 

 
 

●  CONV1  
●  MAX POOL1  
●  NORM1  
●  CONV2  
●  MAX POOL2  
●  NORM2  
●  CONV3  
●  CONV4  
●  CONV5  
●  Max POOL3  
●  FC6  
●  FC7  
●  FC8 

 
 Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." 

Advances in neural information processing systems. 2012. 



THE ARCHITECTURE 

Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." 
Advances in neural information processing systems. 2012. 



Training on Multiple GPUs 

Image Source: http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf 



Overfitting 

●  60 million parameters, 650,000 
neurons 
○  Overfits alot 



REDUCING OVERFITTING 

●  The focus of this paper was to reduce overfitting whilst outperforming state-of-the-art 
models. 

●  The two ways implemented to reduce overfitting were: 
○  Data Augmentation 
○  Dropout 

●  Data Augmentation: It is the process of artificially enlarging the dataset using label-
preserving transformations. It was done in two ways: 
○  Generated image translations and horizontal reflections. This is done by extracting 

random 224 × 224 patches (and their horizontal reflections) from the 256×256 images 
and training the network on these extracted patches.  This increases the size of the 
training set by a factor of 2048. 

○  Altered the intensities of the RGB channels in training images 
●  Dropout: It is a method of setting the output of each hidden neuron to zero with probability 

of 0.5. Use of dropout forces the network to learn more robust features while avoiding 
overfitting. 

 

Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in 
neural information processing systems. 2012. 



RESULTS 

●  The network won the 
contest, achieving 
top-1 and top-5 test 
set error rates of 
37.5% and 16.4%. 

Image Source: http://teleported.in/posts/
decoding-resnet-architecture/  


