

 CSE 634: Data Mining
 Professor: Anita Wasilewska

IMAGE CLASSIFICATION USING CONVOLUTIONAL
NEURAL NETWORKS

REFERENCES
•  http://www3.cs.stonybrook.edu/~cse634/L7ch6NN.pdf

•  http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

•  https://deeplearning.web.unc.edu/files/2016/12/An-overview-of-gradient-descent-optimization-algorithm.pdf

•  https://www.slideshare.net/infobuzz/back-propagation

•  http://people.uncw.edu/tagliarinig/Courses/415/Lectures/An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

•  https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59

•  https://cs231n.github.io

•  Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing
systems. 2012.

•  https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177

•  https://www.kdnuggets.com/2016/06/visual-explanation-backpropagation-algorithm-neural-networks.html

•  https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/http://www.emergentmind.com/neural-network

•  https://en.wikipedia.org/wiki/Convolutional_neural_network

Paper

•  Name: "Imagenet classification with deep convolutional neural networks."
Advances in neural information processing systems. 2012

•  Authors : Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton

•  Conference: ILSVRC(ImageNet Large Scale Visual Recognition
Competition)-2012

OVERVIEW

•  Introduction to Image Classification

•  Loss functions, Optimization and Gradient descent

•  Neural Networks and Backpropagation Algorithm

•  Convolutional Neural Networks

•  Paper : Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification
with deep convolutional neural networks." Advances in neural information processing
systems. 2012.

IMAGE CLASSIFICATION

Input: An image(matrix of pixel dimensions)

Categories/Labels : A set of pre-determined values which
define an image.

 Output: A label corresponding to the input image.

www.tenserflow.com

CHALLENGES

•  Illumination:

•  Deformation:

 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

 CHALLENGES
•  Occlusion:

•  Background Clutter:

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

INITIAL ATTEMPTS

 Detect edges

•  Compute explicit “Rules” based on corners and boundaries and identify Labels based on
these rules.

 ex: Two lines meeting at a corner are a cat’s ears.
Pitfalls
•  Time consuming, since we have start all over for an other object label.

John Cannmy “A computational approach to edge detection” IEEE TPAMI 1986

A DATA DRIVEN APPROACH

 training data test data

 output

https://www.cs.toronto.edu/~kriz/cifar.html

Classifier

K-NEAREST NEIGHBORS
•  Use a distance metric ex:L1 or L2 distance and compute the K-nearest neighbors

i.e. K “trained” images having least difference of the distance metric from the
chosen image.

•  A majority vote is taken among the K neighbors and that is selected as the label
of the test image.

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

K-NEAREST NEIGHBORS

•  Simply Memorize all training data and labels

•  Choose a K on the training data and evaluate it on the testing data
Pitfalls

•  Distance metric not very effective.

•  Curse of dimensionality.

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

 LINEAR CLASSIFICATION
 A linear classifier is of the form

 f(x,W) = Wx + b

 x – Input vector {x1,x2,..xn} where xi is the value of a pixel
 dimension

 W – set of weights assigned to each pixel dimension
determined by the training data for each label.
 b – bias for each label.

 f(x,W) – vector of scores corresponding to each label

 f(x,W)

https://www.pyimagesearch.com/2016/08/22/an-intro-to-linear-classification-with-python/

INTERPRETING A LINEAR CLASSIFIER

•  Each image is a point In the high dimensional space

•  The linear classifier puts in the linear decision boundaries separating one category

from the rest of the categories.

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

AN EXAMPLE

+ =

W x b

Column
Vector

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

Dog
score
Cat
score
Ship
score

LOSS FUNCTIONS

•  Loss functions for classification are computationally feasible loss functions representing

the price paid for inaccuracy of predictions in classification problems (problems of

identifying which category a particular observation belongs to).

•  It describes how far off the result your network produced is from the expected result - it

indicates the magnitude of error your model made on its prediction.

Source: https://en.wikipedia.org/wiki/Loss_functions_for_classification
 https://stackoverflow.com/questions/42877989/what-is-a-loss-function-in-simple-words

c a t

c a r

frog

3.2 1.3 2.2
5.1 4.9 2.5
-1.7 2.0 -3.1

are:

A loss function tells how good
our current classifier is

Given a dataset of examples

Where is image and
is (integer) label

Loss over the dataset is a sum of
loss over examples:

Source: https://www.pinterest.com/pin/34973272730414755;https://www.freepik.com/free-photo/car-in-
glossy-red_758995.htm#term=convert&page=1&position=4;https://study.com/academy/lesson/what-is-a-
natural-habitat-definition-habitat-destruction-quiz.html

c a t

c a r

frog

3.2 1.3 2.2
5.1 4.9 2.5
-1.7 2.0 -3.1

where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

are:

Source: https://www.pinterest.com/pin/349732727304147554
 https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42
 https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html

c a t

c a r

frog

3.2 1.3 2.2
5.1 4.9 2.5
-1.7 2.0 -3.1

Multiclass SVM loss:

are:

Source: https://www.pinterest.com/pin/349732727304147554
 https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42
 https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html

Given an example
where is the
image and where is the
(integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

“Hinge loss”

1.3 2.2
4.9 2.5
2.0 -3.1

= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

c a t

c a r

frog

Loss:

3.2
5.1
-1.7
2.9

are:

where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Source: https://www.pinterest.com/pin/349732727304147554
 https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42
 https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html

 2.2
 2.5
 -3.1

= max(0, 1.3 – 4.9 + 1)
+max(0, 2.0 – 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

c a t

c a r

frog

Loss:

3.2
5.1
-1.7

1.3
4.9
2.0

0

where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

are:

Source: https://www.pinterest.com/pin/349732727304147554
 https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42
 https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html

2.2
2.5

-3.1
12.9

= max(0, 2.2 – (-3.1) + 1)
+max(0, 2.5 – (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

c a t

c a r

frog

Loss:

3.2
5.1
-1.7

1.3
4.9
2.0

where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

are:

Source: https://www.pinterest.com/pin/349732727304147554
 https://www.freepik.com/free-photo/car-in-glossy-

red_758995.htm#term=convert&page=1&position=42
 https://study.com/academy/lesson/what-is-a-natural-habitat-definition-habitat-destruction-

quiz.html

3.2 1.3 2.2
5.1 4.9 2.5
-1.7 2.0 -3.1

Loss over full dataset is average:

c a t

c a r

frog

Loss: 12.9 2.9 0 L = (2.9 + 0 + 12.9)/3
= 5.27

are:

where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Source: https://www.pinterest.com/pin/349732727304147554;https://www.freepik.com/free-photo/car-in-
glossy-red_758995.htm#term=convert&page=1&position=4; https://study.com/academy/lesson/what-is-
a-natural-habitat-definition-habitat-destruction-quiz.html

Data loss: Model predictions
should match training data

OverFitting

Regularization: Model should
be “simple”, so it works on test
data

Source: http://cs231n.stanford.edu/
2017/

OPTIMIZATION

•  Optimization Algorithms are used to update weights and biases i.e. the internal
parameters of a model to reduce the error.

Source: https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-
bb92daff331cs

•  Gradient descent is a way to minimize an objective
function J(w) parameterized by a model's parameters
w

•  It updates the parameters in the opposite direction of

the gradient of the objective function w.r.t. to the
parameters (∇wJ(w))

Gradient Descent

•  The learning rate η determines the size of the steps
we take to reach a (local) minimum

Source: https://deeplearning.web.unc.edu/files/2016/12/An-overview-of-gradient-descent-optimization-
algorithm.pdf

 https://giphy.com/gifs/gradient-O9rcZVmRcEGqI

Gradient Descent
Vanilla Gradient Descent Algorithm:

•  Start with an initial set of coefficients for the function
 These could be 0.0 or a small random value.

 coefficient = 0.0
•  Calculate the derivative of the cost. The derivative is a concept from calculus and refers to the slope of the

function at a given point. We need to know the slope so that we know the direction(sign) to move the
coefficient values in order to get a lower cost on the next iteration.

 delta = derivative(cost)
•  Now that we know from the derivative which direction is downhill, we can now update the coefficient

values.
•  A learning rate parameter (alpha) must be specified that controls how much the coefficients can change on

each update.
 coefficient = coefficient – (alpha * delta)

•  This process is repeated until the cost of the coefficients (cost) is 0.0 or close enough to zero to be good
enough.

Source: https://machinelearningmastery.com/gradient-descent-for-machine-learning/

NEURAL NETWORKS AND
BACKPROPAGATION ALGORITHM

INTRODUCTION

•  Backpropagation is a method used in artificial neural networks to calculate a
gradient that is needed in the calculation of the weights to be used in the
network. It is commonly used to train deep neural network, a term referring to
neural networks with more than one hidden layer.

•  The term is an abbreviation for “backwards propagation of errors”.

Source: https://www.slideshare.net/infobuzz/back-propagation
 https://en.wikipedia.org/wiki/Backpropagation

INTUITION

•  As the algorithm's name implies, the errors (and
therefore the learning) propagate backwards from
the output nodes to the inner nodes.

•  So technically speaking, backpropagation is used
to calculate the gradient of the error of the network
with respect to the network's modifiable weights.

•  This gradient is almost always then used in a
simple stochastic gradient descent algorithm to find
weights that minimize the error. “

Source: https://www.slideshare.net/infobuzz/back-propagation
 https://en.wikipedia.org/wiki/Backpropagation

BASIC NEURON MODEL - FEEDFORWARD
NETWORK

•  Inputs xi are fed through input
connections

•  Specific functions are modeled using
real weights wi

•  The output of the neuron is a
nonlinear function f of its weighted
inputs

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

INPUTS TO NEURONS

•  Arise from other neurons or from outside the network

•  Nodes whose inputs arise outside the network are called input nodes and simply
copy values

•  An input may excite or inhibit the response of the neuron to which it is applied,
depending upon the weight of the connection

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

Weights

•  Normally, positive weights are considered as excitatory while negative weights are
thought of as inhibitory

•  Learning is the process of modifying the weights in order to produce a network that
performs some function

Output
The response function is normally nonlinear

Samples include

•  Sigmoid

•  Piecewise linear

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

BACKPROPAGATION PREPARATION

•  Training Set
A collection of input-output patterns that are used to train the network

•  Testing Set

A collection of input-output patterns that are used to assess network performance

•  Learning Rate-α

A scalar parameter, analogous to step size in numerical integration, used to set
the rate of adjustments

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

NETWORK ERROR

•  Total-Sum-Squared-Error (TSSE)

•  Root-Mean-Squared-Error (RMSE)

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

A PSEUDO-CODE ALGORITHM
•  Randomly choose the initial weights
•  While error is too large

•  For each training pattern (presented in random order)
•  Apply the inputs to the network
•  Calculate the output for every neuron from the input layer, through the hidden

layer(s), to the output layer
•  Calculate the error at the outputs
•  Use the output error to compute error signals for pre-output layers
•  Use the error signals to compute weight adjustments
•  Apply the weight adjustments

•  Periodically evaluate the network performance

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

APPLY INPUTS FROM A PATTERN

•  Apply the value of each input parameter to
each input node

•  Input nodes compute only the identity
function

Feedforward

In
pu

ts

O
ut

pu
ts

Source http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

CALCULATE OUTPUTS FOR EACH NEURON BASED
ON THE PATTERN

•  The output from neuron j for pattern p is
Opj where

 and

•  k ranges over the input indices and Wjk is

the weight on the connection from input k
to neuron j

Feedforward

In
pu

ts

O
ut

pu
ts

Source:http://people.uncw.edu/tagliarinig/Courses/415/Lectures/An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

CALCULATE THE ERROR SIGNAL FOR EACH
OUTPUT NEURON

•  The output neuron error signal δpj is given by δpj=(Tpj-Opj) Opj (1-Opj)

•  Tpj is the target value of output neuron j for pattern p

•  Opj is the actual output value of output neuron j for pattern p

Source:
http://people.uncw.edu/tagliarinig/Courses/415/Lectures/An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CALCULATE THE ERROR SIGNAL FOR EACH
HIDDEN NEURON
•  The hidden neuron error signal δpj is given by

 where δpk is the error signal of a post-synaptic neuron k and Wkj is the weight of
the connection from hidden neuron j to the post-synaptic neuron k

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt

CALCULATE AND APPLY WEIGHT
ADJUSTMENTS

•  Compute weight adjustments
ΔWji at time t by

ΔWji(t)= α δpj Opi

•  Apply weight adjustments
according to

Wji(t+1) = Wji(t) + ΔWji(t)

Source: http://people.uncw.edu/tagliarinig/Courses/415/Lectures/
An%20Introduction%20To%20The%20Backpropagation%20Algorithm.ppt
https://giphy.com/gifs/neural-networks-4LiMmbAcvgTQs

MERITS AND DEMERITS OF
BACKPROPAGATION

 MERITS

•  Relatively simple implementation.

•  Mathematical Formula used in
algorithm can be applied to any
network. It does not require any
special mention of the features of the
function to be learnt.

•  Batch update of weights exist, which
provides a smoothing effect on the
weight correction terms.

 DEMERITS

•  Slow and inefficient. Can get stuck in
local minima resulting in sub-optimal
solutions .

•  A large amount of input/output data is
available, but you're not sure how to
relate it to the output.

•  Outputs can be “fuzzy” or non-
numeric.

Source: https://www.slideshare.net/infobuzz/back-propagation
https://en.wikipedia.org/wiki/Backpropagation

CONVOLUTIONAL NEURAL NETWORK

WHY CNN?

•  ConvNets are powerful due to their ability to extract the core features of an image
and use these features to identify images that contain features like them.

•  Even in a two layer CNN we can start to see the network paying a lot of attention
to regions like the whiskers, nose, and eyes of the cat.

•  These are the types of features that would allow the CNN to differentiate a cat
from a bird for example.

Source:
https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59

NEURAL NETWORK

Source:
https://cs231n.github.io

CNN ARCHITECTURE

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177

CNN LAYERS

•  Convolutional layers

•  Activation layers

•  Pooling layers

•  Fully Connected Layer

CONVOLUTIONAL LAYER

•  The convolutional layer is the core building block of a CNN.

•  The CONV layer’s parameters consist of a set of learnable filters (Kernel).

•  Conv layer maintains the structural aspect of the image

•  As we move over an image we effectively check for patterns in that section of the
image.

•  When training an image, these filter weights change, and so when it is time to
evaluate an image, these weights return high values if it thinks it is seeing a
pattern it has seen before.

•  The combinations of high weights from various filters let the network predict the
content of an image.

Source:https://en.wikipedia.org/wiki/Convolutional_neural_network
https://cs231n.github.io
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb

CONVOLUTED IMAGE

Source: https://cs231n.github.io

CONVOLUTION

Source: https://cs231n.github.io

CONVOLUTION EXAMPLE

1 1 1 0 1

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

Image

Convolved Feature

CONVOLUTION EXAMPLE

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177

CONVOLUTION(IMPORTANT TERMINOLOGY)

•  Stride: The distance the window moves each time.

•  Kernel: The “window” that moves over the image.

•  Depth: Depth of the output volume is a hyperparameter. It corresponds to the
number of filters we would like to use, each learning to look for something
different in the input.

•  Zero-padding: Hyperparameter. We will use it to exactly preserve the spatial size
of the input volume so the input and output width and height are the same

MULTIPLE FILTERS

Source: https://cs231n.github.io

SIMPLE FULLY CONNECTED NN VS CNN

CNN retains the structure of the image

Source: https://cs231n.github.io

CNN LAYERS

•  Convolutional layers

•  Activation layers

•  Pooling layers

•  Fully Connected Layer

CNN ARCHITECTURE

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177

ACTIVATION LAYER

•  The purpose of the Activation Layer is to squash the value of the Convolution

Layer into a range, usually [0,1]

•  This layer increases the nonlinear properties of the model and the overall network
without affecting the receptive fields of the convolution layer.

•  Examples: tanh, sigmoid, ReLu

Source: https://cs231n.github.io

DIFFERENT ACTIVATION FUNCTIONS

Source: https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59

MULTIPLE LAYERS OF CNN AND RELU

Source: https://cs231n.github.io

CNN LAYERS

•  Convolutional layers

•  Activation layers

•  Pooling layers

•  Fully Connected Layer

CNN ARCHITECTURE

Source: https://medium.com/dbrs-innovation-labs/visualizing-neural-networks-in-virtual-space-7e3f62f7177

POOLING LAYER

•  Pooling Layer’s function is to progressively reduce the spatial size of the
representation to reduce the amount of parameters and computation in the
network, and hence to also control overfitting.

•  Max pooling and Average pooling are the most common pooling functions. Max
pooling takes the largest value from the window of the image currently covered by
the kernel, while average pooling takes the average of all values in the window.

POOLING LAYER(MAX POOL)

Source: https://sefiks.com/2017/11/03/a-gentle-introduction-to-convolutional-neural-networks/

POOLING LAYER(GRAPHICAL
REPRESENTATION)

Source:https://ithelp.ithome.com.tw/articles/10187424

SUMMARY OF CNN LAYERS

•  Convolutional layers multiply kernel value by the image window and optimize
the kernel weights over time using gradient descent

•  Pooling layers describe a window of an image using a single value which is the
max or the average of that window(Max Pool vs Average Pool)

•  Activation layers squash the values into a range, typically [0,1] or [-1,1].

•  Fully Connected Layer Neurons have full connections to all activations in the
previous layer, as seen in regular Neural Networks. Their activations can hence
be computed with a matrix multiplication followed by a bias offset.

Source: https://cs231n.github.io

DEMO

•  https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks."
Advances in neural information processing systems. 2012.

IMAGENET CLASSIFICATION WITH DEEP CONVOLUTIONAL
NEURAL NETWORKS

By Alex Krizhevsky, Ilya Sutskever, Geoffrey E.
Hinton

Journal: Advances in neural information processing
systems (2012)

Outline

●  Goal
●  Dataset
●  Architecture
●  Overfitting
●  Reducing Overfitting
●  Results

ILSVRC: ImageNet Large Scale Visual Recognition Competition

●  Annual competition of image classification at large scale
●  1.2M images in 1K categories
●  Classification: make 5 guesses about the image label

Source: http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

Goal

Image Source: http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

DATASET

●  The dataset used was a subset of
ImageNet dataset with roughly 1000
images of each of the 1000
categories.

●  In all, there were roughly,
○  1.2 million Training images
○  50,000 validation images
○  150,000 test images

●  The ImageNet consisted of variable-
resolution images thus each image
was downsampled to a fixed
resolution of 256 x 256.

●  Given a rectangular image, the
image was rescaled such that the
shorter side was of length 256, and
then cropped out the central
256×256 patch from the resulting
image.

●  So the network was trained on
(centered) raw RGB values of the
pixels.

PREPROCESSING OF DATA

Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in
neural information processing systems. 2012.

THE ARCHITECTURE

Image Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks."
Advances in neural information processing systems. 2012.

THE ARCHITECTURE

●  The net contains eight layers with
weights; the first five are
convolutional and the remaining
three are fullyconnected layers.

●  The output of the last fully-
connected layer is fed to a 1000-
way softmax which produces a
distribution over the 1000 class
labels.

●  CONV1
●  MAX POOL1
●  NORM1
●  CONV2
●  MAX POOL2
●  NORM2
●  CONV3
●  CONV4
●  CONV5
●  Max POOL3
●  FC6
●  FC7
●  FC8

 Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks."

Advances in neural information processing systems. 2012.

THE ARCHITECTURE

Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks."
Advances in neural information processing systems. 2012.

Training on Multiple GPUs

Image Source: http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

Overfitting

●  60 million parameters, 650,000
neurons
○  Overfits alot

REDUCING OVERFITTING

●  The focus of this paper was to reduce overfitting whilst outperforming state-of-the-art
models.

●  The two ways implemented to reduce overfitting were:
○  Data Augmentation
○  Dropout

●  Data Augmentation: It is the process of artificially enlarging the dataset using label-
preserving transformations. It was done in two ways:
○  Generated image translations and horizontal reflections. This is done by extracting

random 224 × 224 patches (and their horizontal reflections) from the 256×256 images
and training the network on these extracted patches. This increases the size of the
training set by a factor of 2048.

○  Altered the intensities of the RGB channels in training images
●  Dropout: It is a method of setting the output of each hidden neuron to zero with probability

of 0.5. Use of dropout forces the network to learn more robust features while avoiding
overfitting.

Source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in
neural information processing systems. 2012.

RESULTS

●  The network won the
contest, achieving
top-1 and top-5 test
set error rates of
37.5% and 16.4%.

Image Source: http://teleported.in/posts/
decoding-resnet-architecture/

