
Decaf Language Reference Manual

Decaf is a small object oriented language with arrays, overloading, inheritance, and static method and field
resolution. It is inspired by the popular JavaTM programming language, and inherits many features of Java.

This manual outlines the syntax and semantics of the language constructs inDecaf . The syntax is described
in Extended Backus-Naur Form (EBNF) notation. In EBNF, which combines regular-expression-like nota-
tion with grammars,x� stands for a sequence of zero or morex’s; x+ stands for a sequence of one or more
x’s; (x j y) stands for choice betweenx andy; andx? stands an optional occurrence (i.e., zero or one) of
x. In the following, symbols inbold facerepresent reserved words and special characters: i.e., tokens with
unique lexemes, such aswhile. Symbols initalics are either nonterminal grammar symbols, or terminal
symbols with attributes, such asint const.

1 Lexical Issues

Decaf is case-sensitive; for example,for andFor are treated as distinct lexical entities.

White Space and Comments

Whitespace (blanks, newlines and tabs) serve to separate tokens; otherwise they are ignored. Whitespace
may not appear within any token except a string constant (see below).

Decaf supports two styles of comments:

� Multi-line (C-style) comments that begin with “/* ” and end with “*/ ”. These comments may not be
nested.

� Single-line comments that start with “// ” and terminate at the end of line.

Comments may appear wherever a whitespace may appear.

Reserved words

The following are reserved words.

1

boolean break continue class else extends
false float for if int new
null private public return static super
this true void while

Constants

There are three types of constants supported byDecaf : integer, floating point and string constants.

Integer constants are made up of one or more digits, each digit ranging from 0 thru 9.

Floating point constants contain a decimal point (e.g., 3.14159). There must be at least one digit before
andafter the decimal point.

String constants begin and end with a double quote ("). Newlines may not appear within a string. If
the string itself contains a double quote, it is “escaped” with a backslash (\) as in the example string:
"\"What?\" she exclaimed." . Escape sequences, such as\n and \t are used to place special
characters such as newlines and tabs in a string. If the string contains a backslash, that is escaped too (e.g.,
"The computer simply responded with \"A:\\>\""). Strings must be contained within a
single line.

Decaf does not support character constants.

Integer, floating point and string constants are denoted in the syntax descriptions below, byint const,
float constandstring constrespectively.

Identifiers

Letters denote the upper and lower case elements of the English alphabet (a thruz andA thruZ).

An identifier is a sequence of letters, digits and underscore (), starting with a letter, that is not one of the
reserved words. Identifiers are denoted by the symbolid.

2 Declarations

A Decaf program is a sequence ofclassdeclarations.

program ::= classdecl�

Class Declarations

A classdeclaration associates a set of fields, methods and constructors to a class name. Its syntax is:

classdecl ::= classid (extendsid)?

f classbodydecl+ g
classbodydecl ::= field decl

j methoddecl
j constructordecl

2

Each class declaration (e.g.,class foo ...) creates a new class with the given name (e.g.,foo). Theextends
option is used to specify a superclass, from which the current class inherits its fields and methods.Field
declarations specify the fields that objects in this class will have;methoddeclarations specify the methods
that can be used on objects in this class; andconstructordeclarations are used to specify any initialization
that needs to be done when a new object in this class is created.

Fields

The syntax of field declarations inDecaf is:

field decl ::= modifier vardecl

modifier ::= (public j private)? (static)?

var decl ::= type variables;

type ::= int
j float
j boolean
j id

variables ::= variable(, variable)�

variable ::= id ([])?

Field declarations may be prefixed with modifiers as specified by the above syntax. Apublic field is a
variable that can be accessed from methods defined in any other class. Aprivate field is variable that can
be accessed only from methods defined in the same class. If a field is not explicitly specified as private or
public, it is assumed to be private.

Fields that are declaredstaticare calledclass variables; fields that are not declaredstatic are calledinstance
variables. Each instance of a class gets its own private copy of all instance variables declared in the class.
However, all instance of a class share a single copy of the class variables declared in the class.

A field may be one of the predefined types (int , float, boolean) or it may be an object in a user-defined class.

Multiple fields, all of same type, may be declared in a single statement; in this case, field names are separated
by commas.

Array fields are defined by specifying[] after the field name. Note that, as in Java, this onlydeclaresthe
array, and does notcreateone, i.e., allocate space for it. The array will be created, dynamically, using the
new construct, described later in this manual.

In Java, the number of[] ’s specify the number of dimensions of the array.In contrast, Decaf allows only
single-dimensional arrays.

Inheritance: All objects of a classc contain instance fields defined inc as well as instance fields defined
in all superclasses ofc. A class may contain a new field whose name is identical to one in a superclass.
However, only one field of a given name can be defined in a class, irrespective of the types.

3

Methods and Constructors

Methods in a class encapsulate procedures for manipulating objects belonging to a class. Constructors in
a class are used to initialize objects of the class whenever they are created. The syntax of method and
constructor declarations is as follows:

methoddecl ::= modifier(typej void) id (formals?) block

constructordecl ::= modifier id(formals?) block

formals ::= formal param(, formal param)�

formal param ::= type variable

The public and private modifiers are used to specify whether the given method can be accessed from
methods in other classes. Methods declaredstatic are calledclass methodsand those not declaredstatic are
calledinstance methods. Instance methods always operate on a specific instance of the class, whereas class
methods operate on the class as a whole and not on individual instances. A method that returns nothing (i.e.,
a procedure) has a return type ofvoid. Methods may take a list of arguments, the name and type of which
are given by a list of formal parameters.

There may be multiple methods of the same name defined within a class, as long as they can be distinguished
on the basis of the number or types of parameters.

The name of a constructor must be same as that of the parent class. Constructors may also take a list of
arguments, again specified as by the list of formal parameters.

The body of a method or constructor is specified by ablockof statements, described below.

3 Statements

Decaf supports a small but expressive set of control primitives to specify procedures for manipulating the
objects.

The syntax ofDecaf statements is:

block ::= f stmt� g

stmt ::= if (expr) stmt(elsestmt)?

j while (expr) stmt
j for (stmtexpr? ; expr? ; stmtexpr?) stmt
j return expr? ;
j stmtexpr ;
j break ;
j continue ;
j block
j var decl
j ;

A block of statements is comprised of a (possibly empty) set of declarations for variables local to that block,
followed by a sequence of statements.

If statement: An if-statement of the formif (expr) stmt evaluates the boolean expressionexpr; if the
expression evaluates totrue, then the statementstmt is executed. When the optionalelsepart is

4

present, of the formelsestmt0, then the statementstmt0 is executed if the expression evaluates tofalse.

While statement: A while-statement of the formwhile (expr) stmt loops, evaluatingexpr first and exe-
cutingstmtas long asexpr is true. The loop is exited whenexprevaluates tofalse.

For statement: A for-statement of the formfor (s1 ; e2 ; s3) stmt4 has four components: an initializer
s1, which is evaluated on entry to the statement; the boolean expressione2, which is evaluated at the
beginning of each iteration through the loop; an update parts3, which is executed at the end of each
iteration through the loop; and statementstmt4, which is executed as long ase2 evaluates totrue. The
loop is exited whene2 evaluates tofalse.

Return statement: A return statement signifies the end of control in a method. The expressionexpr is
evaluated and is returned to the caller of the method. Thus the declared return type of the method
must be compatible with the type ofexpr. If the return type of the method isvoid, then theexprpart
of the return statement is omitted.

Expression statement:Certain expressions, such as assignments and post-increment operations, denoted
by stmt expr, can be stand-alone statements. See Section 4 for syntax ofstmtexpr.

Block statement: A block of statements can themselves be used wherever a statement is used. When a
block statement is executed, the local variables declared in that block are freshly created, and the
sequence of statements in that block are executed in order.

Empty statement: An empty statement is specified simply by ‘; ’. It has no effect on execution.

4 Expressions

Objects and their values are manipluated using a variety of expressions. The simplest form of expressions
are literal constants:

literal ::= int const
j float const
j string const
j null
j true
j false

In the following, the nonterminal grammar symbolexpr is used to denote the set of all expressions allowed
in Decaf . Literal constants, creation of new instances of objects, access of object fields and arrays, and
method invocation are among the basic set of expressions used inDecaf , calledprimaryexpressions, the
syntax of which is given below:

5

primary ::= literal
j this
j super
j (expr)
j new id (arguments?)
j methodinvocation
j lhs

arguments ::= expr (, expr)�

lhs ::= field access
j array access

field access ::= primary . id
j id

array access ::= primary [expr]

methodinvocation ::= field access(arguments?)

The reserved wordthis is used to represent the current object, i.e., the object on which the method containing
the current expression is applied. The reserved wordsuper is used to explicitlyaccess fields or methods in
the superclass; this construct is primarily used when names alone are insufficient to distinguish fields and
methods in a class from those of its superclass.

A new object is created using the reserved wordnew. The arguments supplied with the name of the class
correspond to parameters of the constructor to be used to initialize the new object.

An lhsexpression is an expression that can occur on the left hand side of an assignment: either referring to
a field of an object, or to an element of an array.

A field in an object of classc can be accessed by simply using the name of the field, provided it is being
accessed from a method defined in classc. If there are multiple objects of classc, or if the field is accessed
from a method defined in a different class, the field is specified using the notation “object.field”. A method
invocation takes the form “object.method(args)”. If a method invocation does not explicitly specify an
object, thenthis is assumed as the default object.

The syntax of array access resembles that of array accesses in C:array[index]. Multidimensional arrays are
accessed by specifying a sequence of indices, each index enclosed in square brackets. An array is assumed
to be created before it is accessed.

Other expressions inDecaf are defined using the primary expressions described above.

6

expr ::= primary
j assign
j new array
j expr arith op expr
j expr boolop expr
j unary op expr

assign ::= lhs= expr

new array ::= new type[expr]

arith op 2 f+, �, * , / g

bool op 2 f && , jj, ==, !=,<,>,<=,>= g

unary op 2 f+, �, !g

An array is created with thenewoperator by specifying the type of array and its size. The size is, in general,
integer expressions (not just integer constants).

Decaf provides a set of commonly used arithmetic and relational operators. Binary arithmetic operators
include addition (+), subtraction (�), multiplication (*) and division (/), which operate on integers or floating
point numbers. Boolean operators include:

� equality and disequality operations (==, !=) that can be applied, in addition to integer and floating
point expressions, to objects of any type, as long as both objects being compared are of the same type;

� common relational operations (>,<,>= and<=) on integer and floating point expressions; and

� logical operations conjunction (&&) and disjunction (jj).

Unary operators include unary plus (+), minus (�) that operates on integer and floating point expressions
and negation (!) that operates on boolean expressions.

The explicit assignment (=) associates to the right. Relational operators (>,<,>= and<=) are nonas-
sociative. All other binary operators associate to the left. Hence, the expressiona + b+ c+ d is treated as
((a+ b) + c) + d, while the expressiona = b = c = d is treated asa = (b = (c = d)). The precedence of
the operators is defined by the following table, which lists the operators from highest to lowest precedence.

highest !

* , /

+, �

<,>,<=,>=

==, !=

&&

jj

lowest =

Finally, statement expressions are those, such as assignments and method invocations, that can occur as
stand-alone statements. Their syntax is defined by the following rule:

7

stmtexpr ::= assign
j methodinvocation

5 Standard Objects and Methods

Decaf provides two standard objects:Out which represents the standard output file (the console) andIn
which represents the standard input file (the keyboard). The methods that can be used on these objects are:

1. print(expr) : This is an overloaded method, which can take objects of any primitive type (integers,
floating point numbers and booleans) as well as string constants, and writes their values to the given
file.

The method is usually applied toOut and returns void.

2. scan int() : This method, usually applied toIn , reads a stream of characters from file that repre-
sent an integer and returns the corresponding integer value.

3. scan float() : Similar toscan int() , this method is used to read a floating point value from
the given file.

Entry Point

A class whose name is same as the filename of the program is the “main” object of the program. For
instance, if the program is in filefoo.decaf , then classfoo is the main class in the program. A static,
public, parameterless method calledmain in classfoo is the entry point of the program infoo.decaf .
That is, when invoked from the command line,main() will be the first method invoked from the operating
system.

6 SampleDecaf Programs

Following are four sample programs of varying complexity written inDecaf .

hello world.decaf

This program prints"Hello World!" on the console and exits.

class hello_world{
public static void main() {

Out.print("Hello World!\n");
}

}

8

nrfib.decaf

The following program computes and prints then
th Fibonacci number, givenn as the input.

The Fibonacci number is computed using a nonrecursive procedure.

class nrfib{
public static void main() {

int n, i, fn, fn_prev;

n = In.scan_int();

fn = 1;
fn_1 = 0;

for(i=1; i<n; i=i+1) {
fn = fn_prev + fn;
fn_prev = fn - fn_prev;

}
Out.print("Fib = ");
Out.print(fn);
Out.print("\n");

}
}

rfib.decaf

The following program computes and prints thenth Fibonacci number, givenn as the input.
The Fibonacci number is computed using arecursiveprocedure.

class rfib{
static int fib(int n) {

if (n <= 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

public static void main() {
int n;

n = In.scan_int();

Out.print("Fib = ");
Out.print(fib(n));
Out.print("\n");

}
}

9

IntList.decaf

This program implements an abstract datatype of (singly-linked) list with integer elements,
with operations of insertion, search and length.

class IntList{
int value;
IntList next;

public static IntList create_list(int v) {
IntList new_element;

new_element = new IntList();
new_element.value = v;
new_element.next = null;
return new_element;

}

public IntList insert(int v) {
IntList new_element;

new_element = create_list(v);
new_element.next = this;

return new_element;
}

public boolean search(int v) {
if (this.value == v)

{ /* head of list matches */
return true;

}
else

/* not at head, so search rest of list */
if (next == null)

{ /* end of list, so search fails */
return false;

}
else

/* search rest of the list */
return next.search(v);

}

public int length() {
if (next == null) return 1;

else return 1 + next.length();
}

}

10

Acknowledgements

Decaf was first used as the source language for the Compiler Design course in Fall’96. Many thanks are
due to those students who gracefully put up with the inconsistencies of the first version. Based on that
version ofDecaf , R. Sekar (then of Iowa State University) defined Espresso, also used in a Compilers
course; his design was used to remove some irregularities fromDecaf . Kevin Kreeger (Fall’96 class) also
suggested several simplifications ofDecaf ’s grammar that have been included in the current version. Many
thanks are due also to Tord Johnson (Fall’98 class) for finding and reporting many errors in an early draft of
this manual.

11

