
L17 – Coding Conventions 11/21/2024

CSE416-S03 1

CSE 416-S03
Code Review Preparation

Coding Conventions Highlights

Java with some Python and JavaScriptJava with some Python and JavaScript

Reading

• Python coding style

https://www.python.org/dev/peps/pep-0008/

© Robert Kelly, 2016-2024 2

“Code is read much more often than it is written. “

“A style guide is about consistency. Consistency with this style
guide is important. Consistency within a project is more important.
Consistency within one module or function is the most important.”

“Code is read much more often than it is written. “

“A style guide is about consistency. Consistency with this style
guide is important. Consistency within a project is more important.
Consistency within one module or function is the most important.”

1

2

L17 – Coding Conventions 11/21/2024

CSE416-S03 2

Code Reviews

• Code review dates
• In class – 30-minute sessions today (volunteer) and 11/26
• Others – 30-minute Zoom sessions (attendance limited to the team) and in-class on

12/3

• Project team picks the starting use case
• Start by briefly showing the GUI (does not need to be fully functional)
• Trace the use case logic step-by-step in the code, starting with the HTML

• Plan to respond to requests to review any use case or
algorithm / pre-processing code

• Scoring
• Oral communications (maximum of 5 points)
• Technical (maximum of 100 points)

© Robert Kelly, 2016-2024 3

Includes review of pre-processing, server,
MGGG, and SeaWulf post-MGGG code

Oral Communications Evaluation Criteria

• Voice Projection

• Proper use of vocabulary

• Effectively managing time

• Handling questions

© Robert Kelly, 2016-2024 4

If not in class - all team members
must enable video in Zoom

3

4

L17 – Coding Conventions 11/21/2024

CSE416-S03 3

Technical Quality Evaluation Criteria - Overall

• Code is readable and maintainable

• Code is logical

• Code follows coding conventions

• Completed code shows progress in all aspects of the system

• Team demonstrates an understanding of libraries, frameworks, and
language features

• Test (or real) data is available for all planned use cases

• DB is partially populated

© Robert Kelly, 2016-2024 5

Technical Evaluation Criteria

• Absence of logic flaws

• Use of appropriate data
structures

• Correct structure

• Proper style (e.g., readable)

• Consistency of coding style

• Appropriately named identifiers

• Modular code

• Appropriate use of tools

• Comprehensive RESTful API

• Proper client event handling

• Robust set of SW to date

• Comments only when needed

• Avoiding “magic” numbers

• Import of configuration data

• Code to enable testing

© Robert Kelly, 2016-2024 6

5

6

L17 – Coding Conventions 11/21/2024

CSE416-S03 4

Why Do We Need Coding Conventions?

• Reduce software maintenance

• Improve readability of the SW
• Easier code walkthroughs and design reviews

• Short methods

© Robert Kelly, 2016-2024 7

Think about showing
complete logic blocks in
one screen

Comments

• Implementation comments are for commenting out code or
describing particular implementation issues

• Comments should provide only info that is not available in the code
(don’t document trivial issues)

• Don’t use special characters, boxes, etc.

• Block comments should be indented to the same level as the code

• Trailing comments (same line) should be shifted away from code

© Robert Kelly, 2016-2024 8

Comments often take away
from single screen readability

7

8

L17 – Coding Conventions 11/21/2024

CSE416-S03 5

Appearance

• Indentation
• 2 spaces is recommended (4 is OK)

• Use the formatting feature of your IDE (tailor your settings)

© Robert Kelly, 2016-2024 9

Helpful to use the IDE
format feature regularly
as you are coding – it
helps you to see errors

Helpful to use the IDE
format feature regularly
as you are coding – it
helps you to see errors

Java Declarations

• Declarations at the beginning of a block
• One declaration per line
• You can either use a space or a tab between the type and the
identifier
• int level //authorization level
• int level //authorization level

• No space between a method name and the (
• { at the end of the line
• {} when there is a null

© Robert Kelly, 2016-2024 10

Helpful if identifier names line up
on multiple lines
Helpful if identifier names line up
on multiple lines

Left alignment
improves readability
Left alignment
improves readability

9

10

L17 – Coding Conventions 11/21/2024

CSE416-S03 6

Java Annotations

• Annotations applying to a class, method or constructor appear
immediately after the documentation block

• Each annotation is listed on a line of its own (that is, one
annotation per line)

© Robert Kelly, 2016-2024 11

@Override
@Nullable
public String getNameIfPresent() { ... }

Blank Lines

• Between methods

• Between local variables in a method and the first statement

• Between logical sections

© Robert Kelly, 2016-2024 12

Do not use unnecessary blank
lines – remember, a code
module should be readable on
a screen without scrolling

Do not use unnecessary blank
lines – remember, a code
module should be readable on
a screen without scrolling

11

12

L17 – Coding Conventions 11/21/2024

CSE416-S03 7

Java Naming Conventions

• Packages – lower case (not CC)

• Classes – should be nouns in upper camel case
• First letter of each internal word is capitalized

• Use whole words – avoid acronyms and abbreviations

• Methods – should be verbs in lower camel case

• Variables –
lower camel case
• Don’t use _ or $

• Constants – all uppercase

© Robert Kelly, 2016-2024 13

Do not use default
package
Do not use default
package

Worthless Documentation
/**

* Represents a command history

*/

public class CommandHistory {

/**

* Get the command history for a given user

*/

public static CommandHistory
getCommandHistory(String user) {

}

}

© Robert Kelly, 2016-2024 14

13

14

L17 – Coding Conventions 11/21/2024

CSE416-S03 8

Python Coding Convention Highlights

• PeP 8 – style guide
• Naming

• Variables, lower case, using a _ for separation
• Classes – upper camel case

• 4 spaces per indentation level
• # Arguments on first line discouraged, as in

• No mixing of tabs and
spaces for indentation (spaces preferred)

• Lines limited to 79 characters
• Imports at the top of the file on separate lines

© Robert Kelly, 2016-2024 15

foo = long_function_name(var_one, var_two,
var_three, var_four)

foo = long_function_name(var_one, var_two,
var_three, var_four)

Selected JavaScript Style Suggestions

• Use const and let, not var

• Do not use the Array constructor – use a literal instead

• Do not use non-numeric properties on an array

• Preference for arrow functions

• Do not use the with keyword

© Robert Kelly, 2016-2024 16

https://google.github.io/styleguide/jsguide.html#language-features

15

16

