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CSE 416-S03
Code Review Preparation

Coding Conventions Highlights

Java with some Python and JavaScriptJava with some Python and JavaScript

Reading

• Python coding style

https://www.python.org/dev/peps/pep-0008/

© Robert Kelly, 2016-2024 2

“Code is read much more often than it is written. “

“A style guide is about consistency. Consistency with this style 
guide is important. Consistency within a project is more important. 
Consistency within one module or function is the most important.”

“Code is read much more often than it is written. “

“A style guide is about consistency. Consistency with this style 
guide is important. Consistency within a project is more important. 
Consistency within one module or function is the most important.”
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Code Reviews

• Code review dates
• In class – 30-minute sessions today (volunteer) and 11/26
• Others – 30-minute Zoom sessions (attendance limited to the team) and in-class on 

12/3

• Project team picks the starting use case
• Start by briefly showing the GUI (does not need to be fully functional)
• Trace the use case logic step-by-step in the code, starting with the HTML

• Plan to respond to requests to review any use case or 
algorithm / pre-processing code 

• Scoring
• Oral communications (maximum of 5 points) 
• Technical (maximum of 100 points)
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Includes review of pre-processing, server, 
MGGG, and SeaWulf post-MGGG code

Oral Communications Evaluation Criteria

• Voice Projection

• Proper use of vocabulary

• Effectively managing time 

• Handling questions 
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If not in class - all team members 
must enable video in Zoom
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Technical Quality Evaluation Criteria - Overall

• Code is readable and maintainable

• Code is logical 

• Code follows coding conventions

• Completed code shows progress in all aspects of the system

• Team demonstrates an understanding of libraries, frameworks, and 
language features

• Test (or real) data is available for all planned use cases

• DB is partially populated 
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Technical Evaluation Criteria

• Absence of logic flaws

• Use of appropriate data 
structures

• Correct structure

• Proper style (e.g., readable)

• Consistency of coding style

• Appropriately named identifiers

• Modular code

• Appropriate use of tools 

• Comprehensive RESTful API

• Proper client event handling

• Robust set of SW to date

• Comments only when needed

• Avoiding “magic” numbers

• Import of configuration data

• Code to enable testing
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Why Do We Need Coding Conventions?

• Reduce software maintenance

• Improve readability of the SW
• Easier code walkthroughs and design reviews

• Short methods
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Think about showing 
complete logic blocks in 
one screen

Comments

• Implementation comments are for commenting out code or 
describing particular implementation issues

• Comments should provide only info that is not available in the code 
(don’t document trivial issues)

• Don’t use special characters, boxes, etc.

• Block comments should be indented to the same level as the code

• Trailing comments (same line) should be shifted away from code
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Comments often take away 
from single screen readability
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Appearance

• Indentation
• 2 spaces is recommended (4 is OK)

• Use the formatting feature of your IDE (tailor your settings)
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Helpful to use the IDE 
format feature regularly 
as you are coding – it 
helps you to see errors

Helpful to use the IDE 
format feature regularly 
as you are coding – it 
helps you to see errors

Java Declarations

• Declarations at the beginning of a block
• One declaration per line
• You can either use a space or a tab between the type and the 
identifier
• int level //authorization level
• int level //authorization level

• No space between a method name and the (
• { at the end of the line
• {} when there is a null
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Helpful if identifier names line up 
on multiple lines
Helpful if identifier names line up 
on multiple lines

Left alignment 
improves readability
Left alignment 
improves readability
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Java Annotations

• Annotations applying to a class, method or constructor appear 
immediately after the documentation block

• Each annotation is listed on a line of its own (that is, one 
annotation per line)
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@Override 
@Nullable
public String getNameIfPresent() { ... } 

Blank Lines

• Between methods

• Between local variables in a method and the first statement

• Between logical sections
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Do not use unnecessary blank 
lines – remember, a code 
module  should be readable on 
a screen without scrolling

Do not use unnecessary blank 
lines – remember, a code 
module  should be readable on 
a screen without scrolling
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Java Naming Conventions

• Packages – lower case (not CC)

• Classes – should be nouns in upper camel case
• First letter of each internal word is capitalized

• Use whole words – avoid acronyms and abbreviations

• Methods – should be verbs in lower camel case

• Variables –
lower camel case
• Don’t use _ or $

• Constants – all uppercase
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Do not use default 
package
Do not use default 
package

Worthless Documentation
/**

* Represents a command history

*/

public class CommandHistory {

/**

* Get the command history for a given user

*/

public static CommandHistory
getCommandHistory(String user) {

}

}
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Python Coding Convention Highlights

• PeP 8 – style guide
• Naming

• Variables, lower case, using a _ for separation
• Classes – upper camel case

• 4 spaces per indentation level
• # Arguments on first line discouraged, as in

• No mixing of tabs and 
spaces for indentation (spaces preferred)

• Lines limited to 79 characters
• Imports at the top of the file on separate lines
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foo = long_function_name(var_one, var_two,
var_three, var_four)

foo = long_function_name(var_one, var_two,
var_three, var_four)

Selected JavaScript Style Suggestions

• Use const and let, not var

• Do not use the Array constructor – use a literal instead

• Do not use non-numeric properties on an array

• Preference for arrow functions 

• Do not use the with keyword
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https://google.github.io/styleguide/jsguide.html#language-features
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