
L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 1

UML – SEQUENCE DIAGRAMS

CSE416-S03 - Software Engineering

And also Activity Diagrams (for 
the Python part of your system)

Reading / Reference

• Reading
www.lucidchart.com/pages/uml-sequence-diagram
www.ibm.com/developerworks/rational/library/3101.html

https://en.wikipedia.org/wiki/Activity_diagram

2CSE416 – Software Engineering© Robert F. Kelly, 2024

1

2



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 2

Interaction Diagrams

• Sequence diagrams and collaboration diagrams

• Describe the dynamic behavior of an OO system

• Often used to model a use case

• Purpose:
• Model interactions between objects

• Verify/revise the class diagram

• Assign responsibilities/operations to classes

© Robert F. Kelly, 2024 CSE416 – Software Engineering 3

We focus on sequence 
diagrams

UML Sequence Diagram

• Sequence diagram - an interaction diagram that models a single 
scenario (use case) executing in the system
• perhaps 2nd most used UML diagram (behind class diagram)

• Illustrates how objects interact with each other

• Emphasizes time ordering of messages

• Can model simple sequential flow, branching, iteration, recursion 
and concurrency

4

Helps you design proper encapsulation 
of your data

CSE416 – Software Engineering© Robert F. Kelly, 2024

3

4



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 3

Sequence Diagram Syntax
5CSE416 – Software Engineering© Robert F. Kelly, 2024

Method call

Named object
Fully identified return

Time

Activation block

Calls are instantaneous -
horizontal

Lifeline

• Think of a lifeline as a “live” object

• Lifelines usually represent object instances 

• An “X” is shown when the object is destroyed

• Placement
• Usually across the top of the diagram

• Depending on tool, you might lower the placement of the 
lifeline if object activation occurs during the use case

CSE416 – Software Engineering 6

x

© Robert F. Kelly, 2024

Might not be shown if it doesn’t clarify the design

5

6



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 4

Indicating Method Calls

• Activation box: thick box over object's 
lifeline; drawn when object is on the stack
• Either that object is running its code, or it is on 

the stack waiting for another object's method to 
finish

• Nest to indicate recursion

CSE416 – Software Engineering 7© Robert F. Kelly, 2024

Activation 
box

Key Components

• Participant: an object or entity that acts in the sequence diagram
• sequence diagram starts with an unattached arrow or an arrow attached to 

an actor

• Message: communication between objects/actors
• Axes in a sequence diagram:

• horizontal: which object/participant is acting
• vertical: time (down -> forward in time)

8

In a GUI system the initial 
participant is usually an actor

For complex logic, the diagram can 
start with another use case

CSE416 – Software Engineering© Robert F. Kelly, 2024

7

8



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 5

Messages

• An interaction between two objects is performed as a message 
sent from one object to another 
(e.g., method call)

• If an object sends a message to another object, object 1 must have 
visibility to object 2 (i.e., have a handle)

• A message is labeled at a minimum with the method name, and if 
space permits, the parameters

9CSE416 – Software Engineering© Robert F. Kelly, 2024

Arrow Labels

• Method call
• Label the call arrow with the method name
• Include parameters if they are not obvious

• Return
• Model a return value when you need to refer to it elsewhere, e.g., as a 

parameter passed in another message

10

In general, don’t model obvious 
interactions if the modeling tool is not able 
to automatically generate code

CSE416 – Software Engineering© Robert F. Kelly, 2024

9

10



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 6

Simplification

• In your design review, you can simplify some cases, once you have 
shown an understanding

• Examples
• Do not show any client logic other than the user trigger on a DOM object 

and client communications object (Axios/XMLHttpRequest/Window)

• Do not show client server detail – show a message from client (e.g., Window 
object) to server Controller object

• Do not show any DB access – stop at message to EntityManager object

© Robert F. Kelly, 2024 CSE416 – Software Engineering 11

Show HTTP method

Simplification – Fundamental Objects

• DOM – object representation of the GUI

• Client request
• Axios

• XMLHttpRequest– Standard browser object - interacts with the server

• Window object uses a fetch method to interact with server

• Persistence layer – Standard server object to receive object 
requests for the DB
• Best represented as the em:EntityManager object

• Receives calls as in JPA

12CSE416 – Software Engineering© Robert F. Kelly, 2024

The only client-side elements needed 
are the actor, the DOM, and the 
interface object (e.g., Axios)

11

12



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 7

Simplification Comments
• Some simplification should be indicated with comments

13CSE416 – Software Engineering© Robert F. Kelly, 2024

Realistic Design Approach

• Use your sequence diagrams to identify classes and class 
attributes needed in your class diagram

• Work both simultaneously (e.g., add methods to your class 
diagram once you see that you need it)

• Don’t be reluctant to modify your design during this stage

14CSE416 – Software Engineering© Robert F. Kelly, 2024

13

14



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 8

Project Team Approach

• The first few sequence diagrams will be very difficult to do

• Do the first few as a team (with lots of team interaction)

• Once your team begins to understand your design philosophy and 
framework philosophy, you will be able to assign parts to team 
members

• Look for common design approaches (e.g., DB access, server 
access, session management), you might be able to use sub-
diagrams

15CSE416 – Software Engineering© Robert F. Kelly, 2024

Design Review

• Design review will be organized along the lines of use cases (and 
corresponding sequence diagrams and activity diagrams)

• Your team gets to pick the first use case to show 

• Clarity of thinking and consistency are more important than getting 
the best possible design approach

• Think encapsulation in your OO design

16CSE416 – Software Engineering© Robert F. Kelly, 2024

15

16



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 9

Object Instantiation

• An object may create another object via a <<create>> message.

17

:A

<<create>>
:B

Preferred

Using new is OK, but you 
might use the factory 
design pattern

CSE416 – Software Engineering© Robert F. Kelly, 2024

Indicating Selection and Loops

• frame: box around part of a sequence diagram to indicate selection 
or loop
• if -> (opt) [condition]

• if/else -> (alt) [condition], separated by horiz. dashed line

• loop -> (loop) [condition or items to loop over]

18

Loops are not very helpful in sequence 
diagrams. If you need to show a loop, you might 
just indicate it with a comment

CSE416 – Software Engineering

Maybe think about a method call 
to abstract a loop

© Robert F. Kelly, 2024

17

18



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 10

(De)centralized System Control

• What can you say about the control flow of each of the following 
systems?
• centralized?
• distributed?

19CSE416 – Software Engineering© Robert F. Kelly, 2024

This will help you 
think about 
whether your 
design properly 
uses 
encapsulation

Why Not Just Code It?

• A sequence diagram allows you to think through design issues 

• A sequence diagram is well above the level of code 

• Tool might generate code

• Sequence diagrams are somewhat language-agnostic (can be implemented 
in many different OO languages)

• Easier to do as a team

• Can see many objects/classes at the same time

20CSE416 – Software Engineering© Robert F. Kelly, 2024

19

20



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 11

Activity Diagrams

• For the Python parts of the project, 
assume a procedural programming 
model

• To show your procedural design, 
use a UML activity diagram

• Show major activities (e.g., 
calculate box & whisker data)) and 
data flows (e.g., district plan)

• Use ellipses (actions), diamonds 
(decisions), arrows, circles (start 
and end)

CSE416 – Software Engineering 21

Image: Wikipedia

Expected in design reviews
© Robert F. Kelly, 2024

Activity Diagrams

• Demonstrate the logic of an algorithm

• More detail as compared with a sequence diagram

• Appropriate for non-OO parts of a system (e.g., SeaWulf code)

CSE416 – Software Engineering 22© Robert F. Kelly, 2024

21

22



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 12

Activity Diagram Symbols …

CSE416 – Software Engineering 23

Start symbol – represents the 
beginning of a process

Activity – indicates an activity 
that is part of a process

Connector – shows the control 
flow of the activity

Fork symbol – splits a 
single activity into two 
concurrent activities

© Robert F. Kelly, 2024

… Activity Diagram Symbols …

CSE416 – Software Engineering 24

Decision symbol –
represents a 
decision and has at 
least 2 paths 
branching out with 
condition text

© Robert F. Kelly, 2024

23

24



L14 – UML-Sequence Diagrams 10/31/2024

CSE416-S03 13

… Activity Diagram Symbols

CSE416 – Software Engineering 25

Joint symbol bar –
combines 2 concurrent 
activities

End symbol – marks 
the end state of an 
activity

© Robert F. Kelly, 2024

Activity Diagram Suggestions

• Activity boxes should identify substantial parts of system 
(e.g., module to compute spanning tree)

• Label connectors to show data flow 

CSE416 – Software Engineering 26© Robert F. Kelly, 2024

25

26


