L13 — UML-Class Diagrams 10/29/2024

CLASS DIAGRAMS

Software Engineering

CSE416 - Software Engineering © Robert F. Kelly, 2024

Reference

- Class diagrams

en.wikipedia.org/wiki/Class_diagram

CSE416-S03 1

L13 — UML-Class Diagrams 10/29/2024

CSE416 - Software Engineering © Robert F. Kelly, 2024

System Design Issue

- For your server, do you create a set of objects for each of your
states and then construct JSONs from those objects to respond to
user requests or

- Do you have your controller fetch the JSON directly from the
Mongo DB to respond to user requests?

If you take the second option, how
do you avoid multiple requests to
the DB for the same JSONs?

CSE416 - Software Engineering © Robert F. Kelly, 2024

Class Diagram

- Goal is to convey information about the static structure of your
application domain

- Best if built iteratively

- Frequently, it is not a precise representation of the software
structure

- Conventions you follow are largely tool and software organization
based

Lucid Chart appears to be the best free
tool for building class diagrams

CSE416-S03 2

L13 — UML-Class Diagrams

CSE416 - Software Engineering © Robert F. Kelly, 2024

UML Tools

- You can use any UML tool that will
generate class diagrams and

Sequence diagrams _‘ Actor ‘ ‘ MyRecommen: dations : GUl | | moedifyRating : HitpSenvlet | ‘ £ : HitpSession
- LucidChart — most suitable $4 Sequence Disgram)
(link in “Development Tools” section of $ [P [
class Web site main page) Ao aa | !

1.1: doPostireq,res) I

1.1.1: getlser()

- Visual Paradigm (14) — Community
Edition has limitations

1.1.2: wUser

1.1.3: getRecs(u)

- Violet — simple, easy to use tool T Dserecs
(link to download on class Web site) ik s
- Altova Umodel — Advanced tool with 30 iR

1.1.8:

day free trial (Link in class Web site)

CSE416 - Software Engineering © Robert F. Kelly, 2024

Object Modeling Activities

- What happens if we find the wrong abstractions?
- Iterate and correct the model

- Steps during object modeling

- 1. Class identification
- Based on the fundamental assumption that we can find abstractions

- 2. Find the attributes
- 3. Find the methods

- 4. Find the associations
between classes

Do this before you write
implementation code

This essentially builds a
stubbed version of your system
(i.e., code structure, not
implementation)

CSE416-S03

10/29/2024

L13 — UML-Class Diagrams

CSE416 - Software Engineering

Book

author: String[]
isbn: String][]
pub: Publisher

getAuthor ()

10/29/2024

© Robert F. Kelly, 2024

Class Notation - Reminders

Style will sometimes be determined by tool

Note upper camel case for class name and
lower camel case for attribute names

Class name is singular
(but DB table is usually plural)

Nouns for class and attribute names and
verbs for method names

Use application domain terms —
not programming terms

CSE416 - Software Engineering

Book

author: String[]
isbn: String][]
pub: Publisher

getAuthor ()

© Robert F. Kelly, 2024

Class Notation - Details

- Details in a class diagram will vary, based
on tool, team conventions, maturity of
model, etc.

- Options:

- Parameters

- Attribute type

- Getter/setter methods

- Objects in a has-a relationship
- Method return types

- Visibility

More details are helpful if tool generates code

CSE416-S03

L13 — UML-Class Diagrams 10/29/2024

CSE416 - Software Engineering © Robert F. Kelly, 2024

Class Relationships

- Generalization / Inheritance (is-a)
—arrow

- Aggregation (has-a) — solid line with an empty diamond
- Composition (owns a) — solid line with a filled diamond
- Multiplicity (convention may depend on tool)

S
Shared ownership vs. non-shared is less important initially
(aggregation vs. composition)
9
CSE416 - Software Engineering © Robert F. Kelly, 2024 10
Association

- Not a statement about data flows, key relationships, etc.
- At least one class makes reference to the other
- Used when the relationship is not transient
- Options
- Named
- Multiplicity

- Diamond
(showing ownership)

- Other properties

A Book has an Author

10

CSE416-S03 5

L13 — UML-Class Diagrams

CSE416 - Software Engineering © Robert F. Kelly, 2024

Association Arrowhead

- Usually means that the class at the tail of the arrow has an
attribute of the type (Class name) shown at the end of the diamond

arrow
- Domain UML associations do not use arrowheads (SW UML does)

10/29/2024

11

CSE416 - Software Engineering © Robert F. Kelly, 2024

How to Express Attributes

- Choices

- Attribute text
. Association lines Not considered incorrect to
show both attribute text and an

- Guidelines association line
- Attribute text for primitive types
- Attribute text for library class types
- Association lines for class types

12

CSE416-S03

L13 — UML-Class Diagrams

CSE416 - Software Engineering © Robert F. Kelly, 2024 13

Multiplicity
- Multiplicity in an association indicates the number of instances

- Multiplicity symbol is often tool-related

UML tools allow you to add labels to
an association

symbol nstances |

0..1 No instances or one instance Book Author
. title i0.* 1.7 _|firstName

1 Exactly one instance lastName

0.* Zero or more instances

1.% One or more instances

Note, you might not include related

10/29/2024

958 I classes in attributes

13
CSE416 - Software Engineering © Robert F. Kelly, 2024 14
Methods
- Typically, developed later in the design phase
- Sequence diagrams are very helpful in determining needed

methods

- No need to include obvious methods (e.g., getters and setters)
- Class diagram might include parameters and return type

14

CSE416-S03

L13 — UML-Class Diagrams

CSE416 - Software Engineering

© Robert F. Kelly, 2024

10/29/2024

Package

either

cohesion
- Do not use the default package

server.Book
title 0.*

- If you are showing multiple packages in a single class diagram,

- Surround the package classes with a dashed border
- Include your package identifier in the Class name

- Be sure that your packages are organized logically to maximize

server.Author

firsthame
lastName

15

CSE416 - Software Engineering

Inheritance

- More general term is Generalization

© Robert F. Kelly, 2024

Person

firsthlame: String
lastMame: String

I

User Administrator

homeLibrary employeeMumber

16

CSE416-S03

L13 — UML-Class Diagrams 10/29/2024

CSE416 - Software Engineering © Robert F. Kelly, 2024 17

Keywords

- Textual adornment to categorize a model element

- Can be shown in double brackets (<<...>>) or curly braces ({...})
- Examples

- Interface
- Abstract

17

CSE416 - Software Engineering © Robert F. Kelly, 2024

Class Identification

- The application domain has to be analyzed.

- Depending on the source (use case, GUI), different objects might
be found

- Define system boundary.
- What objects are inside, what objects are outside?

- Non-entity classes (e.g., controller, manager, and strategy) are
usually difficult to immediately identify

18

CSE416-S03 9

L13 — UML-Class Diagrams 10/29/2024

CSE416 - Software Engineering © Robert F. Kelly, 2024 19

How Do You Find Classes?

- Finding classes is the central piece in object modeling
- Understand the application domain
- Abbott Textual Analysis, 1983, also called noun-verb analysis

- Nouns are good candidates for classes
- Verbs are good candidates for operations

- Apply design knowledge:
- Distinguish different types of objects
- Apply design patterns

We will cover some design patterns as they arise

19

CSE416 - Software Engineering

© Robert F. Kelly, 2024

Finding Objects in Use Cases

- Pick a use case and the text

- Find terms that developers or users need to clarify in order to understand
the flow of events

- Look for nouns (e.g., Incident),

- Identify real world entities and procedures that the system needs to keep
track of (e.g., FieldOfficer, Dispatcher, Resource),

- ldentify data sources or sinks (e.g., Printer)
- Identify interface artifacts (e.g., your persistence layer)
- Always use the user’s terms

20

CSE416-S03 10

L13 — UML-Class Diagrams

10/29/2024

CSE416 - Software Engineering © Robert F. Kelly, 2024

Object Categories

- Entity Objects — tangible things

- Agents, Managers, Policies

- Events and transactions

- Users and roles

- Systems

- System interfaces and devices

- Foundational classes (String, Date, etc.)

Foundational classes are usually not
included in class diagram (except
possibly with inheritance)

21

CSE416 - Software Engineering © Robert F. Kelly, 2024 22

Non-Domain Classes

- You will need to identify classes that are not associated directly
with the domain (from the use cases)

- Examples
- Controller objects — e.g., request handler
- Web sharing objects — e.g., session
- Authentication objects
- Resource managers

22

CSE416-S03

11

L13 — UML-Class Diagrams

CSE416 - Software Engineering © Robert F. Kelly, 2024 23

Some Issues in Object Modeling

- Improving the readability of class diagrams
- Group related classes together
- Avoid overlapping relationship arrows
- Break into separate class diagrams if needed
- Eliminate non-informative attributes and methods (e.g., getter methods)

- Different users of class diagrams —
designers, developers

- Minimize dependency relationships
- Minimize coupling between classes

10/29/2024

23

CSE416 - Software Engineering © Robert F. Kelly, 2024 24

Project Management Heuristics

- First just find objects

- Find associations and their multiplicity

- Identify Inheritance: Look for a Taxonomy, Categorize
- [dentify Aggregation

- Allow time for brainstorming

- Be flexible in changing your design, if needed

lterate, iterate, iterate

24

CSE416-S03

12

L13 — UML-Class Diagrams 10/29/2024

CSE416 - Software Engineering © Robert F. Kelly, 2024 25

Who Uses Class Diagrams?
- Used by:

- The application domain expert uses class diagrams to model the
application domain

- The developer uses class diagrams during the development of a
system,that is, during analysis, system design, object design and
implementation

customer and the end user are often not
interested in class diagrams - they focus more on
the functionality of the system

25
CSE416 - Software Engineering © Robert F. Kelly, 2024 26
Class Packages
- Group classes into discrete physical units
- Ideally use one package for each subsystem
- design principles for packaging
- Minimize coupling
- Maximize cohesiveness
Use of the default package in
your server design in CSE416 is
not permitted
26

CSE416-S03 13

L13 — UML-Class Diagrams 10/29/2024

CSE416 - Software Engineering © Robert F. Kelly, 2024 27

Summary

- Modeling vs reality
- System modeling
- Object / dynamic model

- Object modeling is the central activity
- Class identification is a major activity of object modeling
- There are some easy syntactic rules to find classes/objects

- Different roles during software development

27

CSE416-S03 14

