
L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 1

CLASS DIAGRAMS

Software Engineering

Reference

• Class diagrams
en.wikipedia.org/wiki/Class_diagram

© Robert F. Kelly, 2024 2CSE416 - Software Engineering

1

2



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 2

System Design Issue

• For your server, do you create a set of objects for each of your 
states and then construct JSONs from those objects to respond to 
user requests or

• Do you have your controller fetch the JSON directly from the 
Mongo DB to respond to user requests?

CSE416 - Software Engineering © Robert F. Kelly, 2024 3

If you take the second option, how 
do you avoid multiple requests to 
the DB for the same JSONs?

Class Diagram

• Goal is to convey information about the static structure of your 
application domain

• Best if built iteratively

• Frequently, it is not a precise representation of the software 
structure

• Conventions you follow are largely tool and software organization 
based

© Robert F. Kelly, 2024 4

Lucid Chart appears to be the best free 
tool for building class diagrams

CSE416 - Software Engineering

3

4



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 3

UML Tools
• You can use any UML tool that will 
generate class diagrams and 
sequence diagrams
• LucidChart – most suitable 

(link in “Development Tools” section of 
class Web site main page)

• Visual Paradigm (14) – Community 
Edition has limitations

• Violet – simple, easy to use tool 
(link to download on class Web site)

• Altova Umodel – Advanced tool with 30 
day free trial (Link in class Web site)

© Robert F. Kelly, 2024 5CSE416 - Software Engineering

Object Modeling Activities

• What happens if we find the wrong abstractions?
• Iterate and correct the model

• Steps during object modeling
• 1. Class identification

• Based on the fundamental assumption that we can find abstractions

• 2. Find the attributes

• 3. Find the methods

• 4. Find the associations 
between classes

© Robert F. Kelly, 2024 6

This essentially builds a 
stubbed version of your system 
(i.e., code structure, not 
implementation)

Do this before you write 
implementation code

CSE416 - Software Engineering

5

6



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 4

Class Notation - Reminders

© Robert F. Kelly, 2024 7

Style will sometimes be determined by tool

Note upper camel case for class name and 
lower camel case for attribute names

Book
author: String[]

isbn: String[]

pub: Publisher

...

getAuthor()

...

Class name is singular 
(but DB table is usually plural)

Nouns for class and attribute names and 
verbs for method names

Use application domain terms –
not programming terms

CSE416 - Software Engineering

Class Notation - Details
• Details in a class diagram will vary, based 

on tool, team conventions, maturity of 
model, etc.

• Options:
• Parameters

• Attribute type

• Getter/setter methods

• Objects in a has-a relationship

• Method return types

• Visibility

© Robert F. Kelly, 2024 8

Book
author: String[]

isbn: String[]

pub: Publisher

...

getAuthor()

...

More details are helpful if tool generates code

CSE416 - Software Engineering

7

8



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 5

Class Relationships

• Generalization / Inheritance (is-a) 
–arrow

• Aggregation (has-a) – solid line with an empty diamond

• Composition (owns a) – solid line with a filled diamond

• Multiplicity (convention may depend on tool)
• 1..*

CSE416 - Software Engineering © Robert F. Kelly, 2024 9

Shared ownership vs. non-shared is less important initially
(aggregation vs. composition)

Association

• Not a statement about data flows, key relationships, etc.

• At least one class makes reference to the other

• Used when the relationship is not transient

• Options
• Named

• Multiplicity

• Diamond
(showing ownership)

• Other properties

© Robert F. Kelly, 2024 10

Book Author

A Book has an Author

CSE416 - Software Engineering

9

10



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 6

Association Arrowhead

• Usually means that the class at the tail of the arrow has an 
attribute of the type (Class name) shown at the end of the diamond 
arrow

• Domain UML associations do not use arrowheads (SW UML does)

© Robert F. Kelly, 2024 11CSE416 - Software Engineering

How to Express Attributes

• Choices
• Attribute text

• Association lines

• Guidelines
• Attribute text for primitive types

• Attribute text for library class types

• Association lines for class types

© Robert F. Kelly, 2024 12

Not considered incorrect to 
show both attribute text and an 
association line

CSE416 - Software Engineering

11

12



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 7

Multiplicity

• Multiplicity in an association indicates the number of instances

• Multiplicity symbol is often tool-related

© Robert F. Kelly, 2024 13

InstancesSymbol
No instances or one instance0..1

Exactly one instance1

Zero or more instances0..*

One or more instances1..*

Exactly 3, 5, or 83,5,8

UML tools allow you to add labels to 
an association

Note, you might not include related 
classes in attributes

CSE416 - Software Engineering

Methods

• Typically, developed later in the design phase

• Sequence diagrams are very helpful in determining needed 
methods

• No need to include obvious methods (e.g., getters and setters)

• Class diagram might include parameters and return type

© Robert F. Kelly, 2024 14CSE416 - Software Engineering

13

14



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 8

Package

• If you are showing multiple packages in a single class diagram, 
either
• Surround the package classes with a dashed border

• Include your package identifier in the Class name

• Be sure that your packages are organized logically to maximize 
cohesion

• Do not use the default package

© Robert F. Kelly, 2024 15CSE416 - Software Engineering

Inheritance

• More general term is Generalization

© Robert F. Kelly, 2024 16CSE416 - Software Engineering

15

16



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 9

Keywords

• Textual adornment to categorize a model element

• Can be shown in double brackets (<<…>>) or curly braces ({…})

• Examples 
• Interface

• Abstract

© Robert F. Kelly, 2024 17CSE416 - Software Engineering

Class Identification

• The application domain has to be analyzed. 

• Depending on the source (use case, GUI), different objects might 
be found

• Define system boundary. 
• What objects are inside, what objects are outside?

• Non-entity classes (e.g., controller, manager, and strategy) are 
usually difficult to immediately identify

© Robert F. Kelly, 2024 18CSE416 - Software Engineering

17

18



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 10

How Do You Find Classes?

• Finding classes is the central piece in object modeling
• Understand the application domain 

• Abbott Textual Analysis, 1983, also called noun-verb analysis
• Nouns are good candidates for classes 

• Verbs are good candidates for operations

• Apply design knowledge:
• Distinguish different types of objects

• Apply design patterns

© Robert F. Kelly, 2024 19CSE416 - Software Engineering

We will cover some design patterns as they arise

Finding Objects in Use Cases
• Pick a use case and the text

• Find terms that developers or users need to clarify in order to understand 
the flow of events

• Look for nouns (e.g., Incident),
• Identify real world entities and procedures that the system needs to keep 

track of (e.g., FieldOfficer, Dispatcher, Resource),
• Identify data sources or sinks (e.g., Printer)
• Identify interface artifacts (e.g., your persistence layer)

• Always use the user’s terms

© Robert F. Kelly, 2024 20CSE416 - Software Engineering

19

20



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 11

Object Categories
• Entity Objects – tangible things
• Agents, Managers, Policies
• Events and transactions
• Users and roles
• Systems
• System interfaces and devices
• Foundational classes (String, Date, etc.)

© Robert F. Kelly, 2024 21

Foundational classes are usually not 
included in class diagram (except 
possibly with inheritance)

CSE416 - Software Engineering

Non-Domain Classes

• You will need to identify classes that are not associated directly 
with the domain (from the use cases)

• Examples
• Controller objects – e.g., request handler

• Web sharing objects – e.g., session

• Authentication objects

• Resource managers

© Robert F. Kelly, 2024 22CSE416 - Software Engineering

21

22



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 12

Some Issues in Object Modeling

• Improving the readability of class diagrams
• Group related classes together

• Avoid overlapping relationship arrows

• Break into separate class diagrams if needed

• Eliminate non-informative attributes and methods (e.g., getter methods)

• Different users of class diagrams –
designers, developers

• Minimize dependency relationships
• Minimize coupling between classes

© Robert F. Kelly, 2024 23CSE416 - Software Engineering

Project Management Heuristics

• First just find objects

• Find associations and their multiplicity

• Identify Inheritance: Look for a Taxonomy, Categorize

• Identify Aggregation

• Allow time for brainstorming

• Be flexible in changing your design, if needed

© Robert F. Kelly, 2024 24

Iterate, iterate, iterate

CSE416 - Software Engineering

23

24



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 13

Who Uses Class Diagrams?

• Used by:
• The application domain expert uses class diagrams to model the 

application domain

• The developer uses class diagrams during the development of a 
system,that is, during analysis, system design, object design and 
implementation

© Robert F. Kelly, 2024 25

customer and the end user are often not 
interested in class diagrams - they focus more on 
the functionality of the system

CSE416 - Software Engineering

Class Packages

• Group classes into discrete physical units 

• Ideally use one package for each subsystem

• design principles for packaging
• Minimize coupling

• Maximize cohesiveness

CSE416 - Software Engineering © Robert F. Kelly, 2024 26

Use of the default package in 
your server design in CSE416 is 
not permitted

25

26



L13 – UML-Class Diagrams 10/29/2024

CSE416-S03 14

Summary

• Modeling vs reality

• System modeling
• Object / dynamic model

• Object modeling is the central activity
• Class identification is a major activity of object modeling

• There are some easy syntactic rules to find classes/objects

• Different roles during software development

© Robert F. Kelly, 2024 27CSE416 - Software Engineering

27


