

1	
-	-

© Robert F. Kelly, 2024	L10-Algorithms	6
MGGG Code		
 Represent the seed districting 	g as a partitioned graph	
 Combine two adjacent sub-gr 	aphs	
 Form the spanning tree of the 	combined sub-graph	
 Cut an edge in the combined 	sub-graph	
 Test for acceptability (e.g., po 	pulation) and keep if ac	ceptable
 Repeat steps 2-5 until sub-gra partitioned graph (about 10,0) 	aph is independent of s 00 iterations)	eed
You c equal runnii	an relax the population ity constraint (e.g., .1) i ng slow	f

© Robert F. Kelly, 2024	L10-Algorithms	11
Ballot Generation		
 For each simulated MMD electron of ballots 	tion, you will need to ge	enerate a
 Each ballot needs to contain 		
 List of selected candidates (e.g., Ballot weight 	R-1, R-2, R-3, etc.)	
 For the basic use case, you can 	an assume	
 that for an n-member district, the Democratic candidates 	re are n Republican candid	ates and n
 There are exactly m ballots in a p Republican and Democratic vote Presidential) 	precinct where m is the num s cast in your reference ele	nber of ection (e.g., 2020
 There are no split tickets (i.e., mi 	xed Republican/Democratio	c candidates)

Cobert: Kelly, 2024 L10-Algorithms 16
Vote/Seat Measures
Bias – whether a plan favors one party over another
Bias at 50% - difference between seat share of each party at 50% vote share on curve
Partisan symmetry – average of symmetry measure at all vote levels between 45% and 55% vote share

