
Introduction to SeaWulf HPC
for CSE416 students

Dave Carlson
September 24nd, 2024

What’s an HPC cluster, anyway?

A High Performance Computing

(HPC) cluster contains multiple
physically distinct computers
(“nodes”) that are connected over a
network

A shared, parallel file system allows
efficient access to the same data
across all nodes

SeaWulf is …

❖ An HPC cluster dedicated to research

applications for Stony Brook faculty, staff,

and students

Available hardware:

❖ 5 login nodes = the entry points to the cluster

❖362 CPU compute nodes = where the work is done
❑ 28 – 96 CPUS each
❑ 128 GB – 1 TB RAM each

❖ 8 GPU nodes each with 4 Nvidia Tesla K80 GPUs
❖ 1 GPU node with 2 Tesla P100 GPUs

❖ 1 GPU node with 2 Tesla V100 GPUs
❖ 1 1 GPU nodes with 4 Tesla A100 GPUs
❖ Two large memory nodes each with 3 TB of RAM

How do I connect to SeaWulf?

Mac & Linux users via the terminal:

ssh -X netid@login.seawulf.stonybrook.edu

ssh -X netid@milan.seawulf.stonybrook.edu

Windows users:

mailto:netid@login.seawulf.stonybrook.edu

2-factor authentication with DUO

❖ Upon login, you will be prompted to receive and respond to a push

notification, sms, or phone call:

❖ Multiple failures to respond can lead to temporary lockout of your account

❖ DUO 2FA can be bypassed if connected to SBU’s VPN (GlobalProtect)

Which login nodes should I access?

login.seawulf.stonybrook.edu provides access to:

❑ 28-core nodes

❑ All GPU nodes except A100

milan.seawulf.stonybrook.edu &
xeonmax.seawulf.stonybrook.edu provides access to:

❑ 40-core nodes

❑ 96-core nodes (AMD Milan)

❑ hbm-96-core nodes (Intel Sapphire Rapids)

❑ A100 GPU nodes

Access SeaWulf in your browser with
Open OnDemand!

Point your browser to:

https://sn-ood.seawulf.stonybrook.edu/

See our OOD FAQ here:

https://it.stonybrook.edu/help/kb/accessi
ng-seawulf-with-open-ondemand

https://sn-ood.seawulf.stonybrook.edu/
https://it.stonybrook.edu/help/kb/accessing-seawulf-with-open-ondemand
https://it.stonybrook.edu/help/kb/accessing-seawulf-with-open-ondemand
https://it.stonybrook.edu/help/kb/accessing-seawulf-with-open-ondemand

The SeaWulf filesystem

/

(root)

gpfs/

home/ scratch/projects/software/ shared/

jdoe/CSE416/ jdoe/ modulefiles/(many)

= user writeable

= user readable

gpfs = General Parallel

File System

Important paths to remember

❖ /gpfs/home/netid = your home directory (20 GB)

❖ /gpfs/scratch/netid = your scratch directory (20 TB for housing temporary and

intermediate files)

❖ /gpfs/projects/CSE416 = your project directory (5 TB shared space accessible to all

class members)

***These environment variables also point to your

home directory***

$HOME

~

How do I transfer files onto SeaWulf?
Mac & Linux users should use scp (secure copy) to move files to and from SeaWulf

To transfer files from your computer to SeaWulf

1. Open terminal

2. scp /path/to/my/file netid@login.seawulf.stonybrook.edu:/path/to/destination/

To transfer files from SeaWulf to your computer

1. Open terminal

2. scp netid@login.seawulf.stonybrook.edu:/path/to/my/file /path/to/destination

When possible, xfer archives (e.g. tarballs) or directories because:

1. It’s faster to transfer one large file than many small files

2. Unless connected to the SBU VPN, you may receive 1 DUO prompt for every scp command you

run!

mailto:netid@login.seawulf.stonybrook.edu
mailto:netid@login.seawulf.stonybrook.edu

How do I transfer files onto SeaWulf?

Windows users:

(Drag and drop!)

Using the module system to access software

Useful module commands:

module avail

module load

module list

module unload

module purge

Using the module system to access software

System default python

Load a module!

Newer python version

now available!

How do I do work on SeaWulf?

Computationally intensive jobs should not be done on the login node!

❖ To run a job, you must submit a batch script to the Slurm Workload Manager

❖ A batch script is a collection of bash commands issued to the scheduler, which

which distributes your job across one or more compute nodes

❖ The user requests specific resources (nodes, cpus, job time, etc.), while the

scheduler places the job into the queue until the resources are available

Example Slurm Job Script
All jobs submitted through a job scheduling system using scripts

SBATCH Flags

- Specify # nodes, CPUs,

running time, queue, and

email options

Load modules – add programs

to your path and set important

environment variables

Execute

your script

or command

How do I execute my Slurm script?

Jobs are submitted via the Slurm Workload Manager using the “sbatch” command

This is your job ID.

Useful Slurm commands
sbatch <script> = submit a job

scancel <job id> = cancel a job

squeue = get job status

sinfo = get info on node/queue status and utilization

(see the following for a full list of Slurm commands)
https://slurm.schedmd.com/archive/slurm-21.08.8/man_index.html

What queue should I submit to?
How many nodes do you need?

How many cores per node?

How much time do you need?

❑ Only jobs using MPI should

request more than 1 node!

❑ Use a “shared” queue if you

don’t need all the resources
on a node

❑ There is often a tradeoff

between resource usage and

wait time!

❑ Don’t wait until the last

minute to submit jobs when

you have a deadline!

See our FAQ page on SeaWulf’s queues

https://it.stonybrook.edu/help/kb/seawulf-queues

Parallel processing on the cluster

❑ Parallelization within a single compute node

❖ Lots of ways of doing this

❖ Some tasks easily parallelized with scripting (e.g, “Embarrassingly Parallel” tasks)

❖ Language-specific options (e.g., Python’s Multiprocessing library)

❖ OpenMP for multithreaded C/C++/Fortran tasks

❑ Parallelization across multiple nodes

❖ No communication – Slurm Array

❖ Communication between processes needed – Requires the use of MPI

Parallel processing on a single node with GNU
Parallel

❖ Perfect for “embarrassingly parallel” situations

❖ Available as a module: gnu-parallel/6.0

❖ Can easily take in a series of inputs (e.g., files or values) and run a command on each input

simultaneously

❖ Lots of tutorials and resources available on the web!

https://www.gnu.org/software/parallel/parallel_tutorial.html (thorough!!)

https://www.msi.umn.edu/support/faq/how-can-i-use-gnu-parallel-run-lot-commands-parallel (many

practical examples)

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.msi.umn.edu/support/faq/how-can-i-use-gnu-parallel-run-lot-commands-parallel

Parallel processing with GNU Parallel

Optional flags to

control behavior

This command will

be run on each

input

{} =

placeholder

for each inputThe input values to

parallelize over

Parallel processing on a single node with
Python’s multiprocessing library

Brief introduction to parallelization options for python:

https://www.anyscale.com/blog/parallelizing-python-

code

https://www.anyscale.com/blog/parallelizing-python-code
https://www.anyscale.com/blog/parallelizing-python-code

Multithreading on a single node with OpenMP
OpenMP

❖ Framework for parallelization (multithreading) in a shared-

memory (single node) context for C, C++, and Fortran

❖ Typically involves creating multiple threads within a single

process instead of spawning multiple processes

❖ Useful when communication between parallel tasks is required

❖ Implemented in most modern compilers (GCC, Intel, LLVM,

etc.)

❖ Resource usage controlled at runtime by environment

variables

Check out this

comprehensive tutorial!

https://www.openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf
https://www.openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf

Multithreading on a single node with OpenMP

Estimating pi with C and OpenMP

Load a compiler

module

Specify # of

threads

Compile w/ –fopenmp

Can I use multiple nodes for a single job?

Yes! (...well...maybe)

Message Passing Interface (MPI) facilitates

communication between processes within or among nodes

Multiple “flavors” of MPI are available on SeaWulf

- Mvapich*, Intel* mpich, OpenMPI

*=officially supported

Can I use multiple nodes for a single job?

❖ Write code with MPI functions

❖ Compile with MPI wrapper

❖ Specify resource requirements in your Slurm script

❖ Execute code with mpiexec or mpirun

To use MPI:

Example MPI Job Submission Script

Specify resource

usage (nodes and MPI

tasks)

Load an MPI

module

Compile with

MPI

Execute with MPI

Estimating pi with C
and MPI

Parallelization FAQS:

Part 1: embarrassingly
parallel tasks

Part 2: OpenMP & MPI

https://it.stonybrook.edu/help/kb/a-guide-to-embarrassingly-parallel-workflows-on-seawulf
https://it.stonybrook.edu/help/kb/a-guide-to-embarrassingly-parallel-workflows-on-seawulf
https://it.stonybrook.edu/help/kb/a-guide-to-using-openmp-and-mpi-on-seawulf

MPI Hello World

mpirun

“Hello from process 1 on node 1”

“Hello from process 2 on node 1”
“Hello from process 3 on node 1”
“Hello from process 4 on node 1”

“Hello from process 1 on node 2”

“Hello from process 2 on node 2”
“Hello from process 3 on node 2”
“Hello from process 4 on node 2”

Need to troubleshoot? Use an interactive job!

Example:

”srun”: allocate a compute node in the short-40core queue

“--pty bash” run the bash shell on the compute node

Once a node is available, you can issue commands on the command line

Good for troubleshooting,

Inefficient once your code is working

Need more help or information?
Check out our FAQ: https://it.stonybrook.edu/services/high-performance-computing

Submit a ticket: https://iacs.supportsystem.com

https://it.stonybrook.edu/services/high-performance-computing
https://iacs.supportsystem.com/

QUESTIONS?

	Slide 1
	Slide 2: What’s an HPC cluster, anyway?
	Slide 3
	Slide 4: How do I connect to SeaWulf?
	Slide 5: 2-factor authentication with DUO
	Slide 6: Which login nodes should I access?
	Slide 7: Access SeaWulf in your browser with Open OnDemand!
	Slide 8: The SeaWulf filesystem
	Slide 9: Important paths to remember
	Slide 10: How do I transfer files onto SeaWulf?
	Slide 11: How do I transfer files onto SeaWulf?
	Slide 12: Using the module system to access software
	Slide 13: Using the module system to access software
	Slide 14: How do I do work on SeaWulf?
	Slide 15: Example Slurm Job Script
	Slide 16: How do I execute my Slurm script?
	Slide 17: Useful Slurm commands
	Slide 18: What queue should I submit to?
	Slide 19: Parallel processing on the cluster
	Slide 20: Parallel processing on a single node with GNU Parallel
	Slide 21: Parallel processing with GNU Parallel
	Slide 22: Parallel processing on a single node with Python’s multiprocessing library
	Slide 23: Multithreading on a single node with OpenMP
	Slide 24: Multithreading on a single node with OpenMP
	Slide 25: Can I use multiple nodes for a single job?
	Slide 26: Can I use multiple nodes for a single job?
	Slide 27: Example MPI Job Submission Script
	Slide 28: MPI Hello World
	Slide 29: Need to troubleshoot? Use an interactive job!
	Slide 30: Need more help or information?
	Slide 31

