
Session 11 – UML Sequence Diagrams

10/20/2020 1 Robert Kelly, 2012-2020

CSE 416

UML
Sequence Diagrams

For the Object-Oriented (Java)
part of your system

 Robert Kelly, 2012-2020

Reading / Reference

Reading
www.ibm.com/developerworks/rational/library/3101.html

Reference
www.lucidchart.com/pages/uml-sequence-diagram

2

Session 11 – UML Sequence Diagrams

10/20/2020 2 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020
3

Interaction Diagrams

Sequence diagrams and collaboration diagrams
A series of diagrams describing the dynamic behavior of an
object-oriented system
Often used to model a use case
The purpose of Interaction diagrams is to:

Model interactions between objects
Verify that a use case description can be supported by the existing classes
Identify new classes
Assign responsibilities/operations to classes We focus on

sequence diagrams

 Robert Kelly, 2012-2020

UML Sequence Diagram

Sequence diagram - an interaction diagram that models a single
scenario (use case) executing in the system

perhaps 2nd most used UML diagram (behind class diagram)

Illustrates how objects interact with each other

Emphasizes time ordering of messages

Can model simple sequential flow, branching, iteration, recursion
and concurrency

4

Session 11 – UML Sequence Diagrams

10/20/2020 3 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

Lifeline

Think of a lifeline as a “live” object

Lifelines usually represent object instances

An “X” is shown when the object is destroyed

Placement
usually across the top of the diagram

Depending on tool, you might lower the placement
of the lifeline if object activation occurs during the
use case

5

x

Might not be shown if it doesn’t
clarify the design

 Robert Kelly, 2012-2020

Indicating Method Calls

Activation box: thick box over object's
life line; drawn when object is on the
stack

Either that object is running its code, or
it is on the stack waiting for another
object's method to finish

Nest to indicate recursion

6

Activation box

Session 11 – UML Sequence Diagrams

10/20/2020 4 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

Fully identified return

7

Sequence Diagram Syntax

Method
call

Calls are instantaneous -
horizontal

Time

Named object

Activation
block

 Robert Kelly, 2012-2020
8

Key Components

Participant: an object or entity that acts in the sequence diagram
sequence diagram starts with an unattached arrow or an arrow attached
to an actor

Message: communication between objects/actors
Axes in a sequence diagram:

horizontal: which object/participant is acting
vertical: time (down -> forward in time) In a GUI system the

initial participant is
usually an actor

Session 11 – UML Sequence Diagrams

10/20/2020 5 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

Messages

An interaction between two objects is performed as a message sent from one
object to another
(e.g., method call)
If an object sends a message to another object, object 1 must have visibility
to object 2 (i.e., have a handle)
A message is represented by an arrow between the life lines of two objects

Self calls are also allowed
The time required by the receiver object to process the message is denoted by an
activation-box.

A message is labeled at a minimum with the method name, and if needed, the
parameters

9

 Robert Kelly, 2012-2020

Messages

Solid arrow heads represent synchronous calls
a synchronous message waits until the message is done (e.g., invoking a
subroutine)

Open arrow heads represent asynchronous messages
An asynchronous message can continue processing and doesn’t have to
wait for a response

Example: Ajax calls from GUI

Dashed lines represent reply messages.

10

Some of these formatting issues
are tool dependent

Session 11 – UML Sequence Diagrams

10/20/2020 6 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020
11

Arrow Labels

Method call
Label the call arrow with the method name
Include parameters if they are not obvious

Return
Model a return value only when you need to refer to it elsewhere, e.g. as
a parameter passed in another message

In general, don’t model obvious
interactions if the modeling tool is not

able to automatically generate code

 Robert Kelly, 2012-2020

Simplification

You can simplify in some cases, once you have shown
understanding

Examples

12

HTTP method

Omits the RequestDispatcher
object

User action
on the page

Session 11 – UML Sequence Diagrams

10/20/2020 7 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

Simplification – Fundamental Objects

DOM – object representation of the GUI

XMLHttpRequest– Standard browser object - interacts with the server

Window object uses a fetch method to interact with server

Servlet – standard server object to handle the request from the client

Persistence layer – Standard server object to receive object requests
for the DB

Best represented as the em:EntityManager object

Receives calls as in JPA

13

You should show these fundamental
objects once in your sequence diagrams

when there is client and/or DB
interaction

These concepts covered in more
depth in a future session

 Robert Kelly, 2012-2020

Simplification Comments

Some simplification should be indicated with comments

14

Session 11 – UML Sequence Diagrams

10/20/2020 8 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

Realistic Design Approach

Use your sequence diagrams to identify classes and class attributes
needed in your class diagram

Work both simultaneously (e.g. add methods to your class diagram
once you see that you need it)

Don’t be reluctant to modify your design during this stage

15

 Robert Kelly, 2012-2020

Project Team Approach

The first few diagrams will be very difficult to do

Do the first few as a team (with lots of team interaction)

Once your team begins to understand your design philosophy and
framework philosophy, you will be able to assign parts to team
members

Look for common design approaches (e.g., DB access, server
access, session management), you might be able to use sub-
diagrams

16

Session 11 – UML Sequence Diagrams

10/20/2020 9 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

Project Hints

Be sure to show an understanding of the object in your GUI (i.e.,
DOM)

Concentrate on server logic
GUI object interaction will vary based on your choice of development
framework

Generalize the DB component in your initial sequence diagrams
(e.g., just show a general call to a persistence layer object)

If you use JDBC, you will need to show details of the use of interaction
with JDBC objects

17

 Robert Kelly, 2012-2020

Design Review

Design review will be organized along the lines of use cases (and
corresponding sequence diagrams and data flow diagrams)

Your team gets to pick the first use case to show

Clarity of thinking and consistency are more important than getting
the best possible design approach

18

Session 11 – UML Sequence Diagrams

10/20/2020 10 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020
19

Object Instantiation

An object may create another object via a <<create>>
message.

:A

<<create>> :B

Preferred Using new is OK, but
you will be probably

use the factory design
pattern

 Robert Kelly, 2012-2020

Object Destruction

An object may destroy another
object via a <<destroy>>
message.

Avoid modeling object destruction
unless memory management is
critical
You will probably only show this
when the return of an html page
has the effect of destroying the
previous page in the browser

20

Session 11 – UML Sequence Diagrams

10/20/2020 11 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

Indicating Selection and Loops

frame: box around part of a sequence diagram to indicate selection
or loop

if -> (opt) [condition]

if/else -> (alt) [condition], separated by horiz. dashed line

loop -> (loop) [condition or items to loop over]

21

Loops are not very helpful in
sequence diagrams. If you need to
show a loop, you might just indicate

it with a comment

 Robert Kelly, 2012-2020
22

Linking Sequence Diagrams

If one sequence diagram is too large or refers to another diagram, indicate
it with either:

An unfinished arrow and comment
A "ref" frame that names the other diagram

Verify customer credit

refCustomer Info

Approved?

Although this might
result from the use case

being too large

Session 11 – UML Sequence Diagrams

10/20/2020 12 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020
23

(De)centralized System Control

What can you say about the control flow of each of the following systems?
centralized?
distributed?

 Robert Kelly, 2012-2020
24

Why Not Just Code It?

Sequence diagrams can be somewhat close to the code level. So
why not just code the algorithm rather than drawing it as a
sequence diagram?

Allows you to think through design issues

A good sequence diagram is well above the level of the real code

Tool might generate code

Sequence diagrams are language-agnostic (can be implemented in
many different OO languages)

Easier to do as a team

Can see many objects/classes at the same time

Session 11 – UML Sequence Diagrams

10/20/2020 13 Robert Kelly, 2012-2020

 Robert Kelly, 2012-2020

EntityManager

25

DB
em:EntityManager

Contains managed entity
instances, referred to as
the persistence context

find(…)

persist(…)

remove(…)

lock(…)

refresh(…)

createQuery(…)

…

Methods operate on entity objects EntityManager translates
the request to DB calls

DB may also contain detached entity instances

Slide from a future session

Use
EntityManager

instead of
direct DB
access

