
CSE541 EXERCISE 10 SOLUTIONS

QUESTION 1

Let GL be the Gentzen style proof system for classical logic defined in chapter 6. Prove, by constructing
a proper decomposition tree that

(1) `GL((¬a⇒ b)⇒ (¬b⇒ a)).

Solution: By definition we have that

`GL((¬a⇒ b)⇒ (¬b⇒ a)) if and only if `GL −→ ((¬a⇒ b)⇒ (¬b⇒ a)).

We construct the decomposition tree for −→ A as follows.

T→A

−→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b) −→ (¬b⇒ a)

| (→⇒)

¬b, (¬a⇒ b) −→ a

| (→ ¬)

(¬a⇒ b) −→ b, a∧
(⇒−→)

−→ ¬a, b, a

| (→ ¬)

a −→ b, a

axiom

b −→ b, a

axiom

All leaves of the tree T→A are axioms, hence we have found the proof of A in GL.
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(2) Let GL be the Gentzen style proof system defined in chapter 11. Prove, by constructing a proper decom-
position tree that

6 `GL((a⇒ b)⇒ (¬b⇒ a)).

Solution: Observe that for any formula A, its decomposition tree T→A in GL is not unique. Hence when
constructing decomposition trees we have to cover all possible cases.

We construct the decomposition tree for −→ A as follows.

T1→A

−→ ((a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(one choice)

(a⇒ b) −→ (¬b⇒ a)

| (→⇒)

(first of two choices)

¬b, (a⇒ b) −→ a

| (¬ →)

(one choice)

(a⇒ b) −→ b, a∧
(⇒−→)

(one choice)

−→ a, b, a

non− axiom

b −→ b, a

axiom

The tree contains a non- axiom leaf
−→ a, b, a,

hence it is not a proof of
((a⇒ b)⇒ (¬b⇒ a))

in GL. We have only one more tree to construct. Here it is.
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T2→A

−→ ((a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(one choice)

(a⇒ b) −→ (¬b⇒ a)∧
(⇒−→)

(second of two choices)

−→ (¬b⇒ a), a

(−→⇒)

(one choice)

¬b −→ a, a

| (¬ →)

(one choice)

−→ b, a, a

non− axiom

b −→ (¬b⇒ a)

| (→⇒)

(one choice)

b,¬b −→ a

| (¬ →)

(one choice)

b −→ b, a

axiom

All possible trees end with an non-axiom leave whet proves that

6 `GL((a⇒ b)⇒ (¬b⇒ a)).

QUESTION 2

Does the tree below constitute a proof in GL? Justify your answer.

T→A

−→ ¬¬((¬a⇒ b)⇒ (¬b⇒ a))

| (→ ¬)

¬((¬a⇒ b)⇒ (¬b⇒ a)) −→
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| (¬ →)

−→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b) −→ (¬b⇒ a)

| (→⇒)

(¬a⇒ b),¬b −→ a

| (¬ →)

(¬a⇒ b) −→ b, a∧
(⇒−→)

−→ ¬a, b, a

| (→ ¬)

a −→ b, a

axiom

b −→ b, a

axiom

Solution: The tree is a not a proof in GL because a rule corresponding to the decomposition step below does
not exists in it.

(¬a⇒ b),¬b −→ a

| (¬ →)

(¬a⇒ b) −→ b, a

It is a proof is some system GL1 that has all the rules of GL except its (¬ →). This rule has to be
replaced by the rule:

(¬ →)1
Γ,Γ

′ −→ ∆, A,∆
′

Γ,¬A,Γ′ −→ ∆,∆′ .

Also the step above this one, i.e.
(¬a⇒ b) −→ (¬b⇒ a)

| (→⇒)

(¬a⇒ b),¬b −→ a

is incorrect for similar reason.
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Observe that the completeness of the system GL may not imply the completeness of GL1, i.e. we don’t know
if the new system GL1 is complete (in fact, it is!).

QUESTION 3

Let GL be the Gentzen style proof system for classical logic defined in chapter 6. Prove, by constructing
a counter-model defined by a proper decomposition tree that

6|= ((a⇒ (¬b ∩ a))⇒ (¬b⇒ (a ∪ b))).

Solution

T→A

−→ ((a⇒ (¬b ∩ a))⇒ (¬b⇒ (a ∪ b)))

| (→⇒)

(a⇒ (¬b ∩ a)) −→ (¬b⇒ (a ∪ b))

| (→⇒))

one of two choices

¬b, (a⇒ (¬b ∩ a)) −→ (a ∪ b))

| (→ ∪)

one of two choices

¬b, (a⇒ (¬b ∩ a)) −→ a, b

| (¬ →)

(a⇒ (¬b ∩ a)) −→ b, a, b∧
(⇒−→)

−→ a, b, a, b

non− axiom

(¬b ∩ a) −→ b, a

| (∩ −→)

¬b, a −→ b, a

| (¬ −→)

a −→ b, b, a

axiom
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The counter-model model determined by the non-axiom leaf −→ a, b, a, b is any truth assignment that evaluates
it to F .

Observe that (we use a shorthand notation) −→ a, b, a, b represents semantically T −→ a, b, a, b

and hence −→ a, b, a, b = F iff T −→ a, b, a, b = F ,

what happens only if T ⇒ a ∪ b ∪ a ∪ b = F , i.e. only when a = F and b = F .

Explain why your counter -model construction is valid

Because of the strong soundness of GL

QUESTION 4

Consider a system RS1 obtained from RS by changing the sequence Γ
′

into Γ and ∆ into ∆
′

in all of the
rules of inference of RS.

1. Construct a decomposition tree of

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

2. Define in your own words, for any A, the decomposition tree TA in RS1.

3. Prove Completeness Theorem for RS1.

1. Construct a decomposition tree of A from the QUESTION 1 in RS1.

Solution

TA

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

(¬¬(a ∩ b), (¬a ∪ ¬b)

| (∪)

(¬¬(a ∩ b),¬a,¬b

| (¬¬)

((a ∩ b),¬a,¬b∧
(∩)

a,¬a,¬b)

axiom

b,¬a,¬b

axiom
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2. Define in your own words, for any A, the decomposition tree TA in RS1.

Solution Steps are as follows.
1.Decompose using rule defined by the main connective of A
2. Scan resulting sequence from RIGHT to LEFT and find first decomposable formula A
3. Repeat 1. and 2. until no more decomposable formulas.
4. Tree TA is a proof if all leaves are axioms.
5. The proof does not exist otherwise, i.e. there is a non- axiom leaf because the tree is, as in RS, unique.

3. Prove Completeness Theorem for RS1.

Assume that 6 `RS1A. From 1-5 we have that there is a leaf L of the decomposition tree of A, which is not
an axiom.

Observe, that RS1 is sound by the same proof as for RS. By soundness, if one premiss of a rule of RS is
FALSE, so is the conclusion.

Hence by soundness and the definition of the decomposition tree any truth assignment v that falsifies an non
axiom leaf, i.e. any v such that v∗(L) = F falsifies A, namely v∗(A) = F and hence constitutes a counter
model for A. This ends that proof that 6|= A.

Essential part:

Given a formula A such that 6 `RS1A and its decomposition tree of A with a non-axiom leaf L.

We define a counter-model v determined by the non- axiom leat L as follows:

v(a) =

 F if a appears in L
T if ¬a appears in L
any value if a does not appear in L

QUESTION 5

Let LI be the Gentzen system for intuitionistic logic as defined in chapter 7
Show that

`LI ¬¬((¬a⇒ b)⇒ (¬b⇒ a)).

Solution: Observe that

`LI ¬¬((¬a⇒ b)⇒ (¬b⇒ a)) iff `LI −→ ¬¬((¬a⇒ b)⇒ (¬b⇒ a)) .

Consider the following decomposition tree T→A of → ¬¬((¬a⇒ b)⇒ (¬b⇒ a)) in LI.

T→A

−→ ¬¬((¬a⇒ b)⇒ (¬b⇒ a))

| (→ ¬)

¬((¬a⇒ b)⇒ (¬b⇒ a)) −→
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| (contr →)

¬((¬a⇒ b)⇒ (¬b⇒ a)),¬((¬a⇒ b)⇒ (¬b⇒ a)) −→

| (¬ →)

¬((¬a⇒ b)⇒ (¬b⇒ a)) −→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b),¬((¬a⇒ b)⇒ (¬b⇒ a)) −→ (¬b⇒ a)

| (→⇒)

¬b, (¬a⇒ b),¬((¬a⇒ b)⇒ (¬b⇒ a)) −→ a

| (exch→)

(¬a⇒ b),¬b,¬((¬a⇒ b)⇒ (¬b⇒ a)) −→ a∧
(⇒−→)

¬b,¬((¬a⇒ b)⇒ (¬b⇒ a)) −→ ¬a

| (→ ¬)

a,¬b,¬((¬a⇒ b)⇒ (¬b⇒ a)) −→

| (exch→)

a,¬((¬a⇒ b)⇒ (¬b⇒ a)),¬b −→

| (exch→)

¬((¬a⇒ b)⇒ (¬b⇒ a)), a,¬b −→

| (¬ →)

a,¬b −→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b), a,¬b −→ (¬b⇒ a)

| (→⇒)

¬b, (¬a⇒ b), a,¬b −→ a

axiom

b,¬b,¬((¬a⇒ b)⇒ (¬b⇒ a)) −→

| (exch→)

¬b, b,¬((¬a⇒ b)⇒ (¬b⇒ a)) −→

| (¬ →)

b,¬((¬a⇒ b)⇒ (¬b⇒ a)) −→ b

axiom

All leaves of T→A are axioms, we have hence found a proof.

QUESTION 5

We know that the formulas below are not Intuitionistic Tautologies. Verify whether H semantics (chapter
3) provides a counter-model for them.

((a⇒ b)⇒ (¬a ∪ b))

((¬a⇒ ¬b)⇒ (b⇒ a))
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Solution

First Formula:
((¬a⇒ ¬b)⇒ (b⇒ a))

We evaluate:((a ⇒ b) ⇒ (¬a ∪ b)) =⊥ iff (a ⇒ b) = T and (¬a ∪ b) =⊥. Observe that (¬a ∪ b) =⊥ in 3
cases, two of which for ¬a =⊥ are impossible. We have hence only one case to consider: ¬a = F, b =⊥,
i.e. a =⊥ or a = T and b =⊥. Both of them provide a counter-model.

item[] Second formula:
((¬a⇒ ¬b)⇒ (b⇒ a))

Solution ((¬a ⇒ ¬b) ⇒ (b ⇒ a)) =⊥ iff (¬a ⇒ ¬b) = T and (b ⇒ a) =⊥. The case (b ⇒ a) =⊥ holds iff
b = T and a =⊥. In this case (¬a⇒ ¬b) = (¬ ⊥⇒ ¬T ) = F ⇒ F = T . We have a counter-model.

QUESTION 6

Show that
`LI ¬¬((¬a⇒ ¬b)⇒ (b⇒ a))

Solution We did work it out in chapter 7

QUESTION 7 Use the heuristic method defined in chapter 7 to prove that

6 `LI((¬a⇒ b)⇒ (¬b⇒ a)).

Solution: To prove that our formula is not provable in LI we construct its possible decomposition trees following
our heuristic, discuss their relationship and show that each of them must have an non-axiom leaf.

First tree is as follows.

T1

−→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b) −→ (¬b⇒ a)

| (→⇒)

¬b, (¬a⇒ b) −→ a

| (exch→)

(¬a⇒ b),¬b,−→ a∧
(⇒−→)
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¬b −→ ¬a

| (→ ¬)

a,¬b −→

| (exch→)

¬b, a −→

| (¬ →)

a −→ b

non− axiom

b,¬b −→ a

| (exch→)

¬b, b −→ a

| (→ weak)

¬b, b −→

| (¬ →)

b −→ b

axiom

Second tree The second choice of decomposition rule at the second node of the tree T1 gives the following
tree.

T2

−→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b) −→ (¬b⇒ a)∧
(⇒−→)

−→ ¬a

| (→ ¬)

a −→

non− axiom

b −→ (¬b⇒ a)

| (→⇒)

b,¬b −→ a

| (exch→)

¬b, b −→ a

| (→ weak)

¬b, b −→

| (¬ →)

b −→ b

axiom

Observe that T1 and T2 have identical sub-trees ending with identical leaves.

Third tree is obtained by the third choice of the decomposition rule at the second node of the tree T1, namely
the use of rule (contr →). This step produces a node

(¬a⇒ b), (¬a⇒ b) −→ (¬b⇒ a)
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Observe that next decomposition steps would give trees similar to T1 and T2. We write down, as an example
one of them, which follows the pattern of the tree T1.

T3

−→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b) −→ (¬b⇒ a)

| (contr →)

(¬a⇒ b), (¬a⇒ b) −→ (¬b⇒ a)

| (→⇒)

¬b, (¬a⇒ b), (¬a⇒ b) −→ a

| (exch→)

(¬a⇒ b),¬b, (¬a⇒ b) −→ a∧
(⇒−→)

¬b, (¬a⇒ b) −→ ¬a

| (→ ¬)

a,¬b, (¬a⇒ b) −→

| (exch→)

¬b, a, (¬a⇒ b) −→

| (¬ →)

a, (¬a⇒ b) −→ b

| (exch→)

(¬a⇒ b), a −→ b∧
(⇒−→)

a −→ ¬a

| (→ ¬)

a, a −→

non− axiom

b, a −→ b

axiom

∧
(⇒−→)

b,¬b, (¬a⇒ b) −→ a

| (exch→)

¬b, b, (¬a⇒ b) −→ a

| (→ weak)

¬b, b, (¬a⇒ b) −→

| (¬ →)

b, (¬a⇒ b) −→ b

axiom
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Observe that the rule (contr →) didn’t and will never bring information to the tree construction which would
replace a non-axiom leaf by an axiom leaf.

Next tree can be obtained by exploring second choice at the node 3 of the first tree.

T4

−→ ((¬a⇒ b)⇒ (¬b⇒ a))

| (→⇒)

(¬a⇒ b) −→ (¬b⇒ a)

| (→⇒)

¬b, (¬a⇒ b) −→ a

| (→ weak)

¬b, (¬a⇒ b) −→

| (¬ →)

(¬a⇒ b) −→ b∧
(⇒−→)

−→ ¬a

| (→ ¬)

a −→

non− axiom

b −→ b

axiom

Observe that here again the rule (contr →) applied to any node to the tree T4 would never gives us a
possibility of replacing a non-axiom leaf by an axiom leaf.

Conclusion All possible decomposition trees will always contain a non- axiom leaf what ends the proof.

GENERAL REMARK We are using the word ”PROOF” in two distinct senses.

In the first sense, we use it as a formal proof within a fixed proof system, namely LI and is represented
as a proof tree, or sequence of expressions of the language L of LI.

In the second sense, it also designates certain sequences of sentences of English language (supplemented
by some technical terms, if needed) that are supposed to serve as an argument justifying some assertions
about the language L, or proof system based on it.

In general, the language we are studying, in this case L, is called an OBJECT LANGUAGE.

The language in which we formulate and prove the results about the object language is called the META-
LANGUAGE. The metalanguage might also be formalized and made the object of study, which we would
carry in a meta-metalanguage.
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We use English as our not formalized metalanguage, although, we use only a mathematically weak portion
of the English language. The contrast between the language and metalanguage is also present in study for
example, a foreign language. In French study class, French is the object language, while the metalanguage,
the language we use, is English.

The distinction between proof and meta-proof, i.e. a proof in the metalanguage, is now clear. We construct
(in the metalanguage) a decomposition tree which is a formal proof in the object language. By doing
so, we prove in the metalanguage, that the proof in the object language exists. Such proof is called a
meta-proof, and the fact thus proved is called a meta-theorem.
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